Chapter 5
Divide and Conquer

Algorithm Design
JON KLEINBERG • ÉVA TARDOS

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size $\frac{1}{2}n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: n^2.
- Divide-and-conquer: $n \log n$.

5.1 Mergesort
Sorting. Given n elements, rearrange in ascending order.

Applications.

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

...
Mergesort

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
<th>G</th>
<th>O</th>
<th>R</th>
<th>I</th>
<th>T</th>
<th>H</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td>G</td>
<td>O</td>
<td>R</td>
<td>I</td>
<td>T</td>
<td>H</td>
<td>M</td>
<td>S</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>L</td>
<td>O</td>
<td>R</td>
<td>H</td>
<td>I</td>
<td>M</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>sort</td>
<td>2T(n/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>merge</td>
<td>O(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage
Def. $T(n) = \text{number of comparisons to mergesort an input of size } n.$

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) & \text{solve left half} \\ T(\lfloor n/2 \rfloor) & \text{solve right half} \\ n & \text{merging} \\ \end{cases}$$

Solution. $T(n) = O(n \log_2 n).$

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=.$
Proof by Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

Sorting both halves merging
Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{n} + \frac{n}{n} & \text{otherwise}
\end{cases}
\]

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{n} + 1 & \text{if } n \text{ is a power of 2}
\end{cases}
\]

Pf. For $n > 1$:

\[
\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1
\]
\[
= \frac{T(n/2)}{n/2} + 1
\]
\[
= \frac{T(n/4)}{n/4} + 1 + 1
\]
\[
\vdots
\]
\[
= \frac{T(n/n)}{n/n} + 1 + \cdots + 1
\]
\[
= \log_2 n
\]
Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{\text{sorting both halves}} + \frac{n}{\text{merging}} & \text{otherwise}
\end{cases} \]

Pf. (by induction on n)

- Base case: $n = 1$.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

\[
T(2n) = 2T(n) + 2n \\
= 2n \log_2 n + 2n \\
= 2n \log_2 (2n) - 1 + 2n \\
= 2n \log_2 (2n)
\]
Analysis of Mergesort Recurrence

Claim. If \(T(n) \) satisfies the following recurrence, then \(T(n) \leq n \lceil \lg n \rceil \).

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
\frac{T(\lceil n/2 \rceil)}{\text{solve left half}} + \frac{T(\lfloor n/2 \rfloor)}{\text{solve right half}} + n & \text{otherwise}
\end{cases}
\]

Pf. (by induction on \(n \))

- Base case: \(n = 1 \).
- Define \(n_1 = \lfloor n / 2 \rfloor \), \(n_2 = \lceil n / 2 \rceil \).
- Induction step: assume true for 1, 2, ..., \(n-1 \).

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n \\
\leq n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n \\
= n \lceil \lg n_2 \rceil + n \\
\leq n(\lceil \lg n \rceil - 1) + n \\
= n \lceil \lg n \rceil
\]

\[
n_2 = \lfloor n/2 \rfloor \\
\leq 2^{\lceil \lg n \rceil} / 2 \\
= 2^{\lceil \lg n \rceil} / 2 \\
\Rightarrow \lg n_2 \leq \lceil \lg n \rceil - 1
\]
Two Exercises

1. Using recursion tree to guess a result, and then, applying induction to prove.

(1) \(T(n) = 3 \ T(\lfloor n/4 \rfloor) + \Theta(n^2) \)

Use \(cn^2 \) to replace \(\Theta(n^2) \) for \(c > 0 \) in recursion tree

Apply \(T(n) \leq dn^2 \) for \(d > 0 \), the guess result, in induction prove

Determine the constraint associated with \(d \) and \(c \)

2. \(T(n) = T(n/3) + T(2n/3) + O(n) \)

Use \(c \) to represent the constant factor in \(O(n) \) in recursion tree

Apply \(T(n) \leq d n \lg n \) for \(d > 0 \), the guess result, in induction prove

Determine the constraint associated with \(d \) and \(c \)
Master Theorem

Theorem 4.1 (Master theorem)
Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = a T(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then $T(n)$ has the following asymptotic bounds:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a}).$
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $a f(n/b) \leq c f(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$. □

\[
\begin{align*}
T(n) &= 9\ T(n/3) + n, \ T(n) = \Theta(n^2); \\
T(n) &= T(2n/3) + 1, \ T(n) = \Theta(\log n); \\
T(n) &= 8T(n/2) + \Theta(n^2), \ T(n) = \Theta(n^3); \\
T(n) &= 3T(n/4) + n \log n, \ T(n) = \Theta(n \log n) \\
T(n) &= 2T(n/2) + \Theta(n), \ T(n) = \Theta(n \log n) \\
T(n) &= 7T(n/2) + \Theta(2), \ T(n) = \Theta(n \log^7)
\end{align*}
\]
5.3 Counting Inversions
Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: \(a_1, a_2, ..., a_n\).
- Songs i and j inverted if \(i < j\), but \(a_i > a_j\).

Songs

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Inversions

3-2, 4-2

Brute force: check all \(\Theta(n^2)\) pairs i and j.
Applications

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide**: separate list into two pieces.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |

5 blue-blue inversions 8 green-green inversions
5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide: $O(1)$.
Conquer: $2T(n/2)$
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide:** separate list into two pieces.
- **Conquer:** recursively count inversions in each half.
- **Combine:** count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: \(O(1) \).

\[
\begin{array}{cccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Conquer: \(2T(n/2) \)

- 5 blue-blue inversions
- 8 green-green inversions

Combine: ???

- 9 blue-green inversions
- 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
Counting Inversions: Combine

Combine: count blue-green inversions
- Assume each half is sorted.
- Count inversions where \(a_i \) and \(a_j \) are in different halves.
- **Merge** two sorted halves into sorted whole.

13 blue-green inversions: \(6 + 3 + 2 + 2 + 0 + 0 \)

\[
T(n) \leq T\left(\left\lfloor n/2 \right\rfloor \right) + T\left(\left\lceil n/2 \right\rceil \right) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n)
\]
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (r_A, A) ← Sort-and-Count(A)
 (r_B, B) ← Sort-and-Count(B)
 (r, L) ← Merge-and-Count(A, B)

 return r = r_A + r_B + r and the sorted list L
}
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

↑
to make presentation cleaner
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure $n/4$ points in each piece.
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line \(L \) so that roughly \(\frac{1}{2} n \) points on each side.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. → seems like $\Theta(n^2)$
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

\[\delta = \min(12, 21) \]
Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.
Closest Pair Algorithm

Closest-Pair(p₁, ..., pₙ) {

 Compute separation line L such that half the points are on one side and half on the other side.

 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ, update δ.

 return δ.

}
Closest Pair of Points: Analysis

Running time.

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by \(y \) coordinate, and all points sorted by \(x \) coordinate.
 - Sort by **merging** two pre-sorted lists.

\[
T(n) \leq 2T(n/2) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n)
\]