8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Algorithm design patterns and antipatterns

Algorithm design patterns.
- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.
- **NP-completeness.** $O(n^k)$ algorithm unlikely.
- **PSPACE-completeness.** $O(n^k)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Turing machine, word RAM, uniform circuits, ...

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

constants tend to be small, e.g., $3n^2$
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_p Y$ with $Y \leq_p X$.
Polynomial transformations

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any instance x of X, we can construct an instance y of Y such that x is a yes instance of X iff y is a yes instance of Y.

we require $|y|$ to be of size polynomial in $|x|$.

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form.

Open question. Are these two concepts the same with respect to \textbf{NP}? we abuse notation \leq_p and blur distinction.
Intractability: quiz 1

Suppose that $X \leq_p Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.
Which of the following poly-time reductions are known?

A. **FIND-MAX-FLOW \leq_p FIND-MIN-CUT.**

B. **FIND-MIN-CUT \leq_p FIND-MAX-FLOW.**

C. Both A and B.

D. Neither A nor B.
Poly-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6?
Ex. Is there an independent set of size ≥ 7?
Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4?

Ex. Is there a vertex cover of size ≤ 3?

![Diagram of a graph with vertex cover and independent set markings]
Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.
Theorem. \textsc{Independent-Set} $\equiv_p \textsc{Vertex-Cover}$.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

![Graph diagram with vertices and edges, indicating an independent set of size 6 and a vertex cover of size 4.]
Vertex cover and independent set reduce to one another

Theorem. \textsc{Independent-Set} \(\equiv_p \textsc{Vertex-Cover} \).

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\Rightarrow \]

- Let \(S \) be any independent set of size \(k \).
- \(V - S \) is of size \(n - k \).
- Consider an arbitrary edge \((u, v) \in E\).
- \(S \) independent \(\Rightarrow \) either \(u \notin S \), or \(v \notin S \), or both.
 \[\Rightarrow \] either \(u \in V - S \), or \(v \in V - S \), or both.
- Thus, \(V - S \) covers \((u, v)\). \(\blacksquare \)
Vertex cover and independent set reduce to one another

Theorem. \textsc{Independent-Set} $\equiv_p \textsc{Vertex-Cover}$.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\Leftarrow

- Let $V - S$ be any vertex cover of size $n - k$.
- S is of size k.
- Consider an arbitrary edge $(u, v) \in E$.
- $V - S$ is a vertex cover \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
 \Rightarrow either $u \notin S$, or $v \notin S$, or both.
- Thus, S is an independent set. \hfill \blacksquare
Set cover

Set-Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[U = \{ 1, 2, 3, 4, 5, 6, 7 \} \]
\[S_a = \{ 3, 7 \} \quad S_b = \{ 2, 4 \} \]
\[\textcolor{blue}{S_c = \{ 3, 4, 5, 6 \}} \quad S_d = \{ 5 \} \]
\[S_e = \{ 1 \} \quad \textcolor{blue}{S_f = \{ 1, 2, 6, 7 \}} \]
\[k = 2 \]

a set cover instance
Given the universe \(U = \{ 1, 2, 3, 4, 5, 6, 7 \} \) and the following sets, which is the minimum size of a set cover?

A. 1

\[U = \{ 1, 2, 3, 4, 5, 6, 7 \} \]

\[S_a = \{ 1, 4, 6 \} \quad S_b = \{ 1, 6, 7 \} \]

\[S_c = \{ 1, 2, 3, 6 \} \quad S_d = \{ 1, 3, 5, 7 \} \]

\[S_e = \{ 2, 6, 7 \} \quad S_f = \{ 3, 4, 5 \} \]

B. 2

C. 3

D. None of the above.
Vertex cover reduces to set cover

Theorem. \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).

Pf. Given a \(\text{VERTEX-COVER} \) instance \(G = (V, E) \) and \(k \), we construct a \(\text{SET-COVER} \) instance \((U, S, k) \) that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

Construction.

- Universe \(U = E \).
- Include one subset for each node \(v \in V : S_v = \{ e \in E : e \text{ incident to } v \} \).

\[
\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a &= \{ 3, 7 \} & S_b &= \{ 2, 4 \} \\
S_c &= \{ 3, 4, 5, 6 \} & S_d &= \{ 5 \} \\
S_e &= \{ 1 \} & S_f &= \{ 1, 2, 6, 7 \}
\end{align*}
\]

vertex cover instance \((k = 2) \)
set cover instance \((k = 2) \)
Vertex cover reduces to set cover

Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

- Then $Y = \{ S_v : v \in X \}$ is a set cover of size k. □

“yes” instances of VERTEX-COVER are solved correctly

![Graph](image)

vertex cover instance (k = 2)

set cover instance (k = 2)

$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$

$S_a = \{ 3, 7 \}$

$S_b = \{ 2, 4 \}$

$\underline{S_c} = \{ 3, 4, 5, 6 \}$

$S_d = \{ 5 \}$

$S_e = \{ 1 \}$

$\underline{S_f} = \{ 1, 2, 6, 7 \}$
Vertex cover reduces to set cover

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S, k) \) contains a set cover of size \(k \).

Pf. \(\iff \) Let \(Y \subseteq S \) be a set cover of size \(k \) in \((U, S, k) \).
\(\quad \) Then \(X = \{ v : S_v \in Y \} \) is a vertex cover of size \(k \) in \(G \). □

<table>
<thead>
<tr>
<th>vertex cover instance</th>
<th>set cover instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = 2)</td>
<td>(k = 2)</td>
</tr>
</tbody>
</table>

Example:
- **Graph:**
 - \(U = \{ 1, 2, 3, 4, 5, 6, 7 \} \)
 - \(S_a = \{ 3, 7 \} \)
 - \(S_b = \{ 2, 4 \} \)
 - \(S_c = \{ 3, 4, 5, 6 \} \)
 - \(S_d = \{ 5 \} \)
 - \(S_e = \{ 1 \} \)
 - \(S_f = \{ 1, 2, 6, 7 \} \)

"no" instances of **VERTEX-COVER** are solved correctly
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_1 \vee \overline{x_2} \vee x_3 \)

Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses.

\[\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4 \]

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[\Phi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_4) \]

Yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).
Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to $P \neq NP$ conjecture.

Computer Scientists have so much funding and time and can't even figure out the boolean satisfiability problem. SAT!

https://www.facebook.com/pg/npcompletesteen
Theorem. 3-SAT \leq_p \text{INDEPENDENT-SET}.

\textbf{Pf.} Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G, k)\) of
\text{INDEPENDENT-SET} that has an independent set of size \(k = |\Phi| \) iff \(\Phi \) is satisfiable.

\textbf{Construction.}

- \(G \) contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

\[
\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)
\]
3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\Rightarrow \) Consider any satisfying assignment for \(\Phi \).

- Select one true literal from each clause/triangle.
- This is an independent set of size \(k = |\Phi| \).

\[
\begin{align*}
\Phi &= (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\end{align*}
\]
3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\iff \) Let \(S \) be independent set of size \(k \).

- \(S \) must contain exactly one node in each triangle.
- Set these literals to \textit{true} (and remaining literals consistently).
- All clauses in \(\Phi \) are satisfied. \(\blacksquare \)

\[
\begin{align*}
\Phi & = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)
\end{align*}
\]
Basic reduction strategies.

- Simple equivalence: \textsc{Independent-Set} \equiv_p \textsc{Vertex-Cover}.
- Special case to general case: \textsc{Vertex-Cover} \leq_p \textsc{Set-Cover}.
- Encoding with gadgets: 3-SAT \leq_p \textsc{Independent-Set}.

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

\textbf{Ex.} 3-SAT \leq_p \textsc{Independent-Set} \leq_p \textsc{Vertex-Cover} \leq_p \textsc{Set-Cover}.
Decision, search, and optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?

Search problem. Find a vertex cover of size $\leq k$.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?
Hamilton cycle

Hamilton-Cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

```
no
```
Directed Hamilton cycle reduces to Hamilton cycle

Directed-Hamilton-Cycle. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem. Directed-Hamilton-Cycle \leq_p Hamilton-Cycle.

Pf. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.

![Directed graph G](image1)

![Undirected graph G'](image2)
Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \implies

- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order). □

Pf. \impliedby

- Suppose G' has an undirected Hamilton cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - $\ldots, \text{black}, \text{white}, \text{blue}, \text{black}, \text{white}, \text{blue}, \text{black}, \ldots$
 - $\ldots, \text{black}, \text{blue}, \text{white}, \text{black}, \text{blue}, \text{white}, \text{black}, \text{blue}, \text{white}, \ldots$
- Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G, or reverse of one. □
3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-$\text{Sat} \leq_p \text{DIRECTED-HAMILTON-CYCLE}$.

Pf. Given an instance Φ of 3-Sat, we construct an instance G of $\text{DIRECTED-HAMILTON-CYCLE}$ that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = true$.
Which is truth assignment corresponding to Hamilton cycle below?

A. $x_1 = true, x_2 = true, x_3 = true$

B. $x_1 = true, x_2 = true, x_3 = false$

C. $x_1 = false, x_2 = false, x_3 = true$

D. $x_1 = false, x_2 = false, x_3 = false$
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
 - For each clause: add a node and 2 edges per literal.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause: add a node and 2 edges per literal.

$$C_1 = x_1 \lor \overline{x_2} \lor x_3$$ clause node 1

$$C_2 = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3}$$ clause node 2

\[C_1 = x_1 \lor \overline{x_2} \lor x_3 \]

\[C_2 = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \]
3-satisfiability reduces to directed Hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)

- Suppose 3-SAT instance \(\Phi \) has satisfying assignment \(x^* \).
- Then, define Hamilton cycle \(\Gamma \) in \(G \) as follows:
 - if \(x_i^* = true \), traverse row \(i \) from left to right
 - if \(x_i^* = false \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in “correct” direction to splice clause node \(C_j \) into cycle
 (and we splice in \(C_j \) exactly once) \(\blacksquare \)
3-satisfiability reduces to directed Hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\iff \)

- Suppose \(G \) has a Hamilton cycle \(\Gamma \).
- If \(\Gamma \) enters clause node \(C_j \), it must depart on mate edge.
 - nodes immediately before and after \(C_j \) are connected by an edge \(e \in E \)
 - removing \(C_j \) from cycle, and replacing it with edge \(e \) yields Hamilton cycle on \(G – \{ C_j \} \)
- Continuing in this way, we are left with a Hamilton cycle \(\Gamma' \) in \(G – \{ C_1 , C_2 , \ldots , C_k \} \).
- Set \(x_i^* = true \) if \(\Gamma' \) traverses row \(i \) left-to-right; otherwise, set \(x_i^* = false \).
- traversed in “correct” direction, and each clause is satisfied. \(\blacksquare \)
Poly-time reductions

- constraint satisfaction
 - 3-Sat
 - 3-SAT poly-time reduces to INDEPENDENT-SET
 - INDEPENDENT-SET
 - VERTEX-COVER
 - SET-COVER
 - DIR-HAM-CYCLE
 - HAM-CYCLE
 - 3-COLOR
 - SUBSET-SUM
 - KNAPSACK

packing and covering sequencing partitioning numerical
8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
My hobby

NP–Complete by Randall Munro
http://xkcd.com/287
Creative Commons Attribution–NonCommercial 2.5
Subset sum

SUBSET-SUM. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Ex. \{ 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 \}, \quad W = 1505.

Yes. $215 + 355 + 355 + 580 = 1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
Theorem. \(3\text{-SAT} \leq_p \text{SUBSET-SUM}.\)

Pf. Given an instance \(\Phi\) of 3-SAT, we construct an instance of \text{SUBSET-SUM} that has solution iff \(\Phi\) is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:

- Include one digit for each variable x_i and one digit for each clause C_j.
- Include two numbers for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1;
 sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow
each digit yields one equation.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

3-SAT instance
3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose 3-SAT instance Φ has satisfying assignment x^*.

- If $x^*_i = \text{true}$, select integer in row x_i;
 otherwise, select integer in row $\neg x_i$.
- Each x_i digit sums to 1.
- Since Φ is satisfiable, each C_j digit sums to at least 1 from x_i and $\neg x_i$ rows.
- Select dummy integers to make C_j digits sum to 4. •

$$C_1 = \neg x_1 \lor x_2 \lor x_3$$
$$C_2 = x_1 \lor \neg x_2 \lor x_3$$
$$C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$$
3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \iff Suppose there exists a subset S^* that sums to W.

- Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).
- If row x_i selected, assign $x_i^* = true$; otherwise, assign $x_i^* = false$.

Digit C_j forces subset S^* to select at least one literal in clause. ■

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

| dummies to get clause columns to sum to 4 |
|------|------|------|------|------|
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 2 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 2 |

| W | 1 | 1 | 1 | 4 | 4 | 4 | 111,444 |

3-SAT instance

$C_1 = \neg x_1 \lor x_2 \lor x_3$

$C_2 = x_1 \lor \neg x_2 \lor x_3$

$C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$

SUBSET-SUM instance
Subset Sum reduces to Knapsack

Subset-Sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Knapsack. Given a set of items X, weights $u_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. $O(n U)$ dynamic programming algorithm for Knapsack.

Challenge. Prove Subset-Sum \leq_P Knapsack.

Pf. Given instance (w_1, \ldots, w_n, W) of Subset-Sum, create Knapsack instance:
Poly-time reductions

3-SAT poly-time reduces to INDEPENDENT-SET

INDEPENDENT-SET

VERTEX-COVER

SET-COVER

DIR-HAM-CYCLE

HAM-CYCLE

3-COLOR

SUBSET-SUM

KNAPSACK

constraint satisfaction

packing and covering

sequencing

partitioning

numerical
Karp’s 20 poly-time reductions from satisfiability

FIGURE 1 - Complete Problems

Dick Karp (1972)
1985 Turing Award