
Adversary Arguments

2

Adversary Arguments

Adversary: force the programmer to ask as many questions as possible

Constraint: adversary’s answers have to be “consistent”

Adversary gradually construct a “bad” input for the programmer

Adversary Programmer
question

yes/no

.

.

.

http://www.cis.temple.edu/~jiewu/research/publications/Publication_files/stable-matching-02-15-16.pdf
http://www.cis.temple.edu/~jiewu/research/publications/Publication_files/stable-matching-02-15-16.pdf

3

Problem: finding max and min for 2k keys

Solution: (1) compare k pairs, (2) find max (min) among winners (losers)

one win and one lose as one unit of information

Lower bound: 3n/2 – 2 (total information needed: 2n-2, n-1 wins and n-

1 loses. n/2 comparisons of unseen keys following by n-2 operations)

Finding max and min

4

Interactions between the adversary and programmer

Finding max and min: adversary in action

5

Problem: finding the second-largest key

Solution: (1) applies a knockout tournament

(2) uses the knockout again among the losers to the largest key

Lower bound: n + ˹lg n˺ + 1

Finding the second-largest key

6

First knockout: n-1

Second knockout: ˹lgn˺ -1

Force max to compare ˹lgn˺

A key has lost iff its weight is zero

The sum of he weights is always n

When it stops, only one key can

have nonzero weight

(otherwise, there are two keys that never lost)

Finding the second-largest key: adversary

7

Finding the second-largest key: adversary in action

8

Problem: finding the median when n is odd, i.e., (n+1)/2-th element.

Naïve solution: (1) sort and (2) select the (n+1)/2-th element.

Complexity of the naïve solution: O(n lg n)

Lower bound: 3n/2-3/2

(best lower bound so far: slightly > 2, but still has a gap)

Finding the median

9

Adversary: “floating” median

cannot assign values larger (smaller) than the median to

more than (n-1)/2 keys.

Crucial comparison for x: if it is the first time where x > y, for y > median,

or x < y for some y ≤ median.

Noncrucial: comparisons of x and y, where x > median and y < median

Finding the median: adversary

10

Adversary: forces the programmer to make noncritical comparisons

n-1 (crucial) + (n-1)/2 non-crucial = 3n/2-3/2

Each operation in the table creates at most one L-key and one S-key

until there are (n-1)/2 L-keys or (n-1)/2 S-keys

Finding the median: adversary

11

Tournament: a complete directed graph such that for any u and v,

either u -> v (u beats v) or v -> u, but not both.

King: u is a king if all other directly or indirectly

through a third player in a tournament.

u4 and u5 are kings

Sorted sequence of kings (Wu 2000): an ordered list of players

in a tournament u1, u2, …, un such that

ui -> ui+1, and

ui is a king in the sub-tounament induced by {uj: i ≤ j ≤ n}.

u2 -> u4 -> u1 -> u5 -> u3 -> u6

u2 -> u6 -> u4 -> u1 –> u5 -> u3

Kings and Sorted Sequence of Kings

12

King is legitimate: includes players with the maximum number of wins.

King (Sheng, Shen, and Wu 2003) (open problem): Ω (n4/3) and Ο(n3/2)

Sorted sequence of kings (Sheng, Shen and Wu 2003): Θ(n3/2)

Kings and Sorted Sequence of Kings: adversary

13

Tournament ranking

Upset: i < j, but uj beats ui

Median order

• A order with minimum number of upsets

• NP-complete

Local median order

• Sub-tournament N(i, j): ui, ui+1, …, uj

• # wins by ui is greater than # loses in N(i,j)

• # loses by uj is greater than # wins in N(i,j)

Nested relationships (Wu 2000)

• Median order

• Local median order

• Sorted sequence of kings

• Sorted sequence

