Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size $\frac{1}{2}n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: n^2.
- Divide-and-conquer: $n \log n$.
5.1 Mergesort
Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.
- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

...
Mergesort

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

```
ALGORITHMS
ALGORITHMS
ALGORITHMS
```

divide \(O(1) \)

```
ITHMSS
ITHMSS
ITHMSS
```

sort \(2T(n/2) \)

```
HIMST
HIMST
HIMST
```

merge \(O(n) \)

```
AGHILMORSST
AGHILMORSST
AGHILMORSST
```
Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage
A Useful Recurrence Relation

Def. \(T(n) = \) number of comparisons to mergesort an input of size \(n \).

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right) + n & \text{otherwise}
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume \(n \) is a power of 2 and replace \(\leq \) with \(= \).
Proof by Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

where:
- The tree represents the recursive calls to `T(n)`.
- Each level of the tree corresponds to a step in the recursion, starting from `T(n)` down to `T(n/2k)`.
- The `log₂n` layer reflects the number of times the division by 2 occurs.
- The total time is represented as `n log₂n`.

Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\uparrow

assumes n is a power of 2

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{n} + \frac{n}{n} & \text{otherwise}
\end{cases} \]

\[\text{sorting both halves} \]

\[\text{merging} \]

Pf. For $n > 1$:

\[
\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1
\]

\[
= \frac{T(n/2)}{n/2} + 1
\]

\[
= \frac{T(n/4)}{n/4} + 1 + 1
\]

\[
\ldots
\]

\[
= \frac{T(n/n)}{n/n} + 1 + \cdots + 1
\]

\[
= \log_2 n
\]
Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

Pf. (by induction on n)

- **Base case:** $n = 1$.
- **Inductive hypothesis:** $T(n) = n \log_2 n$.
- **Goal:** show that $T(2n) = 2n \log_2 (2n)$.

\[
T(2n) = 2T(n) + 2n \\
= 2n \log_2 n + 2n \\
= 2n(\log_2 (2n) - 1) + 2n \\
= 2n \log_2 (2n)
\]
Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lceil \lg n \rceil$.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\left\lceil n/2 \right\rceil\right) + T\left(\left\lfloor n/2 \right\rfloor\right) + n & \text{otherwise}
\end{cases}
\]

Pf. (by induction on n)

- Base case: $n = 1$.
- Define $n_1 = \lfloor n / 2 \rfloor$, $n_2 = \lceil n / 2 \rceil$.
- Induction step: assume true for $1, 2, \ldots, n-1$.

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lceil \lg n_1 \rceil + n_2 \lfloor \lg n_2 \rfloor + n \\
\leq n_1 \lceil \lg n_2 \rceil + n_2 \lfloor \lg n_2 \rfloor + n \\
= n \lceil \lg n_2 \rceil + n \\
\leq n(\lceil \lg n \rceil - 1) + n \\
= n \lceil \lg n \rceil
\]

\[
n_2 = \lceil n/2 \rceil \\
\leq 2 \lfloor \lg n \rfloor / 2 \\
= 2 \lfloor \lg n \rfloor / 2 \\
\Rightarrow \lg n_2 \leq \lceil \lg n \rceil - 1
\]
Two Exercises

- Using recursion tree to guess a result, and then, applying induction to prove.

(1) \(T(n) = 3 \ T\left(\frac{n}{4}\right) + \Theta(n^2) \)

(2) \(T(n) = T(n/3) + T(2n/3) + O(n) \)
Master Theorem

Theorem 4.1 (Master theorem)

Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then $T(n)$ has the following asymptotic bounds:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $a f(n/b) \leq c f(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$T(n) = 9T(n/3) + n$, $T(n) = \Theta(n^2)$; $T(n) = 3T(n/4) + n \log n$, $T(n) = \Theta(n \log n)$

$T(n) = T(2n/3) + 1$, $T(n) = \Theta(\log n)$; $T(n) = 2T(n/2) + \Theta(n)$, $T(n) = \Theta(n \log n)$

$T(n) = 8T(n/2) + \Theta(n^2)$, $T(n) = \Theta(n^3)$; $T(n) = 7T(n/2) + \Theta(n^2)$, $T(n) = \Theta(n^{\log 7})$
5.3 Counting Inversions
Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: \(a_1, a_2, ..., a_n\).
- Songs i and j inverted if \(i < j\), but \(a_i > a_j\).

```
<table>
<thead>
<tr>
<th>Songs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
```

Inversions: 3-2, 4-2

Brute force: check all \(\Theta(n^2)\) pairs i and j.
Applications

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide**: separate list into two pieces.

\[
\begin{array}{cccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: \(O(1) \).

\[
\begin{array}{cccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide:** separate list into two pieces.
- **Conquer:** recursively count inversions in each half.

5 blue-blue inversions

5-4, 5-2, 4-2, 8-2, 10-2

8 green-green inversions

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide: $O(1)$.

Conquer: $2T(n/2)$
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide**: separate list into two pieces.
- **Conquer**: recursively count inversions in each half.
- **Combine**: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

\[
\begin{pmatrix}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7
\end{pmatrix}
\]

Divide: $O(1)$.

\[
\begin{pmatrix}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7
\end{pmatrix}
\]

Conquer: $2T(n/2)$

5 blue-blue inversions
8 green-green inversions

9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Combine: ???

\[
\text{Total} = 5 + 8 + 9 = 22.
\]
Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is **sorted**.
- Count inversions where \(a_i \) and \(a_j \) are in different halves.
- **Merge** two sorted halves into sorted whole.

\[
T(n) \leq T\left(\left\lfloor n/2 \right\rfloor\right) + T\left(\left\lceil n/2 \right\rceil\right) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n)
\]
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (r_A, A) ← Sort-and-Count(A)
 (r_B, B) ← Sort-and-Count(B)
 (r, L) ← Merge-and-Count(A, B)

 return r = r_A + r_B + r and the sorted list L
}
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

\[\text{to make presentation cleaner} \]
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure $n/4$ points in each piece.
Closest Pair of Points

Algorithm.

- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.

- **Divide**: draw vertical line \(L \) so that roughly \(\frac{1}{2}n \) points on each side.
- **Conquer**: find closest pair in each side recursively.
- **Combine**: find closest pair with one point in each side. ← seems like \(\Theta(n^2) \)
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance \(< \delta \).

\[\delta = \min(12, 21) \]
Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
Closest Pair of Points

Find closest pair with one point in each side, **assuming that distance < δ**.
- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

\[\delta = \min(12, 21)\]
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

$\delta = \min(12, 21)$
Closest Pair of Points

Def. Let \(s_i \) be the point in the \(2\delta \)-strip, with the \(i \)th smallest \(y \)-coordinate.

Claim. If \(|i - j| \geq 12 \), then the distance between \(s_i \) and \(s_j \) is at least \(\delta \).

Pf.
- No two points lie in same \(\frac{1}{2}\delta \)-by-\(\frac{1}{2}\delta \) box.
- Two points at least 2 rows apart have distance \(\geq 2\left(\frac{1}{2}\delta\right)\).

Fact. Still true if we replace 12 with 7.
Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 Compute separation line L such that half the points are on one side and half on the other side.

 \[\delta_1 = \text{Closest-Pair(left half)} \]
 \[\delta_2 = \text{Closest-Pair(right half)} \]
 \[\delta = \min(\delta_1, \delta_2) \]

 Delete all points further than \(\delta \) from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).

 return \(\delta \).
}
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq 2T(n/2) + O(n \log n) \quad \Rightarrow \quad T(n) = O(n \log^2 n) \]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don’t sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

\[T(n) \leq 2T(n/2) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n) \]