

Lecture slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

SECTION 8.1

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. $O(n^k)$ algorithm unlikely.
- **PSPACE**-completeness. $O(n^k)$ certification algorithm unlikely.
- Undecidability.
 No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

von Neumann (1953)

Nash (1955)

Gödel (1956)

Cobham (1964)

Edmonds (1965)

Rabin (1966)

Turing machine, word RAM, uniform circuits, ...

Theory. Definition is broad and robust.

constants tend to be small, e.g., $3n^2$

Practice. Poly-time algorithms scale to huge problems.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes	probably no
shortest path	longest path
min cut	max cut
2-satisfiability	3-satisfiability
planar 4-colorability	planar 3-colorability
bipartite vertex cover	vertex cover
matching	3d-matching
primality testing	factoring
linear programming	integer linear programming

Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an *n*-by-*n* generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

input size = $c + \log k$

Poly-time reductions

Desiderata'. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece of hardware that solves instances of Y in a single step

Poly-time reductions

Desiderata'. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- · Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_{P} Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_P Y$ with $Y \leq_P X$.

Polynomial transformations

Def. Problem *X* polynomial (Cook) reduces to problem *Y* if arbitrary instances of problem *X* can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any instance x of X, we can construct an instance y of Y such that x is a yes instance of X iff y is a yes instance of Y.

we require |y| to be of size polynomial in |x|

Note. Polynomial transformation is polynomial reduction with just one call to oracle for *Y*, exactly at the end of the algorithm for *X*. Almost all previous reductions were of this form.

Open question. Are these two concepts the same with respect to **NP**?

we abuse notation \leq_{P} and blur distinction

Intractability: quiz 1

Suppose that $X \leq_P Y$. Which of the following can we infer?

- **A.** If X can be solved in polynomial time, then so can Y.
- **B.** *X* can be solved in poly time iff *Y* can be solved in poly time.
- **C.** If *X* cannot be solved in polynomial time, then neither can *Y*.
- **D.** If *Y* cannot be solved in polynomial time, then neither can *X*.

Intractability: quiz 2

Which of the following poly-time reductions are known?

- A. FIND-MAX-FLOW \leq_P FIND-MIN-CUT.
- B. FIND-MIN-CUT \leq_P FIND-MAX-FLOW.
- C. Both A and B.
- **D.** Neither A nor B.

Poly-time reductions

Design algorithms. If $X \le_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

SECTION 8.1

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Independent set

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6 ?

Ex. Is there an independent set of size ≥ 7 ?

independent set of size 6

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4 ?

Ex. Is there a vertex cover of size ≤ 3 ?

- independent set of size 6
- vertex cover of size 4

Consider the following graph G. Which are true?

- **A.** The white vertices are a vertex cover of size 7.
- **B.** The black vertices are an independent set of size 3.
- C. Both A and B.
- **D.** Neither A nor B.

Vertex cover and independent set reduce to one another

Theorem. Independent-Set \equiv_P Vertex-Cover.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n-k.

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

- Let S be any independent set of size k.
- V-S is of size n-k.
- Consider an arbitrary edge $(u, v) \in E$.
- *S* independent \Rightarrow either $u \notin S$, or $v \notin S$, or both. \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
- Thus, V S covers (u, v). \blacksquare

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

 \Leftarrow

- Let V S be any vertex cover of size n k.
- S is of size k.
- Consider an arbitrary edge $(u, v) \in E$.
- V S is a vertex cover \Rightarrow either $u \in V S$, or $v \in V S$, or both. \Rightarrow either $u \notin S$, or $v \notin S$, or both.
- Thus, *S* is an independent set. •

Set cover

SET-COVER. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- *m* available pieces of software.
- Set *U* of *n* capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 3, 7 \}$
 $S_b = \{ 2, 4 \}$
 $S_c = \{ 3, 4, 5, 6 \}$
 $S_d = \{ 5 \}$
 $S_e = \{ 1 \}$
 $S_f = \{ 1, 2, 6, 7 \}$
 $k = 2$

Intractability: quiz 4

Given the universe $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ and the following sets, which is the minimum size of a set cover?

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** None of the above.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 1, 4, 6 \}$
 $S_b = \{ 1, 6, 7 \}$
 $S_c = \{ 1, 2, 3, 6 \}$
 $S_d = \{ 1, 3, 5, 7 \}$
 $S_e = \{ 2, 6, 7 \}$
 $S_f = \{ 3, 4, 5 \}$

Vertex cover reduces to set cover

Theorem. Vertex-Cover \leq_P Set-Cover.

Pf. Given a Vertex-Cover instance G = (V, E) and k, we construct a Set-Cover instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe U = E.
- Include one subset for each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v \}$.

vertex cover instance
$$(k = 2)$$

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

 $S_a = \{ 3, 7 \}$ $S_b = \{ 2, 4 \}$
 $S_c = \{ 3, 4, 5, 6 \}$ $S_d = \{ 5 \}$
 $S_e = \{ 1 \}$ $S_f = \{ 1, 2, 6, 7 \}$

set cover instance (k = 2)

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

• Then $Y = \{ S_v : v \in X \}$ is a set cover of size k. •

"yes" instances of VERTEX-COVER are solved correctly

vertex cover instance
$$(k = 2)$$

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_a = \{ 3, 7 \} \qquad S_b = \{ 2, 4 \}$$

$$S_c = \{ 3, 4, 5, 6 \} \qquad S_d = \{ 5 \}$$

$$S_e = \{ 1 \} \qquad S_f = \{ 1, 2, 6, 7 \}$$

set cover instance (k = 2)

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \leftarrow Let $Y \subseteq S$ be a set cover of size k in (U, S, k).

• Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G. •

"no" instances of VERTEX-COVER are solved correctly

vertex cover instance (k = 2)

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 3, 7 \}$
 $S_b = \{ 2, 4 \}$
 $S_c = \{ 3, 4, 5, 6 \}$
 $S_d = \{ 5 \}$
 $S_e = \{ 1 \}$
 $S_f = \{ 1, 2, 6, 7 \}$

set cover instance (k = 2)

SECTION 8.2

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Satisfiability

Literal. A Boolean variable or its negation.

$$x_i$$
 or $\overline{x_i}$

Clause. A disjunction of literals.

$$C_j = x_1 \vee \overline{x_2} \vee x_3$$

Conjunctive normal form (CNF). A propositional formula Φ that is a conjunction of clauses.

$$\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

SAT. Given a CNF formula Φ , does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

yes instance: $x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false}$

Key application. Electronic design automation (EDA).

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to $P \neq NP$ conjecture.

https://www.facebook.com/pg/npcompleteteens

3-satisfiability reduces to independent set

Theorem. 3-SAT \leq_P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Construction.

G

- *G* contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

 $\overline{x_1}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_1}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_2}$ \overline

 $\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$

3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |\Phi|$.

Pf. \Rightarrow Consider any satisfying assignment for Φ .

- · Select one true literal from each clause/triangle.
- This is an independent set of size $k = |\Phi|$. •

"yes" instances of 3-SAT are solved correctly

G

$$k = 3$$

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |\Phi|$.

Pf. \leftarrow Let S be independent set of size k.

- S must contain exactly one node in each triangle.
- Set these literals to true (and remaining literals consistently).
- All clauses in Φ are satisfied. \blacksquare

'no" instances of 3-SA are solved correctly

$$\Phi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_4)$$

Review

Basic reduction strategies.

- Simple equivalence: Independent-Set \equiv_P Vertex-Cover.
- Special case to general case: Vertex-Cover ≤ P Set-Cover.
- Encoding with gadgets: $3-SAT \leq_P INDEPENDENT-SET$.

Transitivity. If $X \le_P Y$ and $Y \le_P Z$, then $X \le_P Z$. Pf idea. Compose the two algorithms.

Ex. 3-SAT \leq_P INDEPENDENT-SET \leq_P VERTEX-COVER \leq_P SET-COVER.

DECISION, SEARCH, AND OPTIMIZATION PROBLEMS

Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find a vertex cover of size $\leq k$. Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

SECTION 8.5

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a cycle Γ that visits every node exactly once?

Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a cycle Γ that visits every node exactly once?

Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph G = (V, E), does there exist a directed cycle Γ that visits every node exactly once?

Theorem. DIRECTED-HAMILTON-CYCLE ≤ P HAMILTON-CYCLE.

Pf. Given a directed graph G = (V, E), construct a graph G' with 3n nodes.

Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ .
- Then G' has an undirected Hamilton cycle (same order).

Pf. ←

- Suppose G' has an undirected Hamilton cycle Γ' .
- Γ' must visit nodes in G' using one of following two orders:

```
..., black, white, blue, black, white, blue, black, white, blue, ..., black, blue, white, black, blue, white, black, blue, white, ...
```

• Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G, or reverse of one. \blacksquare

Theorem. $3-SAT \leq_P DIRECTED-HAMILTON-CYCLE$.

Pf. Given an instance Φ of 3-SAT, we construct an instance G of Directed-Hamilton-Cycle that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ . We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path *i* from left to right \Leftrightarrow set variable $x_i = true$.

Intractability: quiz 5

Which is truth assignment corresponding to Hamilton cycle below?

$$A_1 = true, x_2 = true, x_3 = true$$

$$C_1$$
 $x_1 = false, x_2 = false, x_3 = true$

B.
$$x_1 = true, x_2 = true, x_3 = false$$

$$\mathbf{D}. \quad x_1 = false, x_2 = false, x_3 = false$$

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

• For each clause: add a node and 2 edges per literal.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

For each clause: add a node and 2 edges per literal.

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance Φ has satisfying assignment x^* .
- Then, define Hamilton cycle Γ in G as follows:
 - if $x_i^* = true$, traverse row *i* from left to right
 - if $x_i^* = false$, traverse row *i* from right to left
 - for each clause C_j , there will be at least one row i in which we are going in "correct" direction to splice clause node C_j into cycle (and we splice in C_i exactly once)

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. ←

- Suppose G has a Hamilton cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
 - nodes immediately before and after C_i are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G \{C_1, C_2, ..., C_k\}$.
- Set $x_i^* = true$ if Γ' traverses row i left-to-right; otherwise, set $x_i^* = false$.
- traversed in "correct" direction, and each clause is satisfied.

Poly-time reductions

SECTION 8.8

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

NP-Complete by Randall Munro
http://xkcd.com/287
Creative Commons Attribution-NonCommercial 2.5

Subset sum

SUBSET-SUM. Given n natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

Ex. $\{215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655\}$, W = 1505. Yes. 215 + 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Subset sum

Theorem. $3-SAT \le P$ SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each having n + k digits:

- Include one digit for each variable x_i and one digit for each clause C_j .
- Include two numbers for each variable x_i .
- Include two numbers for each clause C_j .
- Sum of each x_i digit is 1; sum of each C_j digit is 4.

Key property. No carries possible ⇒ each digit yields one equation.

$C_1 =$	$\neg x_1$	٧	χ_2	٧	<i>x</i> ₃
$C_2 =$	x_1	٧	$\neg x_2$	٧	<i>x</i> ₃
$C_3 =$	$\neg x_1$	V	$\neg x_2$	٧	$\neg x_3$

3-SAT instance

dummies to get clause columns to sum to 4

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose 3-SAT instance Φ has satisfying assignment x^* .

- If $x_i^* = true$, select integer in row x_i ; otherwise, select integer in row $\neg x_i$.
- Each x_i digit sums to 1.
- Since Φ is satisfiable, each C_j digit sums to at least 1 from x_i and $\neg x_i$ rows.
- Select dummy integers to make C_j digits sum to 4. \blacksquare

$C_1 =$	$\neg x_1$	٧	χ_2	٧	<i>x</i> ₃
$C_2 =$	x_1	٧	$\neg x_2$	٧	<i>x</i> ₃
$C_3 =$	$\neg x_1$	٧	$\neg x_2$	٧	$\neg x_3$

3-SAT instance

dummies to get clause columns to sum to 4

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \leftarrow Suppose there exists a subset S^* that sums to W.

• Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).

• If row x_i selected, assign $x_i^* = true$; otherwise, assign $x_i^* = false$.

Digit C_i forces subset S^* to select at least one literal in clause. •

κ	\mathfrak{c}_1	1	0	0	0	1	0
ر ¬	\mathfrak{c}_1	1	0	0	1	0	1
ζ	\mathfrak{c}_2	0	1	0	1	0	0
ر ¬	\mathfrak{c}_2	0	1	0	0	1	1
κ	C 3	0	0	1	1	1	0
ر ¬	C 3	0	0	1	0	0	1
1		0	0	0	1	0	0
		0	0	0	2	0	0
dummies to get clause		0	0	0	0	1	0
columns to sum to 4		0	0	0	0	2	0
		0	0	0	0	0	1
		0	0	0	0	0	2
Ţ	V	1	1	1	4	4	4

 x_3

$C_2 = x_1 \lor \neg x_2 \lor x_3$ $C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$	$C_1 =$	$\neg x_1$	٧	χ_2	٧	<i>x</i> ₃
$C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$	$C_2 =$	x_1	٧	$\neg x_2$	٧	<i>x</i> ₃
	$C_3 =$	$\neg x_1$	٧	$\neg x_2$	٧	$\neg x_3$

3-SAT instance

111,444

100,010

100,101

10,100

10,011

1,110

1,001

100

200

10

20

1

SUBSET SUM REDUCES TO KNAPSACK

SUBSET-SUM. Given n natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

KNAPSACK. Given a set of items X, weights $u_i \ge 0$, values $v_i \ge 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. O(n U) dynamic programming algorithm for KNAPSACK.

Challenge. Prove Subset-Sum ≤ P KNAPSACK.

Pf. Given instance $(w_1, ..., w_n, W)$ of Subset-Sum, create Knapsack instance:

Poly-time reductions

Karp's 20 poly-time reductions from satisfiability

