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7.5 Bipartite Matching




Matching

Matching.
Input: undirected graph G = (V, E).
M c E is a matching if each node appears in at most edge in M.
Max matching: find a max cardinality matching.




Bipartite Matching

Bipartite matching.
Input: undirected, bipartite graph G = (L U R, E).
M c E is a matching if each node appears in at most edge in M.
Max matching: find a max cardinality matching.
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Bipartite Matching

Bipartite matching.
Input: undirected, bipartite graph G = (L U R, E).
M c E is a matching if each node appears in at most edge in M.
Max matching: find a max cardinality matching.

max matching
1-1' 2-2', 3-3' 4-4'




Bipartite Matching

Max flow formulation.
Create digraph 6" = (LU R U {s, 1}, E").
Direct all edges from L to R, and assign infinite (or unit) capacity.
Add source s, and unit capacity edges from s to each node in L.
Add sink t, and unit capacity edges from each node in R to t.




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. <

Given max matching M of cardinality k.

Consider flow f that sends 1 unit along each of k paths.

f is a flow, and has cardinality k.
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. >
Let f be a max flow in G' of value k.
Integrality theorem = kis integral and can assume f is O-1.
Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- |M| = ki consider cut (Lus,RuUt) =
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Perfect Matching

Def. A matching M c E is perfect if each node appears in exactly one
edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
Clearly we must have |L| = |R].
What other conditions are necessary?
What conditions are sufficient?



Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L UR, E), has a perfect
matching, then |N(S)| > |S| for all subsets S c L.
Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching:
S={2,45}
N(s)={2',5"}.

10



Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let 6= (L UR,E) bea
bipartite graph with |L| = |R|. Then, G has a perfect matching iff
IN(S)| = |S| for all subsets S c L.

(S is called a constricted set if S> [N(S)|)

Pf. = This was the previous observation.

No perfect matching:
S={2,45}
N(s)={2',5"}.
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k-Regular Bipartite Graphs

Dancing problem.
Exclusive Ivy league party attended by n men and n women.
Each man knows exactly k women; each woman knows exactly k men.
Acquaintances are mutual.
Is it possible to arrange a dance so that each woman dances
with a different man that she knows?

Mathematical reformulation. Does every k-regular ®
bipartite graph have a perfect matching? T —
Ex. Boolean hypercube. © 3)
@ @)
® 5)

women men
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k-Regular Bipartite Graphs Have Perfect Matchings

Theorem. [Konig 1916, Frobenius 1917] Every k-regular bipartite graph
has a perfect matching.
Pf. Size of max matching = value of max flow in G'. Consider flow:
Uk if (uv)eE
f(u,v) = Jl if u=s or v=t
0  otherwise

f is a flow and its value = n = perfect matching.
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Proof of Marriage Theorem

Pf. < Suppose G does not have a perfect matching.
Formulate as a max flow problem and let (A, B) be min cut in G'.
By max-flow min-cut, cap(A, B) < | L.
DefineL,=Ln A, Lg=LnB, Ry=Rn A.
cap(A,B) = [Lg|+|R,].
Since min cut can't use © edges: N(L,) = Ry.
INLA) < |Ra| = cap(A,B)- | Lg| < [LI-ILgl = [Lal.
Choose S=L,. =

®
L,={2, 4,5}
Lg= {1, 3}
@) R,={2",5'}
N(L.) ={2",5}
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Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
Generic augmenting path: O(m val(f*) ) = O(mn).
Capacity scaling: O(m?log C) = O(m?).

Shortest augmenting path: O(m nl/2),

Non-bipartite matching.
Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galai]
Blossom algorithm: O(n%). [Edmonds 1965]
Best known: O(m nl/2). [Micali-Vazirani 1980]
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Bipartite Matching: Adding Costs

Economic model
Buyers (females, S) and sellers (males, N(S))
Each buyer has a valuation of each seller
Perfect matching with total maximum valuations among matched pairs
(social welfare)
Can to convince the buyer to buy the items they are allocated?

Economic model (seller asks for a price): Accounting method
Total Payoff of S = Total Valuation of S - Sum of all prices

Optimality of Market-Clearing Prices
A set of market-clearing prices, and a perfect matching in the
resulting preferred-seller graph, produces the maximum possible sum

of payoffs to all sellers and buyers

(Proposed in 1986 by Demange, Gale, and Sotomayor, but is equivalent to the 1916

result by a Hungarian mathematician.)
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Constructing a Set of Market-Clearing Prices

Auction

At the start of each round, there is a current set of prices, with the smallest
one equal O.

Construct the preferred-seller graph and check whether there is a perfect
matching.

If there is, then done: the current prices are market-clearing.
If not, find a constricted set of buyers, S, and their neighbors N(S).
Each seller in N(S) (simultaneously) raises his price by one unit.

If necessary, reduce the prices: the same amount is subtracted from each
price so that the smallest price become zero.

Begin the next round of the auction, using these new prices.
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Stable bargaining and Nash bargaining

17, 17, 0 1

@ F @ F

Instability: two neighboring nodes not in a pair have a total weight of less than 1

Outside Outside

option option
X Y

Nash bargaining: M: x + (1-x-y)/2 and F: y + (1-x-y)/2
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Balanced bargaining

(a) instable, (b) stable, but not balanced, (c) stable and balanced
1 /3 2 /3
()

2/3

Balanced: For each edge in the matching, the split of the power/money represents
the Nash bargaining, given the best outside options for each node in the network
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7.6 Disjoint Paths




Edge Disjoint Paths

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
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Edge Disjoint Paths

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
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Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

1
@< 1 1 \é 1>
! ! 1 I 1
\Cl; \J)/
1
Theorem. Max number edge-disjoint s-t paths equals max flow value.
Pf. <
Suppose there are k edge-disjoint paths Py, . . ., Py.

Set f(e) = 1 if e participates in some path P;; else set f(e) = O.
Since paths are edge-disjoint, f is a flow of value k.
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Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.
O
e 1 /?\ 1
1
1
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Theorem. Max number edge-disjoint s-t paths equals max flow value.
Pf. >
Suppose max flow value is k.
Integrality theorem = there exists 0-1 flow f of value k.
Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a hew edge
Produces k (not necessarily simple) edge-disjoint paths.

can eliminate cycles to get simple paths if desired
26



Network Connectivity

Network connectivity. Given a digraph 6 = (V, E) and two nodes s and t,
find min number of edges whose removal disconnects t from s.

Def. A set of edges F < E disconnects t from s if every s-t path uses
at least one edge in F.

27



Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. <
Suppose the removal of F c E disconnects t from s, and |F| = k.
Every s-t path uses at least one edge in F.
Hence, the number of edge-disjoint paths is at most k. =




Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. >
Suppose max number of edge-disjoint paths is k.
Then max flow value is k.
Max-flow min-cut = cut (A, B) of capacity k.
Let F be set of edges going from A to B.
|F| = k and disconnects t from s.




7.7 Extensions to Max Flow




Circulation with Demands

Circulation with demands.
Directed graph G = (V, E).
Edge capacities c(e), e € E.

Node supply and demands d(v), v € V.
T

demand if d(v) > O; supply if d(v) < O; transshipment if d(v) = 0

Def. A circulation is a function that satisfies:

For each e € E: 0 < fle) < c(e) (capacity)
For eachv e V: Yf(e) — Xf(e) = d(v) (conservation)
eintov e out ofv

Circulation problem: given (V, E, c, d), does there exist a circulation?
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Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
>d(v) = > —-d(v) = D

v:d(v)>0 v:d(v)< 0

Pf. Sum conservation constraints for every demand node v.

-8 -6 «— supply

4 2
-7 3
3 v D 4 . 11

10 0 AN
I capacity demand

flow

—
(@)
o
(@)}
O
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Max flow formulation.

Circulation with Demands

-8 -6 «— supply
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Circulation with Demands

Max flow formulation.
Add new source s and sink t.
For each v with d(v) < O, add edge (s, v) with capacity -d(v).
For each v with d(v) > O, add edge (v, 1) with capacity d(v).
Claim: G has circulation iff 6" has max flow of value D.

saturates all edges

ﬁ leaving s and entering t
7

8 6 — supply

demand
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Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and
there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max flow formulation and integrality theorem for max
flow.

Characterization. Given (V, E, ¢, d), there does not exists a circulation
iff there exists a node partition (A, B) such that X,_; d, > cap(A, B)

T

Pf idea. Look at min cut in G'. demand by nodes in B exceeds supply
of nodes in B plus max capacity of

edges going from A to B
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Circulation with Demands and Lower Bounds

Feasible circulation.
Directed graph G = (V, E).
Edge capacities c(e) and lower bounds 7 (e), e € E.
Node supply and demands d(v), v € V.

Def. A circulation is a function that satisfies:

For each e € E: () < f(e) £ c(e) (capacity)
For eachv € V: > f(e) — > f(e) = d(v) (conservation)
eintov e out ofv

Circulation problem with lower bounds. Given (V, E, 7, ¢, d), does there
exists a a circulation?
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Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.

Send /(e) units of flow along edge e.
Update demands of both endpoints.

capacity
b }
(V)— [2.91 —(w) ) 7 ~(w)

d(v) d(w) d(v) + 2 d(w) - 2
G G

lower bound upper bound

Theorem. There exists a circulation in G iff there exists a circulation
in G'. If all demands, capacities, and lower bounds in G are integers,
then there is a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - ¢(e) is a circulation
inG'.
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7.8 Survey Design




Survey Design

one survey question per product

Survey design. |
Design survey asking n; consumers about n, products.
Can only survey consumer i about product j if they own it.
Ask consumer i between ¢, and ¢;' questions.
Ask between p; and p;" consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case whenc;=¢;' =p,=p; = 1.
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Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
Include an edge (i, j) if consumer j owns product i.
Integer circulation < feasible survey design.
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Airline Schedule: k planes schedule

Each edge has a capacity of 1

Solid edge has a lower bound of 1

s has -k (k planes) and t has k

For each flight (u, v), there is an edge (s, u) and another (v, t)
There is one additional edge (s, t) with k (do not need to use up all)




7.10 Image Segmentation




Image Segmentation

Image segmentation.
Central problem in image processing.
Divide image into coherent regions.

Ex: Three people standing in front of complex background scene.
Identify each person as a coherent object.
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Image Segmentation

Foreground / background segmentation.

Label each pixel in picture as belonging to

foreground or background.

V = set of pixels, E = pairs of neighboring pixels. *]

a; > O is likelihood pixel i in foreground.

b;> 0 is likelihood pixel i in background.
pij = O is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
Accuracy: if a; > b; in isolation, prefer to label i in foreground.
Smoothness: if many neighbors of i are labeled foreground, we
should be inclined to label i as foreground.

Find partition (A, B) that maximizes: Ya;+ Xb;, - X p;

/N icA jeB (i,j) e E
foreground background AN, 3 =1
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Image Segmentation

Formulate as min cut problem.
Maximization.
No source or sink.
Undirected graph.

Turn into minimization problem.

Maximizing ~ 2&i+2bj — 2 py
ieA jeB (i,j) e E
AN jH =1

is equivalent fo minimizing (X, , a; +X;.,b;) - Xa; - Ib + T py
N — g ie A jeB (i,j) e E
a constant [ANiLj} =1

or alternatively Ya;+Xb + X p;
jeB ie A (i,)) e E
\Aﬂ{i,j}\zl
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Image Segmentation

Formulate as min cut problem. O— py —O
GI - (vu, El).
Add source to correspond to foreground; Pij
add sink to correspond to background é Pi %

Use two anti-parallel edges instead of
undirected edge.

- A

A
<‘
A
<V
A
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Image Segmentation

Consider min cut (A, B)inG'.
A = foreground.

cap(A,B) = X a;+ 20+ X Pij if i and j on different sides,

jeB ieA (i,j) e E -
icA jeB «— Pi counted exactly once

Precisely the quantity we want to minimize.

) 4
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/.11 Project Selection




Project Selection

can be positive or negative

Projects with prerequisites. |
Set P of possible projects. Project v has associated revenue p,.

- some projects generate money: create interactive e-commerce interface,

redesign web page
- others cost money: upgrade computers, get site license
Set of prerequisites E. If (v, w) € E, can't do project v and unless
also do project w.
A subset of projects A c P is feasible if the prerequisite of every
project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize
revenue.
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Project Selection: Prerequisite Graph

Prerequisite graph.
Include an edge from v fo w if can't do v without also doing w.
{v, w, x} is feasible subset of projects.
{v, x} is infeasible subset of projects.

feasible infeasible

50



Project Selection: Min Cut Formulation

Min cut formulation.
Assign capacity « to all prerequisite edge.
Add edge (s, v) with capacity p, if p, > O.
Add edge (v, 1) with capacity -p, if p, < O.
For notational convenience, define p, = p; = 0.
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Project Selection: Min Cut Formulation

Claim. (A, B) is min cut iff A —{s} is optimal set of projects.
Infinite capacity edges ensure A — {s} is feasible.

Max revenue because: cap(A, B) = >p, + 2(py)
veB:p, >0 ve A:p, <0

= va—zpv

vip, >0 ve A
%,_/
constant
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Open Pit Mining

Open-pit mining. (studied since early 1960s)
Blocks of earth are extracted from surface to retrieve ore.
Each block v has net value p, = value of ore - processing cost.
Can't remove block v before w or x.




7.12 Baseball Elimination

"See that thing in the paper last week about Einstein? . . .
Some reporter asked him to figure out the mathematics of
the pennant race. You know, one team wins so many of their
remaining games, the other feams win this number or that
number. What are the myriad possibilities? Who's got the
edge?"

"The hell does he know?"

"Apparently not much. He picked the Dodgers g
to eliminate the Giants last Friday." i

- Don Delillo, Underworld

Don Delillo



Baseball Elimination

rean [ wins | Losses | To loy
i Lo LN Lkor
1 6 1

Atlanta 8
Philly 80 79 3 1 - o) 2
New York 78 78 6 6 o) - o)

Which teams have a chance of finishing the season with most wins?
Montreal eliminated since it can finish with at most 80 wins, but
Atlanta already has 83.
w;+ ri<w; = team i eliminated.

Only reason sports writers appear to be aware of.

Sufficient, but not necessary!



Baseball Elimination

rean [ wins | Losses | To loy
i Lo LN Lkor
1 6 1

Atlanta 8
80 79 3 1 - 0 2
New York 78 78 6 6 o) - o)
Montreal 77 82 3 2 0 -

Which teams have a chance of finishing the season with most wins?
Philly can win 83, but still eliminated . . .
If Atlanta loses a game, then some other team wins one.

Remark. Answer depends not just on how many games already won and
left to play, but also on whom they're against.
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Baseball Elimination

‘ TUESDAY; SEPTEMBER 10,1996 e o
Sports Onlirie :
| Mipz//www.sfguro.com

By Gary Swan
Chronicle Stqr Writer

fect
The bye week has come at a per
time for the 49ers and quarterback Steve
Young. If they had a game next Sunday,
there’s a good chance Young would not
play.
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ethe NL West Race
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3 ; “Where we are, you're golng to
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night, just a¢ the lead. 47, the Glantg were hoping to get P

they were handing the visiting St. As it i3, the worst the Padres: off op the right foot | their lop- You've got o Play the role of
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lead in the NI, Central. ants have fallen tq 5983 with 20 games, 14 dayg) GIANTS; pgge D5Col 3
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Baseball Elimination

Baseball elimination problem.
Set of tfeams S.
Distinguished team s € S.
Team x has won w, games already.
Teams x and y play each other r,, additional fimes.
Is there any outcome of the remaining games in which team s
finishes with the most (or tied for the most) wins?
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Baseball Elimination: Max Flow Formulation

Can team 3 finish with most wins?
Assume team 3 wins all remaining games = w3 + r3 wins.
Divvy remaining games so that all feams have < w; + r; wins.

team 4 can still
win this many

/@ more games
o)

@_r24:7 » 2-4 o0 7\4/— W3 +TI';s - Wy —>®

games lef+t

game nodes team nodes
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Baseball Elimination: Max Flow Formulation

Theorem. Team 3 is not eliminated iff max flow saturates all edges
leaving source.
Integrality theorem = each remaining game between x and y added
to number of wins for team x or team y.
Capacity on (x, T) edges ensure no feam wins too many games.

team 4 can still
win this many

/@ more games
- /
/ -
o)

O N Ry < S P —

games lef+t

game nodes team nodes
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Baseball Elimination: Explanation for Sports Writers

Team Wins | Losses | To play
i Wi | " | NY | Bal | Bos | Tor | Det_
NY 75 59 3 8 7 3

28 -
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - o) o)
Toronto 63 72 27 7 7 o) - -
49 86 27 3Ii 4 0 0 -

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?
Detroit could finish season with 49 + 27 = 76 wins.



Baseball Elimination: Explanation for Sports Writers

Team Wins | Losses | To play
i Wi ; " | NY | Bal | Bos | Tor | Det_
NY 75 59 3 8 7 3

28 -
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - o) o)
Toronto 63 72 27 7 7 o) - -
49 86 27 3Ii 4 0 0 -

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?
Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}
Have already won w(R) = 278 games.
Must win at least r(R) = 27 more.
Average team in R wins at least 305/4 > 76 games.



Baseball Elimination: Explanation for Sports Writers

Certificate of elimination.

# wins # remaining games

la \ r % N\

TcS wT)= >w, goT)= S0y
ieT {xyrcT

LB on avg # games won

If W(Tl)_JIf?(T) >w,+g, Then ziseliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists
a subset T* that eliminates z.

Proof idea. Let T = team nodes on source side of min cut.
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Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
Use max flow formulation, and consider min cut (A, B).
Define T* = team nodes on source side of min cut.
Observe x-y € A iff bothx e T"andy € T*.
- infinite capacity edges ensure if x-y € Athenx e Aandy € A
-ifx e Aandy € A but x-y € T, then adding x-y tfo A decreases
capacity of cut

team x can still win this

many more games
games left

r24:7‘,@4 o5 wz+r'z-wx_,<:>
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Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
Use max flow formulation, and consider min cut (A, B).

Define T* = team nodes on source side of min cut.
Observe x-y € A iff bothx € T*andy e T*.

9(S—{z}) > cap(A, B)

capacity of game edges leaving s  capacity of team edges leaving

= rg(S—{Z})—g(T*)\ + rZ(Wz+gz_Wx)\

XeT*

= 90—{zh)-9(T") — w(T*) + [T*[(w,+0,)

w(T*)+9(T*)

Rearranging terms:  w,+g, < T
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Extra Slides




Census Tabulation (Exercise 7.39)

Feasible matrix rounding.
Given a p-by-q matrix D = {d;; } of real numbers.
Row i sum = q;, column j sum b;.
Round each d;j, a;, b; up or down to integer so that sum of rounded
elements in each row (column) equals row (column) sum.
Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.

314 68 73 &L 3 7 7
96 24 07 [BEE 10 2 1
36 12 65 3 1 7

original matrix feasible rounding
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Census Tabulation

Feasible matrix rounding.
Given a p-by-q matrix D = {d;; } of real numbers.
Row i sum = q;, column j sum b;.
Round each d;j, a;, b; up or down to integer so that sum of rounded
elements in each row (column) equals row (column) sum.
Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.
Remark. "Threshold rounding" can fail.

035 035 035 s
055 055 055

original matrix feasible rounding
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Census Tabulation

Theorem. Feasible matrix rounding always exists.
Pf. Formulate as a circulation problem with lower bounds.
Original data provides circulation (all demands = 0).
Integrality theorem = integral solution = feasible rounding. -

0, ©

lower bound upper bound
N 7
3.14 6.8 7.3 17.24

96 24 07 [BOE
36 12 65

row column
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