Chapter 5
Divide and Conquer
Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size \(\frac{1}{2}n \).
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: \(n^2 \).
- Divide-and-conquer: \(n \log n \).
5.1 Mergesort
Sorting. Given n elements, rearrange in ascending order.

Applications.
- Sort a list of names.
- Organize an MP3 library.
 obvious applications
- Display Google PageRank results.
- List RSS news items in reverse chronological order.

- Find the median.
- Find the closest pair.
- Binary search in a database.
 problems become easy once
- Identify statistical outliers.
- Find duplicates in a mailing list.

- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
 non-obvious applications
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

...
Mergesort

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

- divide $O(1)$
- sort $2T(n/2)$
- merge $O(n)$
Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage
A Useful Recurrence Relation

Def. \(T(n) = \) number of comparisons to mergesort an input of size \(n \).

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\left\lceil n/2 \right\rceil\right) + T\left(\left\lfloor n/2 \right\rfloor\right) + \left\lfloor n \right\rfloor & \text{otherwise}
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume \(n \) is a power of 2 and replace \(\leq \) with =.
Proof by Recursion Tree

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}
\]

- **Base Case:** \(T(2) = 2T(1) + 2 = 2 + 2 = 4\)
- **Recursive Case:** \(T(n/2) + T(n/2) + \ldots + T(2)\)

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}
\]

The recursion tree shows the number of nodes at each level, which corresponds to the time complexity for sorting both halves and merging. The total time complexity is \(n \log_2 n\).
Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

Pf. For $n > 1$:

\[
\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1 \\
= \frac{T(n/2)}{n/2} + 1 \\
= \frac{T(n/4)}{n/4} + 1 + 1 \\
\vdots \\
= \frac{T(n/n)}{n/n} + 1 + \cdots + 1 \\
= \log_2 n
\]

assumes n is a power of 2
Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{\text{sorting both halves}} + \frac{n}{\text{merging}} & \text{otherwise}
\end{cases} \]

assumes n is a power of 2

Pf. (by induction on n)

- Base case: $n = 1$.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

\[
T(2n) = 2T(n) + 2n \\
= 2n \log_2 n + 2n \\
= 2n(\log_2(2n) - 1) + 2n \\
= 2n \log_2 (2n)
\]
Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lceil \lg n \rceil$.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n & \text{otherwise}
\end{cases}
\]

Pf. (by induction on n)

- Base case: $n = 1$.
- Define $n_1 = \lfloor n / 2 \rfloor$, $n_2 = \lceil n / 2 \rceil$.
- Induction step: assume true for 1, 2, ..., $n-1$.

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n \\
\leq n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n \\
= n \lceil \lg n_2 \rceil + n \\
\leq n(\lceil \lg n \rceil - 1) + n \\
= n \lceil \lg n \rceil
\]

\[
 n_2 = \lceil n/2 \rceil \\
\leq \lceil 2 \lceil \lg n \rceil / 2 \rceil \\
= 2 \lceil \lg n \rceil / 2 \\
\Rightarrow \ lgn_2 \leq \lceil \lg n \rceil - 1
\]
Two Exercises

- Using recursion tree to guess a result, and then, applying induction to prove.

(1) \(T(n) = 9 \ T\left(\frac{n}{3}\right) + n \)

(2) \(T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n) \)
Master Theorem

Theorem 4.1 (Master theorem)

Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then $T(n)$ has the following asymptotic bounds:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$. ■

$T(n) = 9 \ T(n/3) + n$, $T(n) = \Theta(n^2)$; $T(n) = 3T(n/4) + n \log n$, $T(n) = \Theta(n \log n)$

$T(n) = T(2n/3) + 1$, $T(n) = \Theta(\log n)$; $T(n) = 2T(n/2) + \Theta(n)$, $T(n) = \Theta(n \log n)$

$T(n) = 8T(n/2) + \Theta(n^2)$, $T(n) = \Theta(n^3)$; $T(n) = 7T(n/2) + \Theta(n^2)$, $T(n) = \Theta(n^{\log 7})$
5.3 Counting Inversions
Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if $i < j$, but $a_i > a_j$.

<table>
<thead>
<tr>
<th>Songs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Brute force: check all $\Theta(n^2)$ pairs i and j.

Inversions: 3-2, 4-2
Applications

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide**: separate list into two pieces.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide**: separate list into two pieces.
- **Conquer**: recursively count inversions in each half.

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>11</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
</table>

Divide: $O(1)$.

Conquer: $2T(n/2)$

5 blue-blue inversions

5-4, 5-2, 4-2, 8-2, 10-2

8 green-green inversions

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

```
1  5  4  8 10  2  6  9 12 11  3  7
```

Divide: $O(1)$.

```
1  5  4  8 10  2  
6  9 12 11  3  7
```

5 blue-blue inversions

8 green-green inversions

Conquer: $2T(n/2)$

```
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7
```

Combine: ???

Total = $5 + 8 + 9 = 22$.
Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is **sorted**.
- Count inversions where \(a_i\) and \(a_j\) are in different halves.
- **Merge** two sorted halves into sorted whole.

\[T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n) \]
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (r_A, A) ← Sort-and-Count(A)
 (r_B, B) ← Sort-and-Count(B)
 (r, L) ← Merge-and-Count(A, B)

 return r = r_A + r_B + r and the sorted list L
}
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with \(\Theta(n^2) \) comparisons.

1-D version. \(O(n \log n) \) easy if points are on a line.

Assumption. No two points have same x coordinate.

\[
\text{fast closest pair inspired fast algorithms for these problems}
\]
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure \(n/4 \) points in each piece.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Algorithm.
- **Divide:** draw vertical line \(L \) so that roughly \(\frac{1}{2}n \) points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer**: find closest pair in each side recursively.
- **Combine**: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, \textit{assuming that distance} \(< \delta\).
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < \(\delta \).

- Observation: only need to consider points within \(\delta \) of line \(L \).

\[\delta = \min(12, 21) \]
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < \(\delta \).

- Observation: only need to consider points within \(\delta \) of line \(L \).
- Sort points in \(2\delta \)-strip by their \(y \) coordinate.
- Only check distances of those within 11 positions in sorted list!

\[\delta = \min(12, 21) \]
Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
- No two points lie in the same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.
Closest Pair Algorithm

\[
\text{Closest-Pair}(p_1, \ldots, p_n) \{
\begin{align*}
&\text{Compute separation line } L \text{ such that half the points are on one side and half on the other side.} \\
&\delta_1 = \text{Closest-Pair(left half)} \\
&\delta_2 = \text{Closest-Pair(right half)} \\
&\delta = \min(\delta_1, \delta_2) \\
&\text{Delete all points further than } \delta \text{ from separation line } L \\
&\text{Sort remaining points by y-coordinate.} \\
&\text{Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than } \delta, \text{ update } \delta. \\
&\text{return } \delta.
\end{align*}
\]
Closest Pair of Points: Analysis

Running time.

Q. Can we achieve $O(n \log n)$?

A. Yes. Don’t sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

\[
T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log^2 n)
\]