
1

Chapter 5

Divide and Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



2

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size ½n.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Consequence.
■ Brute force:  n2.
■ Divide-and-conquer:  n log n.



5.1  Mergesort



4

obvious applications

problems become easy once 
items are in sorted order

non-obvious applications

Sorting

Sorting.  Given n elements, rearrange in ascending order.

Applications.
■ Sort a list of names.
■ Organize an MP3 library.
■ Display Google PageRank results.
■ List RSS news items in reverse chronological order.

■ Find the median. 
■ Find the closest pair.
■ Binary search in a database.
■ Identify statistical outliers.
■ Find duplicates in a mailing list.

■ Data compression.
■ Computer graphics. 
■ Computational biology.
■ Supply chain management.
■ Book recommendations on Amazon.
■ Load balancing on a parallel computer.

. . .



5

Mergesort

Mergesort.
■ Divide array into two halves.
■ Recursively sort each half.
■ Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)



6

Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
■ Linear number of comparisons.
■ Use temporary array.

Challenge for the bored.  In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage



7

A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input of size n.

Mergesort recurrence.  

Solution.  T(n) = O(n log2 n). 

Assorted proofs.  We describe several ways to prove this recurrence. 
Initially we assume n is a power of 2 and replace £ with =.

!!  

 

T(n) £
 0 if  n =1
T n /2é ù( )
solve left half
"! #!$! %!$!

+ T n /2ë û( )
solve right half
"! #!$! %!$!

+ n
merging
& otherwise

ì 

í 
ï 

î ï 



8

Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

!!  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
"!#!$! %!$! + n

merging
& otherwise

ì 
í 
ï 

î ï 



9

Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

!!  

 

T(n)
n

= 2T(n /2)
n

+ 1

= T(n /2)
n /2

+ 1

= T(n / 4)
n / 4

+ 1 + 1

"

= T(n /n)
n /n

+ 1 +"+ 1
log2 n

#!$!%! &!%!

= log2 n

!!  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
"!#!$! %!$! + n

merging
& otherwise

ì 
í 
ï 

î ï 

assumes n is a power of 2



10

Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)
■ Base case:  n = 1.
■ Inductive hypothesis:  T(n) =  n log2 n.
■ Goal:  show that T(2n) =  2n log2 (2n).

  

 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)-1( ) +  2n
= 2n log2(2n)

assumes n is a power of 2

!!  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
"!#!$! %!$! + n

merging
& otherwise

ì 
í 
ï 

î ï 



11

Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)  £ n élg nù.

Pf.   (by induction on n)
■ Base case:  n = 1.
■ Define n1 = ën / 2û ,  n2 = én / 2ù.
■ Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) £ T(n1)  +  T(n2 )  +  n
£ n1 lgn1é ù +  n2 lgn2é ù +  n
£ n1 lgn2é ù +  n2 lgn2é ù +  n
= n lgn2é ù +  n
£ n( lgné ù-1 )  +  n
= n lgné ù

  

 

n2 = n /2é ù

£ 2 lgné ù / 2é ù
= 2 lgné ù / 2

Þ lgn2 £ lgné ù -1

!!  

 

T(n) £
 0 if  n =1
T n /2é ù( )
solve left half
"! #!$! %!$!

+ T n /2ë û( )
solve right half
"! #!$! %!$!

+ n
merging
& otherwise

ì 

í 
ï 

î ï 

log2n



12

Two Exercises



13

Master Theorem

T(n) = 9 T(n/3) + n, T(n) = Θ(n2); T(n) = 3T(n/4) + n log n, T(n) = Θ(n log n)
T(n) = T(2n/3) + 1, T(n) = Θ(log n); T(n) = 2T(n/2) + Θ(n), T(n) = Θ(n log n)
T(n) = 8T(n/2) + Θ(n2), T(n) = Θ(n3); T(n) = 7T(n/2) + Θ(n2), T(n) = Θ(n log7)



5.3  Counting Inversions



15

Music site tries to match your song preferences with others.
■ You rank n songs.
■ Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.
■ My rank:  1, 2, …, n.
■ Your rank:  a1, a2, …, an.
■ Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all Q(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2



16

Applications

Applications.
■ Voting theory.
■ Collaborative filtering.
■ Measuring the "sortedness" of an array.
■ Sensitivity analysis of Google's ranking function. 
■ Rank aggregation for meta-searching on the Web.
■ Nonparametric statistics  (e.g., Kendall's Tau distance).



17

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9



18

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
■ Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).



19

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
■ Divide:  separate list into two pieces.
■ Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7



20

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
■ Divide:  separate list into two pieces.
■ Conquer: recursively count inversions in each half.
■ Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.



21

13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions
■ Assume each half is sorted.
■ Count inversions where ai and aj are in different halves. 
■ Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  

 

T(n) £  T n /2ë û( )+ T n /2é ù( )+ O(n) Þ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant



22

Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition.  [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ¬ Sort-and-Count(A)
(rB, B) ¬ Sort-and-Count(B)
(rB, L) ¬ Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}



5.4  Closest Pair of Points



24

Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
■ Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
■ Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.  Check all pairs of points p and q with Q(n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems



25

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L



26

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L



27

Closest Pair of Points

Algorithm.
■ Divide:  draw vertical line L so that roughly ½n points on each side.

L



28

Closest Pair of Points

Algorithm.
■ Divide:  draw vertical line L so that roughly ½n points on each side.
■ Conquer:  find closest pair in each side recursively.

12

21

L



29

Closest Pair of Points

Algorithm.
■ Divide:  draw vertical line L so that roughly ½n points on each side.
■ Conquer:  find closest pair in each side recursively.
■ Combine:  find closest pair with one point in each side.
■ Return best of 3 solutions.

12

21
8

L

seems like Q(n2) 



30

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.

12

21

d = min(12, 21)

L



31

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
■ Observation:  only need to consider points within d of line L.

12

21

d

L

d = min(12, 21)



32

12

21

1

2

3

4
5

6

7

d

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
■ Observation:  only need to consider points within d of line L.
■ Sort points in 2d-strip by their y coordinate.

L

d = min(12, 21)



33

12

21

1

2

3

4
5

6

7

d

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
■ Observation:  only need to consider points within d of line L.
■ Sort points in 2d-strip by their y coordinate.
■ Only check distances of those within 11 positions in sorted list!

L

d = min(12, 21)



34

Closest Pair of Points

Def.  Let si be the point in the 2d-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j| ³ 12, then the distance between
si and sj is at least d.
Pf.
■ No two points lie in same ½d-by-½d box.
■ Two points at least 2 rows apart

have distance ³ 2(½d).   ▪

Fact.  Still true if we replace 12 with 7.

d

27

29
30

31

28

26
25

d

½d

2 rows
½d

½d

39

i

j



35

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than d, update d.

return d.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)



36

Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.
■ Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate.
■ Sort by merging two pre-sorted lists.

  

 

T(n) £ 2T n /2( ) + O(n) Þ T(n) = O(n logn)

  

 

T(n) £ 2T n /2( ) + O(n log n) Þ T(n)  =  O(n log2 n)


