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7.5  Bipartite Matching



3

Matching.

Input:  undirected graph G = (V, E).

M  E is a matching if each node appears in at most edge in M.

Max matching:  find a max cardinality matching.

Matching
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Bipartite Matching

Bipartite matching.

Input:  undirected, bipartite graph G = (L  R, E).

M  E is a matching if each node appears in at most edge in M.

Max matching:  find a max cardinality matching.
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Bipartite Matching

Bipartite matching.

Input:  undirected, bipartite graph G = (L  R, E).

M  E is a matching if each node appears in at most edge in M.

Max matching:  find a max cardinality matching.
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Max flow formulation.

Create digraph G' = (L  R  {s, t},  E' ).

Direct all edges from L to R, and assign infinite (or unit) capacity.

Add source s, and unit capacity edges from s to each node in L.

Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching
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Theorem.  Max cardinality matching in G = value of max flow in G'.

Pf.  

Given max matching M of cardinality k.

Consider flow f that sends 1 unit along each of k paths.

f is a flow, and has cardinality k.   ▪

Bipartite Matching:  Proof of Correctness
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Theorem.  Max cardinality matching in G = value of max flow in G'.

Pf.  

Let f be a max flow in G' of value k.

Integrality theorem   k is integral and can assume f is 0-1.

Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R participates in at most one edge in M

– |M| = k:  consider cut (L  s, R  t)   ▪

Bipartite Matching:  Proof of Correctness
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Def.  A matching M  E is perfect if each node appears in exactly one 

edge in M.

Q.  When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings. 

Clearly we must have |L| = |R|.

What other conditions are necessary?

What conditions are sufficient?

Perfect Matching
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Notation.  Let S be a subset of nodes, and let N(S) be the set of nodes 

adjacent to nodes in S.

Observation.  If a bipartite graph G = (L  R, E), has a perfect 

matching, then |N(S)|  |S| for all subsets S  L.

Pf.  Each node in S has to be matched to a different node in N(S).

Perfect Matching

No perfect matching:

S = { 2, 4, 5 }

N(S) = { 2', 5' }.
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Marriage Theorem.  [Frobenius 1917, Hall 1935] Let G = (L  R, E) be a 

bipartite graph with |L| = |R|. Then, G has a perfect matching iff 

|N(S)|  |S| for all subsets S  L.

(S is called a constricted set if  S> |N(S)|)

Pf.   This was the previous observation.

Marriage Theorem
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k-Regular Bipartite Graphs

Dancing problem.

Exclusive Ivy league party attended by n men and n women.

Each man knows exactly k women; each woman knows exactly k men.

Acquaintances are mutual.

Is it possible to arrange a dance so that each woman dances

with a different man that she knows?

Mathematical reformulation.  Does every k-regular

bipartite graph have a perfect matching?

Ex.  Boolean hypercube.
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Theorem. [König 1916, Frobenius 1917] Every k-regular bipartite graph 

has a perfect matching.

Pf.  Size of max matching = value of max flow in G'.  Consider flow:

f is a flow and its value = n   perfect matching.   ▪

k-Regular Bipartite Graphs Have Perfect Matchings

 

f (u, v) =

1/k if  (u,  v)  E

1 if  u = s  or  v = t

0 otherwise
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Pf.   Suppose G does not have a perfect matching.

Formulate as a max flow problem and let (A, B) be min cut in G'.

By max-flow min-cut, cap(A, B) < | L |.

Define LA = L  A,  LB = L  B ,  RA = R  A.

cap(A, B)  =  | LB | + | RA |.

Since min cut can't use  edges:  N(LA)  RA.

|N(LA )|  | RA |  =  cap(A, B) - | LB |  <  | L | - | LB |  =  | LA |.

Choose S = LA .  ▪

Proof of Marriage Theorem

LA = {2, 4, 5}

LB = {1, 3}

RA = {2', 5'}

N(LA) = {2', 5'}
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Which max flow algorithm to use for bipartite matching?

Generic augmenting path:  O(m val(f*) ) = O(mn).

Capacity scaling:  O(m2 log C )  = O(m2).

Shortest augmenting path:  O(m n1/2).

Non-bipartite matching.

Structure of non-bipartite graphs is more complicated, but

well-understood.  [Tutte-Berge, Edmonds-Galai]

Blossom algorithm:  O(n4).   [Edmonds 1965]

Best known:  O(m n1/2).        [Micali-Vazirani 1980]

Bipartite Matching:  Running Time
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Economic model

Buyers (females, S) and sellers (males, N(S))

Each buyer has a valuation of each seller

Perfect matching with total maximum valuations among matched pairs 

(social welfare)

Can to convince the buyer to buy the items they are allocated?

Economic model (seller asks for a price): Accounting method

Total Payoff of S = Total Valuation of S – Sum of all prices

Optimality of Market-Clearing Prices

A set of market-clearing prices, and a perfect matching in the 

resulting preferred-seller graph, produces the maximum possible sum 

of payoffs to all sellers and buyers

(Proposed in 1986 by Demange, Gale, and Sotomayor,  but is equivalent to the 1916 

result by a Hungarian mathematician.)

Bipartite Matching:  Adding Costs
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Auction

At the start of each round, there is a current set of prices, with the smallest 

one equal 0.

Construct the preferred-seller graph and check whether there is a perfect 

matching.

If there is, then done: the current prices are market-clearing.

If not, find a constricted set of buyers, S, and their neighbors N(S).

Each seller in N(S) (simultaneously) raises his price by one unit.

If necessary, reduce the prices: the same amount is subtracted from each 

price so that the smallest price become zero.

Begin the next round of the auction, using these new prices.

Constructing a Set of Market-Clearing Prices
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Instability: two neighboring nodes not in a pair have a total weight of less than 1

Nash bargaining: M: x + (1-x-y)/2  and F: y + (1-x-y)/2 

Stable bargaining and Nash bargaining

M F
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M F
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M F
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Balanced bargaining

M’ F

M F’

M’ F

M F’

M’ F

M F’

(a) instable, (b) stable, but not balanced, (c) stable and balanced

Balanced: For each edge in the matching, the split of the power/money represents
the Nash bargaining, given the best outside options for each node in the network



7.6  Disjoint Paths
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Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, 

find the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Ex:  communication networks.
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Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, 

find the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Ex:  communication networks.
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Pf.   

Suppose there are k edge-disjoint paths P1, . . . , Pk.

Set f(e) = 1 if e participates in some path Pi ;  else set f(e) = 0.

Since paths are edge-disjoint, f is a flow of value k.   ▪

Edge Disjoint Paths

s t
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Pf.   

Suppose max flow value is k.

Integrality theorem   there exists 0-1 flow f of value k.

Consider edge (s, u) with f(s, u) = 1.

– by conservation, there exists an edge (u, v) with f(u, v) = 1

– continue until reach t, always choosing a new edge

Produces k (not necessarily simple) edge-disjoint paths.   ▪

Edge Disjoint Paths

s t
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can eliminate cycles to get simple paths if desired
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Network connectivity.  Given a digraph G = (V, E) and two nodes s and t,  

find min number of edges whose removal disconnects t from s.

Def.  A set of edges F  E disconnects t from s if every s-t path uses 

at least one edge in F.

Network Connectivity
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Edge Disjoint Paths and Network Connectivity

Theorem.  [Menger 1927] The max number of edge-disjoint s-t paths is 

equal to the min number of edges whose removal disconnects t from s.

Pf.  

Suppose the removal of F  E disconnects t from s, and |F| = k.

Every s-t path uses at least one edge in F.

Hence, the number of edge-disjoint paths is at most k.  ▪
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Disjoint Paths and Network Connectivity

Theorem.  [Menger 1927] The max number of edge-disjoint s-t paths is 

equal to the min number of edges whose removal disconnects t from s.

Pf.  

Suppose max number of edge-disjoint paths is k.

Then max flow value is k.

Max-flow min-cut   cut (A, B) of capacity k.

Let F be set of edges going from A to B.

|F| = k and disconnects t from s.   ▪
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7.7  Extensions to Max Flow
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Circulation with Demands

Circulation with demands.

Directed graph G = (V, E).

Edge capacities c(e), e  E.

Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:

For each e  E: 0    f(e)    c(e) (capacity)

For each v  V: (conservation)

Circulation problem:  given (V, E, c, d), does there exist a circulation?

  

 

f (e)
e in to v

 − f (e)
e out of v

 = d(v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0
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Necessary condition:  sum of supplies = sum of demands.

Pf.  Sum conservation constraints for every demand node v.
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Circulation with Demands
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 

d(v)
v : d (v)  0
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Circulation with Demands

Max flow formulation.

G:

supply
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Circulation with Demands

Max flow formulation.

Add new source s and sink t.

For each v with d(v) < 0, add edge (s, v) with capacity -d(v).

For each v with d(v) > 0, add edge (v, t) with capacity  d(v).

Claim:  G has circulation iff G' has max flow of value D.

G':

supply

3

10 6 9

0
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4

s

t
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7 8 6

saturates all edges

leaving s and entering t

demand
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Circulation with Demands

Integrality theorem.  If all capacities and demands are integers, and 

there exists a circulation, then there exists one that is integer-valued.

Pf.  Follows from max flow formulation and integrality theorem for max 

flow.

Characterization.  Given (V, E, c, d), there does not exists a circulation 

iff there exists a node partition (A, B) such that vB dv > cap(A, B)

Pf idea.  Look at min cut in G'. demand by nodes in B exceeds supply

of nodes in B plus max capacity of

edges going from A to B
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Circulation with Demands and Lower Bounds

Feasible circulation.

Directed graph G = (V, E).  

Edge capacities c(e) and lower bounds  (e), e  E.

Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:

For each e  E:  (e)  f(e)    c(e) (capacity)

For each v  V: (conservation)

Circulation problem with lower bounds.  Given (V, E, , c, d), does there 

exists a a circulation?

  

 

f (e)
e in to v

 − f (e)
e out of v

 = d(v)
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Circulation with Demands and Lower Bounds

Idea.  Model lower bounds with demands.

Send (e) units of flow along edge e.

Update demands of both endpoints.

Theorem.  There exists a circulation in G iff there exists a circulation 

in G'. If all demands, capacities, and lower bounds in G are integers, 

then there is a circulation in G that is integer-valued.

Pf sketch.  f(e) is a circulation in G iff f'(e) = f(e) - (e) is a circulation 

in G'.

v w[2, 9]

lower bound upper bound

v w

d(v) d(w) d(v) + 2 d(w) - 2
G G'

7

capacity



7.8  Survey Design
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Survey Design

Survey design.

Design survey asking n1 consumers about n2 products.

Can only survey consumer i about product j if they own it.

Ask consumer i between ci and ci' questions.

Ask between pj and pj' consumers about product j.

Goal.  Design a survey that meets these specs, if possible.

Bipartite perfect matching.  Special case when ci = ci' = pi = pi' = 1.

one survey question per product
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Survey Design

Algorithm.  Formulate as a circulation problem with lower bounds.

Include an edge (i, j) if consumer j owns product i.

Integer circulation   feasible survey design.
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Airline Schedule: k planes schedule

Each edge has a capacity of 1

Solid edge has a lower bound of 1

s has –k (k planes) and t has k

For each flight (u, v), there is an edge (s, u) and another (v, t)

There is one additional edge (s, t) with k (do not need to use up all)



7.10  Image Segmentation
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Image Segmentation

Image segmentation.

Central problem in image processing.

Divide image into coherent regions.

Ex:  Three people standing in front of complex background scene. 

Identify each person as a coherent object.
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Image Segmentation

Foreground / background segmentation.

Label each pixel in picture as belonging to

foreground or background.

V = set of pixels, E = pairs of neighboring pixels.

ai  0 is likelihood pixel i in foreground.

bi  0 is likelihood pixel i in background.

pij  0 is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.

Accuracy:  if ai  > bi in isolation, prefer to label i in foreground.

Smoothness: if many neighbors of i are labeled foreground, we 

should be inclined to label i as foreground.

Find partition (A, B) that maximizes:  

  

 

a i +
i  A

 b j
j  B

 − pij
(i, j)  E

A {i, j} = 1



foreground background
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Image Segmentation

Formulate as min cut problem.

Maximization.

No source or sink.

Undirected graph.

Turn into minimization problem.

Maximizing

is equivalent to minimizing

or alternatively

  

 

a j +
j  B

 bi
i  A

 + pij
(i, j)  E

A {i, j} = 1



  

 

a i +
i  A

 b j
j  B

 − pij
(i, j)  E

A {i, j} = 1



 

a ii  V  + b jj  V( )
a constant

  −  a i
i A

  − bj
j  B

  + pij
(i, j)  E

A {i, j} = 1


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Image Segmentation

Formulate as min cut problem.

G' = (V', E').

Add source to correspond to foreground;

add sink to correspond to background

Use two anti-parallel edges instead of

undirected edge.

s t

pij

pij

pij

i jpij

aj

G'

bi
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Image Segmentation

Consider min cut (A, B) in G'.

A = foreground.

Precisely the quantity we want to minimize.

 

cap(A, B) = a j +
j  B

 bi  +
i A

 pij
(i, j)  E
i A, j  B



G'

s ti j

A

if i and j on different sides,
pij counted exactly once

pij

bi

aj



7.11  Project Selection
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Project Selection

Projects with prerequisites.

Set P of possible projects. Project v has associated revenue pv.

– some projects generate money:  create interactive e-commerce interface, 

redesign web page

– others cost money:  upgrade computers, get site license

Set of prerequisites E.  If (v, w)  E, can't do project v and unless 

also do project w.

A subset of projects A  P is feasible if the prerequisite of every 

project in A also belongs to A.

Project selection.  Choose a feasible subset of projects to maximize 

revenue.

can be positive or negative
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Project Selection:  Prerequisite Graph

Prerequisite graph.

Include an edge from v to w if can't do v without also doing w.

{v, w, x} is feasible subset of projects.

{v, x} is infeasible subset of projects.

v

w

xv

w

x

feasible infeasible
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Min cut formulation.

Assign capacity  to all prerequisite edge.

Add edge (s, v) with capacity -pv if pv > 0.

Add edge (v, t) with capacity -pv if pv < 0.

For notational convenience, define ps = pt = 0.

s t

-pw

u

v

w

x

y z

Project Selection:  Min Cut Formulation



pv -px








py

pu

-pz


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Claim.  (A, B) is min cut iff A − { s } is optimal set of projects.

Infinite capacity edges ensure A − { s } is feasible.

Max revenue because:

s t

-pw

u

v

w

x

y z

Project Selection:  Min Cut Formulation

pv -px

 

cap(A, B) = p v
v B: pv  0

 + (− p v)
v A: pv  0



= p v
v : pv  0



constant

− p v
v  A



py

pu







A
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Open-pit mining.  (studied since early 1960s)

Blocks of earth are extracted from surface to retrieve ore.

Each block v has net value pv = value of ore - processing cost.

Can't remove block v before w or x.

Open Pit Mining

v

xw



7.12  Baseball Elimination

"See that thing in the paper last week about Einstein? . . . 
Some reporter asked him to figure out the mathematics of 
the pennant race.  You know, one team wins so many of their 
remaining games, the other teams win this number or that 
number.  What are the myriad possibilities? Who's got the 
edge?"
"The hell does he know?"
"Apparently not much.  He picked the Dodgers
to eliminate the Giants last Friday."

- Don DeLillo,  Underworld
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Baseball Elimination

Which teams have a chance of finishing the season with most wins? 

Montreal eliminated since it can finish with at most 80 wins, but 

Atlanta already has 83.

wi + ri < wj  team i eliminated.

Only reason sports writers appear to be aware of.

Sufficient, but not necessary!

Team
i

Against = rijWins
wi

To play
ri

Losses
li Atl Phi NY Mon

Montreal 77 382 1 2 0 -

New York 78 678 6 0 - 0

Philly 80 379 1 - 0 2

Atlanta 83 871 - 1 6 1
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Baseball Elimination

Which teams have a chance of finishing the season with most wins? 

Philly can win 83, but still eliminated . . .

If Atlanta loses a game, then some other team wins one.

Remark.  Answer depends not just on how many games already won and 

left to play, but also on whom they're against.

Team
i

Against = rijWins
wi

To play
ri

Losses
li Atl Phi NY Mon

Montreal 77 382 1 2 0 -

New York 78 678 6 0 - 0

Philly 80 379 1 - 0 2

Atlanta 83 871 - 1 6 1
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Baseball Elimination
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Baseball Elimination

Baseball elimination problem.

Set of teams S.

Distinguished team s  S.

Team x has won wx games already.

Teams x and y play each other rxy additional times.

Is there any outcome of the remaining games in which team s 

finishes with the most (or tied for the most) wins?
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Can team 3 finish with most wins?

Assume team 3 wins all remaining games   w3 + r3 wins. 

Divvy remaining games so that all teams have  w3 + r3 wins.

Baseball Elimination:  Max Flow Formulation

s

1-5

2-5

4-5

2

4

5

t

1-2

1-4

2-4

1

r24 = 7  w3 + r3 - w4

team 4 can still
win this many
more gamesgames left



game nodes team nodes
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Theorem.  Team 3 is not eliminated iff max flow saturates all edges 

leaving source.

Integrality theorem   each remaining game between x and y added 

to number of wins for team x or team y.

Capacity on (x, t) edges ensure no team wins too many games.

Baseball Elimination:  Max Flow Formulation

s

1-5

2-5

4-5

2

4

5

t

1-2

1-4

2-4

1



team 4 can still
win this many
more gamesgames left



game nodes team nodes

r24 = 7 w3 + r3 - w4
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Baseball Elimination:  Explanation for Sports Writers

Which teams have a chance of finishing the season with most wins? 

Detroit could finish season with 49 + 27 = 76 wins.

Team
i

Against = rijWins
wi

To play
ri

Losses
li NY Bal Bos Tor

Toronto 63 2772 7 7 0 -

Boston 69 2766 8 2 - 0

Baltimore 71 2863 3 - 2 7

NY 75 2859 - 3 8 7

Detroit 49 2786 3 4 0 0

Det

-

0

4

3

-

AL East:  August 30, 1996
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Baseball Elimination:  Explanation for Sports Writers

Which teams have a chance of finishing the season with most wins? 

Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination.  R = {NY, Bal, Bos, Tor}

Have already won w(R) = 278 games.

Must win at least r(R) = 27 more.

Average team in R wins at least 305/4 > 76 games.

Team
i

Against = rijWins
wi

To play
ri

Losses
li NY Bal Bos Tor

Toronto 63 2772 7 7 0 -

Boston 69 2766 8 2 - 0

Baltimore 71 2863 3 - 2 7

NY 75 2859 - 3 8 7

Detroit 49 2786 3 4 0 0

Det

-

0

4

3

-

AL East:  August 30, 1996
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Baseball Elimination:  Explanation for Sports Writers

Certificate of elimination.

If                                        then z is eliminated (by subset T).

Theorem.  [Hoffman-Rivlin 1967]  Team z is eliminated iff there exists 

a subset T* that eliminates z.

Proof idea.  Let T* = team nodes on source side of min cut.

 

T  S, w(T ) := wi
iT



# wins

, g(T ) := gx y
{x,y}  T



# remaining games

,

  

 

w(T)+ g(T)

| T |

LB on avg # games won

 wz + gz
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Baseball Elimination:  Explanation for Sports Writers

Pf of theorem. 

Use max flow formulation, and consider min cut (A, B).

Define T* = team nodes on source side of min cut.

Observe x-y  A iff both x  T* and y  T*.

– infinite capacity edges ensure if x-y  A then x  A and y  A

– if x  A and y  A but x-y  T, then adding x-y to A decreases 

capacity of cut

s

y

x tx-yr24 = 7 



wz + rz - wx

team x can still win this 
many more games

games left
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Baseball Elimination:  Explanation for Sports Writers

Pf of theorem. 

Use max flow formulation, and consider min cut (A, B).

Define T* = team nodes on source side of min cut.

Observe x-y  A iff both x  T* and y  T*.

Rearranging terms: ▪
 

g(S − {z})  cap(A, B)

= g(S − {z})− g(T*)

capacity of game edges leaving s

+ (wz + gz − wx )
xT*



capacity of team edges leaving s

= g(S − {z})− g(T*) − w(T*) + |T*| (wz + gz )

 

wz + gz 
w(T*)+ g(T*)

|T*|



Extra Slides
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Census Tabulation  (Exercise 7.39)

Feasible matrix rounding.

Given a p-by-q matrix D = {dij } of real numbers.

Row i sum = ai, column j sum bj.

Round each dij, ai, bj up or down to integer so that sum of rounded 

elements in each row (column) equals row (column) sum.

Original application:  publishing US Census data.

Goal.  Find a feasible rounding, if one exists.

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5

173 7 7

1310 2 1

113 1 7

16 10 15

original matrix feasible rounding
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Census Tabulation

Feasible matrix rounding.

Given a p-by-q matrix D = {dij } of real numbers.

Row i sum = ai, column j sum bj.

Round each dij, ai, bj up or down to integer so that sum of rounded 

elements in each row (column) equals row (column) sum.

Original application:  publishing US Census data.

Goal.  Find a feasible rounding, if one exists.

Remark.  "Threshold rounding" can fail.

1.050.35 0.35 0.35

1.650.55 0.55 0.55

0.9 0.9 0.9

original matrix feasible rounding

10 0 1

21 1 0

1 1 1
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Census Tabulation

Theorem.  Feasible matrix rounding always exists.

Pf.  Formulate as a circulation problem with lower bounds.

Original data provides circulation (all demands = 0).

Integrality theorem   integral solution   feasible rounding.  ▪

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5 s

1

2

3

1'

2'

3'

t

row column

17, 18

12, 13

11, 12

16, 17

10, 11

14, 15

3, 4

0, 

lower bound upper bound


