Distributed System Design: An Overview*

Jie Wu
Department of Computer and Information Sciences
Temple University
Philadelphia, PA 19122

The Structure of Classnotes

- Focus
- Example
- Exercise
- Project
Development of Computer Technology

- 1950s: serial processors
- 1960s: batch processing
- 1970s: time-sharing
- 1980s: personal computing
- 1990s: parallel, network, and distributed processing
- 2000s: wireless networks
- 2010s: mobile and cloud computing
A Simple Definition

- A **distributed system** is a collection of independent computers that appear to the users of the system as a single computer.
- Distributed systems are "seamless": the interfaces among functional units on the network are for the most part invisible to the user.

![System structure from the physical (a) or logical point of view (b).](image-url)
Motivation

- People are distributed, information is distributed (Internet and Intranet)
- Performance/cost
- Information exchange and resource sharing (WWW and CSCW)
- Flexibility and extensibility
- Dependability
Two Main Stimuli

- Technological change
- User needs
Goals

- **Transparency**: hide the fact that its processes and resources are physically distributed across multiple computers.
 - Access
 - Location
 - Migration
 - Replication
 - Concurrency
 - Failure
 - Persistence

- **Scalability**: in three dimensions
 - Size
 - Geographical distance
 - Administrative structure
Goals (Cont’d.)

- **Heterogeneity** (mobile code and mobile agent)
 - Networks
 - Hardware
 - Operating systems and middleware
 - Program languages

- **Openness**

- **Security**

- **Fault Tolerance**

- **Concurrency**
Scaling Techniques

- Latency hiding (pipelining and interleaving execution)
- Distribution (spreading parts across the system)
- Replication (caching)
Example 1: (Scaling Through Distribution)

URL searching based on hierarchical DNS name space (partitioned into zones).

DNS name space.
Design Requirements

- Performance Issues
 - Responsiveness
 - Throughput
 - Load Balancing

- Quality of Service
 - Reliability
 - Security
 - Performance

- Dependability
 - Correctness
 - Security
 - Fault tolerance
Similar and Related Concepts

- Distributed
- Network
- Parallel
- Concurrent
- Decentralized
Schroeder's Definition

- A list of **symptoms** of a distributed system
 - Multiple processing elements (PEs)
 - Interconnection hardware
 - PEs fail independently
 - Shared states
Focus 1: Enslow's Definition

Distributed system = distributed hardware + distributed control + distributed data

A system could be classified as a distributed system if all three categories (hardware, control, data) reach a certain degree of decentralization.
Enslow's model of distributed systems.
Hardware

- A single CPU with one control unit.
- A single CPU with multiple ALUs (arithmetic and logic units). There is only one control unit.
- Separate specialized functional units, such as one CPU with one floating-point co-processor.
- Multiprocessors with multiple CPUs but only one single I/O system and one global memory.
- Multicomputers with multiple CPUs, multiple I/O systems and local memories.
Control

- Single fixed control point. Note that physically the system may or may not have multiple CPUs.
- Single dynamic control point. In multiple CPU cases the controller changes from time to time among CPUs.
- A fixed master/slave structure. For example, in a system with one CPU and one co-processor, the CPU is a fixed master and the co-processor is a fixed slave.
- A dynamic master/slave structure. The role of master/slave is modifiable by software.
- Multiple homogeneous control points where copies of the same controller are used.
- Multiple heterogeneous control points where different controllers are used.
Data

- Centralized databases with a single copy of both files and directory.
- Distributed files with a single centralized directory and no local directory.
- Replicated database with a copy of files and a directory at each site.
- Partitioned database with a master that keeps a complete duplicate copy of all files.
- Partitioned database with a master that keeps only a complete directory.
- Partitioned database with no master file or directory.
Network Systems

- Performance scales on **throughput** (transaction response time or number of transactions per second) versus **load**.
- Work on burst mode.
- Suitable for small transaction-oriented programs (collections of small, quick, distributed **applets**).
- Handle uncoordinated processes.
Parallel Systems

- Performance scales on **elapsed execution times** versus number of processors (subject to either Amdahl or Gustafson law).
- Works on bulk mode.
- Suitable for numerical applications (such as SIMD or SPMD vector and matrix problems).
- Deal with one single application divided into a set of coordinated processes.
Distributed Systems

A compromise of network and parallel systems.
Comparison

<table>
<thead>
<tr>
<th>Item</th>
<th>Network sys.</th>
<th>Distributed sys.</th>
<th>Multiprocessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Like a virtual uniprocessor</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Run the same operating system</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Copies of the operating system</td>
<td>N copies</td>
<td>N copies</td>
<td>1 copy</td>
</tr>
<tr>
<td>Means of communication</td>
<td>Shared files</td>
<td>Messages</td>
<td>Shared files</td>
</tr>
<tr>
<td>Agreed up network protocols?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A single run queue</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Well defined file sharing</td>
<td>Usually no</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Comparison of three different systems.
Focus 2: Different Viewpoints

- Architecture viewpoint
- Interconnection network viewpoint
- Memory viewpoint
- Software viewpoint
- System viewpoint
Architecture Viewpoint

- **Multiprocessor**: physically shared memory structure
- **Multicomputer**: physically distributed memory structure.
Interconnection Network Viewpoint

- static (point-to-point) vs. dynamics (ones with switches).
- bus-based (Fast Ethernet) vs. switch-based (routed instead of broadcast).
Examples of dynamic interconnection networks: (a) shuffle-exchange, (b) crossbar, (c) baseline, and (d) Benes.
Interconnection Network Viewpoint (Cont’d.)

Examples of static interconnection networks: (a) linear array, (b) ring, (c) binary tree, (d) star, (e) 2-d torus, (f) 2-d mesh, (g) completely connected, and (h) 3-cube.
Measurements for Interconnection Networks

- *Node degree*. The number of edges incident on a node.
- *Diameter*. The maximum shortest path between any two nodes.
- *Bisection width*. The minimum number of edges along a cut which divides a given network into equal halves.
What's the Best Choice? (Siegel 1994)

- A compiler-writer prefers a network where the transfer time from any source to any destination is the same to simplify the data distribution.
- A fault-tolerant researcher does not care about the type of network as long as there are three copies for redundancy.
- A European researcher prefers a network with a node degree no more than four to connect Transputers.
What's the Best Choice? (Cont’d.)

- A college professor prefers hypercubes and multistage networks because they are theoretically wonderful.
- A university computing center official prefers whatever network is least expensive.
- A NSF director wants a network which can best help deliver health care in an environmentally safe way.
- A Farmer prefers a wormhole-routed network because the worms can break up the soil and help the crops!
Memory Viewpoint

<table>
<thead>
<tr>
<th>Physically shared</th>
<th>Logically shared</th>
<th>Logically distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shared memory</td>
<td>Simulated message passing</td>
</tr>
<tr>
<td>Physically distributed</td>
<td>Distributed shared memory</td>
<td>Message passing</td>
</tr>
</tbody>
</table>
Software Viewpoint

- Distributed systems as resource managers like traditional operating systems.
 - Multiprocessor/Multicomputer OS
 - Network OS
 - Middleware (on top of network OS)
Service Common to Many Middleware Systems

- High level communication facilities (access transparency)
- Naming
- Special facilities for storage (integrated database)
System Viewpoint

- The division of responsibilities between system components and placement of the components.
Client-Server Model

- multiple servers
- proxy servers and caches

(a) Client and server and (b) proxy server.
Peer Processes

Peer processes.
Mobile Code and Mobile Agents

Mobile code (web applets).
Prototype Implementations

- Mach (Carnegie Mellon University)
- V-kernel (Stanford University)
- Sprite (University of California, Berkeley)
- Amoeba (Vrije University in Amsterdam)
- Systems R (IBM)
- Locus (University of California, Los Angeles)
- VAX-Cluster (Digital Equipment Corporation)
- Spring (University of Massachusetts, Amherst)
- I-WAY (Information Wide Area Year): High-performance computing centers interconnected through the Internet.
Key Issues (Stankovic's list)

- Theoretical foundations
- Reliability
- Privacy and security
- Design tools and methodology
- Distribution and sharing
- Accessing resources and services
- User environment
- Distributed databases
- Network research
Wu's Book

- Distributed Programming Languages
 - Basic structures
- Theoretical Foundations
 - Global state and event ordering
 - Clock synchronization
- Distributed Operating Systems
 - Mutual exclusion and election
 - Detection and resolution of deadlock
 - self-stabilization
 - Task scheduling and load balancing
- Distributed Communication
 - One-to-one communication
 - Collective communication
Reliability
- Agreement
- Error recovery
- Reliable communication

Distributed Data Management
- Consistency of duplicated data
- Distributed concurrency control

Applications
- Distributed operating systems
- Distributed file systems
- Distributed database systems
- Distributed shared memory
- Distributed heterogeneous systems
Wu's Book (Cont’d.)

- Part 1: Foundations and Distributed Algorithms
- Part 2: System infrastructure
- Part 3: Applications
What is Distributed Algorithms

- Parallel Computing: efficiency
- Real-Time: On-time computing
- Distributed Computing: uncertainty
 - Simplicity, elegance, and beauty are first-class citizens (Michel Raynal, 2013)
Distributed Message-Passing Algorithms

- **Termination**
 - In a social network, each person exchanges his/her friend list with friends. What is the stoppage condition?

- **Global State**
 - How to design an observation algorithm by observing an execution without modifying its behavior?

- **Distributed Consensus**
 - How to reach distributed consensus (e.g., binary decisions) in the presence of traitors?
Distributed Message-Passing Algorithms

- **Logical Clock**
 - How to order events in different systems with asynchronous clocks? How to discard obsolete data?

- **Data**
 - How to replicate data and keep them consistent?

- **Load**
 - How to distribute load in a load balanced way?

- **Routing**
 - How to perform efficient routing that is deadlock-free and fault-tolerant?
References

- IEEE Transactions on Parallel and Distributed Systems (TPDS)
- Journal of Parallel and Distributed Computing (JPDC)
- Distributed Computing
- IEEE International Conference on Distributed Computing Systems (ICDCS)
- IEEE International Conference on Reliable Distributed Systems (SRDS)
- ACM Symposium on Principles of Distributed Computing (PODC)
- IEEE Concurrency (formerly IEEE Parallel & Distributed Technology: Systems & Applications)
Exercise 1

1. In your opinion, what is the future of the computing and the field of distributed systems?

2. Use your own words to explain the differences between distributed systems, multiprocessors, and network systems.

3. Calculate (a) node degree, (b) diameter, (c) bisection width, and (d) the number of links for an $n \times n$ 2-d mesh, an $n \times n$ 2-d torus, and an n-dimensional hypercube.
Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix
State Model

- A **process** executes three types of events: **internal** actions, **send** actions, and **receive** actions.
- A **global state**: a collection of local states and the state of all the communication channels.

System structure from logical point of view.
Thread

- lightweight process (maintain minimum information in its context)
- multiple threads of control per process
- multithreaded servers (vs. single-threaded process)

A multithreaded server in a dispatcher/worker model.
Happened-Before Relation

The happened-before relation (denoted by →) is defined as follows:

- Rule 1: If a and b are events in the same process and a was executed before b, then a → b.
- Rule 2: If a is the event of sending a message by one process and b is the event of receiving that message by another process, then a → b.
- Rule 3: If a → b and b → c, then a → c.
Two events \(a \) and \(b \) are **causally related** if \(a \rightarrow b \) or \(b \rightarrow a \).

Two distinct events \(a \) and \(b \) are said to be **concurrent** if \(a \not\leftrightarrow b \) and \(b \not\leftrightarrow a \) (denoted as \(a \parallel b \)).
Example 2

A time-space view of a distributed system.
Example 2 (Cont’d.)

- **Rule 1:**

 \[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \]

 \[b_0 \rightarrow b_1 \rightarrow b_2 \rightarrow b_3 \]

 \[c_0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \]

- **Rule 2:**

 \[a_0 \rightarrow b_3 \]

 \[b_1 \rightarrow a_3, b_2 \rightarrow c_1, b_0 \rightarrow c_2 \]
Example 3

An example of a network of a bank system.
Example 3 (Cont’d.)

A sequence of global states.
Consistent Global State

Four types of cut that cross a message transmission line.
A cut is consistent iff no two cut events are causally related.

- **Strongly consistent**: no (c) and (d).
- **Consistent**: no (d) (orphan message).
- **Inconsistent**: with (d).
Focus 3: Snapshot of Global States

A simple distribute algorithm to capture a consistent global state.

A system with three processes P_i, P_j, and P_k.
Chandy and Lamport's Solution

- Rule for sender P :
 - P records its local state
 - P sends a marker along all the channels on which a marker has not been sent.
Rule for receiver Q:

/* on receipt of a marker along a channel $chan$ */

[Q has not recorded its state →
 [record the state of $chan$ as an empty sequence and
 follow the "Rule for sender"
]
]

[Q has recorded its state →
 [record the state of $chan$ as the sequence of messages received along $chan$ after the latest state recording but before receiving the marker
]
]

]
Chandy and Lamport's Solution (Cont’d.)

- It can be applied in any system with FIFO channels (but with variable communication delays).
- The initiator for each process becomes the parent of the process, forming a spanning tree for result collection.
- It can be applied when more than one process initiates the process at the same time.
Focus 4: Lamport's Logical Clocks

Based on a “happen-before” relation that defines a partial order on events

- Rule 1. Before producing an event (an external send or internal event), we update LC:

 \[LC_i = LC_i + d \quad (d > 0) \]

 (d can have a different value at each application of Rule 1)

- Rule 2. When it receives the time-stamped message (m, LC_j, j), P_i executes the update

 \[LC_i = \max\{Lc_i, LC_j\} + d \quad (d > 0) \]
A total order based on the partial order derived from the happen-before relation

\[a \ (\text{in } P_i) \Rightarrow b \ (\text{in } P_j) \]

iff

(1) \(LC(a) < LC(b) \) or (2) \(LC(a) = LC(b) \) and \(P_i < P_j \)

where \(<\) is an arbitrary total ordering of the process set, e.g., \(<\) can be defined as \(P_i < P_j \) iff \(i < j \).

A total order of events in the table for Example 2:

\[a_0 \ b_0 \ c_0 \ a_1 \ b_1 \ a_2 \ b_2 \ a_3 \ b_3 \ c_1 \ c_2 \ c_3 \]
Example 4: Totally-Ordered Multicasting

- Two copies of the account at A and B (with balance of $10,000).
- Update 1: add $1,000 at A.
- Update 2: add interests (based on 1% interest rate) at B.
- Update 1 followed by Update 2: $11,110.
- Update 2 followed by Update 1: $11,100.
Vector and Matrix Logical Clock

Linear clock: if $a \rightarrow b$ then $LC_a < LC_b$

Vector clock: $a \rightarrow b$ iff $LC_a < LC_b$

Each P_i is associated with a vector $LC_i[1..n]$, where

- $LC_i[i]$ describes the progress of P_i, i.e., its own process.
- $LC_i[j]$ represents P_i’s knowledge of P_j's progress.
- The $LC_i[1..n]$ constitutes P_i’s local view of the logical global time.
When $d = 1$ and $init = 0$

- $LC_i[i]$ counts the number of internal events
- $LC_i[j]$ corresponds to the number of events produced by P_j that causally precede the current event at P_i.
Vector and Matrix Logical Clock (Cont’d.)

- **Rule 1.** Before producing an event (an external send or internal event), we update $LC_i[i]$:
 $$LC_i[i] := LC_i[i] + d \quad (d > 0)$$

- **Rule 2.** Each message piggybacks the vector clock of the sender at sending time. When receiving a message (m, LC_j, j), P_i executes the update:
 $$LC_i[k] := \max (LC_i[k]; LC_j[k]), \ 1 \leq k \leq n$$
 $$LC_i[i] := LC_i[i] + d$$
Example 5

An example of vector clocks.
Example 6: Application of Vector Clock

Internet electronic bulletin board service

When receiving m with vector clock LC_j from process j, P_i inspects timestamp LC_j and will postpone delivery until all messages that causally precede m have been received.
Matrix Logical Clock

Each P_i is associated with a matrix $LC_i[1..n, 1..n]$ where

- $LC_i[i, i]$ is the local logical clock.
- $LC_i[k, l]$ represents the view (or knowledge) P_i has about P_k's knowledge about the local logical clock of P_l.

If

$$\min(LC_i[k, i]) \geq t$$

then P_i knows that every other process knows its progress until its local time t.
Physical Clock

- **Correct rate condition:**
 \[\forall i \ |dPC_i(t)/dt - 1| < \alpha \]

- **Clock synchronization condition:**
 \[\forall i \ \forall j \ |PC_i(t) - PC_j(t)| < \beta \]
Lamport's Logical Clock Rules for Physical Clock

- For each i, if P_i does not receive a message at physical time t, then PC_i is differentiable at t and $dPC(t)/dt > 0$.
- If P_i sends a message m at physical time t, then m contains $PC_i(t)$.
- Upon receiving a message (m, PC_j) at time t, process P_i sets PC_i to maximum ($PC_i(t - 0), PC_j + \mu_m$) where μ_m is a predetermined minimum delay to send message m from one process to another process.
Focus 5: Clock Synchronization

- **UNIX make program:**
 - Re-compile when `file.c`'s time is large than `file.o`'s.
 - Problem occurs when source and object files are generated at different machines with no global agreement on time.

- **Maximum drift rate** ρ: $1-\rho \leq \frac{dPC}{dt} \leq 1+\rho$
 - Two clocks (with opposite drift rate ρ) may be $2\rho\Delta t$ apart at a time Δ after last synchronization.
 - Clocks must be resynchronized at least every $\delta/2\rho$ seconds in order to guarantee that they will be differ by no more than δ.
Cristian's Algorithm

- Each machine sends a request every $\delta/2\rho$ seconds.
- Time server returns its current time PC_{UTC} (UTC: Universal Coordinate Time).
- Each machines changes its clock (normally set forward or slow down its rate).
- Delay estimation: $(T_r - T_s - I)/2$, where T_r is receive time, T_s send time, and I interrupt handling time.
Cristian's Algorithm (Cont’d.)

Getting correct time from a time server.
Two Important Properties

- **Safety**: the system (program) never enters a bad state.
- **Liveness**: the system (program) eventually enters a good state.
 - Examples of safety property: partial correctness, mutual exclusion, and absence of deadlock.
 - Examples of liveness property: termination and eventual entry to a critical section.
Three Ways to Demonstrate the Properties

- Testing and debugging (run the program and see what happens)
- Operational reasoning (exhaustive case analysis)
- Assertional reasoning (abstract analysis)
Synchronous vs. Asynchronous Systems

Synchronous Distributed Systems:

- The time to each step of a process (program) has known bounds.
- Each message will be received within a known bound.
- Each process has a local clock whose drift rate from real time has a known bound.
Exercise 3

1. Consider a system where processes can be dynamically created or terminated. A process can generate a new process. For example, P_1 generates both P_2 and P_3. Modify the happened-before relation and the linear logical clock scheme for events in such a dynamic set of processes.

2. For the distributed system shown in the figure below.
Exercise 3 (Cont’d)

- Provide all the pairs of events that are related.
- Provide logical time for all the events using
 - linear time, and
 - vector time
- Assume that each LC_i is initialized to zero and $d = 1$.

3. Provide linear logical clocks for all the events in the system given in Problem 2. Assume that all LC's are initialized to zero and the d's for P_a, P_b, and P_c are 1, 2, 3, respectively. Does condition $a \rightarrow b \Rightarrow LC(a) < LC(b)$ still hold? For any other set of d's? and why?
Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix
Three Issues

- Use of multiple PEs
- Cooperation among the PEs
- Potential for survival to partial failure
Control Mechanisms

<table>
<thead>
<tr>
<th>Statement type \ Control type</th>
<th>Sequential control</th>
<th>Parallel Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential/parallel statement</td>
<td>\textit{Begin} S_1, S_2 \textit{end}</td>
<td>\textit{Parbegin} S_1, S_2 \textit{Parend} \textit{Fork/join}</td>
</tr>
<tr>
<td>Alternative statement</td>
<td>\textit{goto, case if} C \textit{then} S_1 \textit{else} S_2</td>
<td>Guarded commands: $G \rightarrow C$</td>
</tr>
<tr>
<td>Repetitive statement</td>
<td>\textit{for} \ldots \textit{do}</td>
<td>\textit{doall, for all}</td>
</tr>
<tr>
<td>Subprogram</td>
<td>\textit{procedure Subroutine}</td>
<td>\textit{procedure subroutine}</td>
</tr>
</tbody>
</table>

Four basic sequential control mechanisms with their parallel counterparts.
Focus 6: Expressing Parallelism

\textbf{parbegin/parend} statement

\[S_1;[[S_2;[S_3\|S_4];S_5;S_6]\|S_7];S_8 \]

A precedence graph of eight statements.
Focus 6 (Cont’d.)

fork/join statement

\[
s_1; \\
c_1 := 2; \\
fork L1; \\
s_2; \\
c_2 := 2; \\
fork L2; \\
s_4; \\
go to L3; \\
L1: s_3; \\
L2: join c_1; \\
s_5; \\
L3: join c_2; \\
s_6;
\]

A precedence graph.
Dijkstra's Semaphore + Parbegin/Parend

\(S(i) \): A sequence of \(P \) operations; \(S_i \); a sequence of \(V \) operations

\(s \): a binary semaphore initialized to 0.

\(S(1) \): \(S_1; V(s_{12}); V(s_{13}) \)
\(S(2) \): \(P(s_{12}); S_2; V(s_{24}); V(s_{25}) \)
\(S(3) \): \(P(s_{13}); S_3; V(s_{35}) \)
\(S(4) \): \(P(s_{24}); S_4; V(s_{46}) \)
\(S(5) \): \(P(s_{25}); P(s_{35}); S_5; V(s_{56}) \)
\(S(6) \): \(P(s_{46}); P(s_{56}); S_6 \)
Focus 7: Concurrent Execution

- \(R(S_i) \), the **read set** for \(S_i \), is the set of all variables whose values are referenced in \(S_i \).
- \(W(S_i) \), the **write set** for \(S_i \), is the set of all variables whose values are changed in \(S_i \).
- **Bernstein conditions**:
 - \(R(S_1) \cap W(S_2) = \emptyset \)
 - \(W(S_1) \cap R(S_2) = \emptyset \)
 - \(W(S_1) \cap W(S_2) = \emptyset \)
Example 7

\[S_1 : a := x + y, \]
\[S_2 : b := x \times z, \]
\[S_3 : c := y - 1, \] and
\[S_4 : x := y + z. \]

\[S_1||S_2, S_1||S_3, S_2||S_3, \] and \[S_3||S_4. \]

Then, \[S_1||S_2||S_3 \] forms a largest complete subgraph.
Example 7 (Cont’d.)

A graph model for Bernstein's conditions.
Alternative Statement

Alternative statement in DCDL (CSP like distributed control description language)

\[[G_1 \rightarrow C_1 \square G_2 \rightarrow C_2 \square \ldots \square G_n \rightarrow C_n]. \]
Example 8

Calculate $m = \max\{x, y\}$:

\[
[x \geq y \rightarrow m := x \quad \Box \quad y \geq x \rightarrow m := y]
\]
Repetitive Statement

\[*[G_1 \rightarrow C_1 \square G_2 \rightarrow C_2 \square \ldots \square G_n \rightarrow C_n].*\]
Example 9

meeting-time-scheduling ::= $t := 0$;

$$t := a(t) \quad t := b(t) \quad t := c(t)$$
Communication and Synchronization

- One-way communication: send and receive
- Two-way communication: RPC(Sun), RMI(Java and CORBA), and rendezvous (Ada)
- Several design decisions:
 - One-to one or one-to-many
 - Synchronous or asynchronous
 - One-way or two-way communication
 - Direct or indirect communication
 - Automatic or explicit buffering
 - Implicit or explicit receiving
<table>
<thead>
<tr>
<th>Primitives</th>
<th>Example Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARALLELISM</td>
<td></td>
</tr>
<tr>
<td>Expressing parallelism</td>
<td></td>
</tr>
<tr>
<td>Processes</td>
<td>Ada, Concurrent C, Lina, NIL Emerald, Concurrent Smalltalk</td>
</tr>
<tr>
<td>Objects</td>
<td>Occam</td>
</tr>
<tr>
<td>Statements</td>
<td></td>
</tr>
<tr>
<td>Expressions</td>
<td>Par Alfl, FX-87</td>
</tr>
<tr>
<td>Clauses</td>
<td>Concurrent PROLOG, PARLOG</td>
</tr>
<tr>
<td>Mapping</td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td>Occam, Star Mod</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Concurrent PROLOG, ParAlfl Emerald</td>
</tr>
<tr>
<td>Migration</td>
<td></td>
</tr>
<tr>
<td>COMMUNICATION</td>
<td></td>
</tr>
<tr>
<td>Message Passing</td>
<td></td>
</tr>
<tr>
<td>Point-to-point messages</td>
<td>CSP, Occam, NIL</td>
</tr>
<tr>
<td>Rendezvous</td>
<td>Ada, Concurrent C</td>
</tr>
<tr>
<td>Remote procedure call</td>
<td>DP, Concurrent CLU, LYNX</td>
</tr>
<tr>
<td>One-to-many messages</td>
<td>BSP, StarMod</td>
</tr>
<tr>
<td>Data Sharing</td>
<td></td>
</tr>
<tr>
<td>Distributed data Structures</td>
<td>Lina, Orca</td>
</tr>
<tr>
<td>Shared logical variables</td>
<td>Concurrent PROLOG, PARLOG</td>
</tr>
<tr>
<td>Nondeterminism</td>
<td></td>
</tr>
<tr>
<td>Select statement</td>
<td>CSP, Occam, Ada, Concurrent C, SR</td>
</tr>
<tr>
<td>Guarded Horn clauses</td>
<td>Concurrent PROLOG, PARLOG</td>
</tr>
<tr>
<td>PARTIAL FAILURES</td>
<td></td>
</tr>
<tr>
<td>Failure detection</td>
<td>Ada, SR</td>
</tr>
<tr>
<td>Atomic transactions</td>
<td>Argus, Aeolus, Avalon</td>
</tr>
<tr>
<td>NIL</td>
<td></td>
</tr>
</tbody>
</table>
Message-Passing Library for Cluster Machines (e.g., Beowulf clusters)

- Parallel Virtual Machine (PVM):
 www.epm.ornl/pvm/pvm_home.html
- Message Passing Interface (MPI):
 www.mpi.nd.edu/lam/
 www-unix.mcs.anl.gov/mpi/mpich/
- Java multithread programming:
 www.mcs.drexel.edu/~shartley/ConcProjJava
 www.ora.com/catalog/jenut
- Beowulf clusters:
 www.beowulf.org
Message-Passing (Cont’d.)

- **Asynchronous** point-to-point message passing:
 - send message list to destination
 - receive message list \{from source\}

- **Synchronous** point-to-point message passing:
 - send message list to destination
 - receive empty signal from destination
 - receive message list from sender
 - send empty signal to sender
The squash program replaces every pair of consecutive asterisks "**" by an upward arrow “↑”.

input ::= * [send c to squash]
output ::= * [receive c from squash]
Example 10 (Cont’d.)

squash::=

* [receive c from input \rightarrow

\[c \neq * \rightarrow send c to output \]

\[c = * \rightarrow receive c from input; \]

\[c \neq * \rightarrow send * to output; \]

\[send c to output \]

\[c = * \rightarrow send \uparrow to output \]

\]
Focus 8: Fibonacci Numbers

- \(F(i) = F(i-1) + F(i - 2) \) for \(i > 1 \), with initial values \(F(0) = 0 \) and \(F(1) = 1 \).
- \(F(i) = (\phi^i - \phi'^i)/(\phi - \phi') \), where \(\phi = (1+\sqrt{5})/2 \) (golden ratio) and \(\phi' = (1-\sqrt{5})/2 \).
A solution for $F(n)$.
Focus 8 (Cont’d.)

- $f(0) ::=$

 send n to $f(1)$;
 receive p from $f(2)$;
 receive q from $f(1)$;
 ans := q

- $f(-1) ::=$
 receive p from $f(1)$
Focus 8 (Cont’d.)

- $f(i) ::=$

 receive n from $f(i - 1)$;

 $[n > 1 \rightarrow [\text{send } n - 1 \text{ to } f(i + 1);$

 receive p from $f(i + 2);$
 receive q from $f(i + 1);$
 send $p + q$ to $f(i - 1);$
 send $p + q$ to $f(i - 2)]$

- $\square n = 1 \rightarrow [\text{send } 1 \text{ to } f(i - 1);$

 send 1 to $f(i - 2)]$

- $\square n = 0 \rightarrow [\text{send } 0 \text{ to } f(i - 1);$
 send 0 to $f(i - 2)]$

]
Another solution for $F(n)$.
Focus 8 (Cont’d.)

- $f(0) ::=
 \begin{array}{l}
 [\ n > 1 \rightarrow [\ \text{send} \ n \ \text{to} \ f(1); \\
 \quad \text{receive} \ p \ \text{from} \ f(1); \\
 \quad \text{receive} \ q \ \text{from} \ f(1); \\
 \quad \text{ans} := p \\
 \quad] \\
 \] \\
 \square n = 1 \rightarrow \text{ans} := 1 \\
 \square n = 0 \rightarrow \text{ans} := 0 \\
 \end{array}$
Focus 8 (Cont’d.)

- \(f(i) := \)

 \[
 \text{receive } n \text{ from } f(i - 1);
 \]

 \[
 [n > 1 \rightarrow [\text{send } n - 1 \text{ to } f(i + 1);
 \text{receive } p \text{ from } f(i + 1);
 \text{receive } q \text{ from } f(i + 1);
 \text{send } p + q \text{ to } f(i - 1);
 \text{send } p \text{ to } f(i - 1)
]
]
 \]

- \(\Box n = 1 \rightarrow [\text{send } 1 \text{ to } f(i - 1);
 \text{send } 0 \text{ to } f(i - 1)
]
 \]

]
Focus 9: Message-Passing Primitives of MPI

- MPI_send: asynchronous communication
- MPI_send: receipt-based synchronous communication
- MPI_ssend: delivery-based synchronous communication
- MPI_sendrecv: response-based synchronous communication
Message-passing primitives of MPI.
Focus 10: Interprocess Communication in UNIX

- **Socket**: int socket (int domain, int type, int protocol).
 - **domain**: normally internet.
 - **type**: datagram or stream.
 - **protocol**: TCP (Transport Control Protocol) or UDP (User Datagram Protocol)

- **Socket address**: an Internet address and a local port number.
Focus 10 (Cont’d.)

Sockets used for datagrams

Sender

```c
s = socket(AF_INET, SOCK_DGRAM, 0)
...
bind(s, ClientSocketAddress)
...
sendto(s, "message", ServerSocketAddress)
```

Receiver

```c
t = socket(AF_INET, SOCK_DGRAM, 0)
...
bind(t, ServerSocketAddress)
...
amount = recvfrom(t, buffer, from)
```
High-Level (Middleware) Communication Services

- Achieve access transparency in distributed systems
 - Remote procedure call (RPC)
 - Remote method invocation (RMI)
Remote Procedure Call (RPC)

- Allow programs to call procedures located on other machines.
- Traditional (synchronous) RPC and asynchronous RPC.
Remove Method Invocation (RMI)
Robustness

- Exception handling in high level languages (Ada and PL/1)

- Four Types of Communication Faults
 - A message transmitted from a node does not reach its intended destinations
 - Messages are not received in the same order as they were sent
 - A message gets corrupted during its transmission
 - A message gets replicated during its transmission
Failures in RPC

If a remote procedure call terminates abnormally (the time out expires) there are four possibilities.

- The receiver did not receive the call message.
- The reply message did not reach the sender.
- The receiver crashed during the call execution and either has remained crashed or is not resuming the execution after crash recovery.
- The receiver is still executing the call, in which case the execution could interfere with subsequent activities of the client.
Exercise 2

1. (The Welfare Crook by W. Feijen) Suppose we have three long magnetic tapes each containing a list of names in alphabetical order. The first list contains the names of people working at IBM Yorktown, the second the names of students at Columbia University and the third the names of all people on welfare in New York City. All three lists are endless so no upper bounds are given. It is known that at least one person is on all three lists. Write a program to locate the first such person (the one with the alphabetically smallest name). Your solution should use three processes, one for each tape.
Exercise 2 (Cont’d.)

2. Convert the following DCDL expression to a precedence graph.

\[
[S_1 \parallel [[S_2 \parallel S_3]; S_4]]
\]

Use **fork** and **join** to express this expression.

3. Convert the following program to a precedence graph:

\[
S_1;[[S_2;S_3\parallel S_4;S_5\parallel S_6]\parallel S_7];S_8
\]
Exercise 2 (Cont’d.)

4. G is a sequence of integers defined by the recurrence $G_i = G_{i-1} + G_{i-3}$ for $i > 1$, with initial values $G_0 = 0$, $G_1 = 1$, and $G_2 = 1$. Provide a DCDL implementation of G_i and use one process for each G_i.

5. Using DCDL to write a program that replaces $a*b$ by $a \uparrow b$ and $a**b$ by $a \downarrow b$, where a and b are any characters other than *.

For example, if $a_1a_2*a_3**a_4***a_5$ is the input string then $a_1a_2 \uparrow a_3 \downarrow a_4***a_5$ will be the output string.
Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix
Distributed Operating Systems

- Operating Systems: provide problem-oriented abstractions of the underlying physical resources.
- Files (rather than disk blocks) and sockets (rather than raw network access).
Selected Issues

- Mutual exclusion and election
 - Non-token-based vs. token-based
 - Election and bidding

- Detection and resolution of deadlock
 - Four conditions for deadlock: mutual exclusion, hold and wait, no preemption, and circular wait.
 - Graph-theoretic model: wait-for graph
 - Two situations: AND model (process deadlock) and OR model (communication deadlock)

- Task scheduling and load balancing
 - Static scheduling vs. dynamic scheduling
Mutual Exclusion and Election

- Requirements:
 - Freedom from deadlock.
 - Freedom from starvation.
 - Fairness.

- Measurements:
 - Number of messages per request.
 - Synchronization delay.
 - Response time.
Non-Token-Based Solutions: Lamport's Algorithm

- To request the resource process P_i sends its timestamped message to all the processes (including itself).
- When a process receives the request resource message, it places it on its local request queue and sends back a timestamped acknowledgment.
- To release the resource, P_i sends a timestamped release resource message to all the processes (including itself).
- When a process receives a release resource message from P_i, it removes any requests from P_i from its local request queue. A process P_j is granted the resource when
 - Its request r is at the top of its request queue, and,
 - It has received messages with timestamps larger than the timestamp of r from all the other processes.
Example for Lamport’s Algorithm

request

acknowledge

release

P₁

P₂

P₃

CS

CS
Extension

- There is no need to send an acknowledgement when process P_j receives a request from process P_i after it has sent its own request with a timestamp larger than the one of P_i's request.
- An example for Extended Lamport’s Algorithm
Ricart and Agrawala's Algorithm

It merges acknowledge and release messages into one message *reply*.

An example using Ricart and Agrawala's algorithm.
Token-Based Solutions: Ricart and Agrawala's Second Algorithm

- When token holder P_i exits CS, it searches other processes in the order $i + 1, i + 2, \ldots, n, 1, 2, \ldots, i - 1$ for the first j such that the timestamp of P_j's last request for the token is larger than the value recorded in the token for the timestamp of P_j's last holding of the token.
Token-based Solutions (Cont’d)

Ricart and Agrawala's second algorithm.
Pseudo Code

\[P(i):=\ast\left[\text{request-resource} \right. \]
\[\text{consume} \]
\[\text{release-resource} \]
\[\text{treat-request-message} \]
\[\text{others} \]
\[\left. \right] \]
\text{distributed-mutual-exclusion ::= ||P(i:1..n)}

clock: 0,1,..., (initialized to 0)
token-present: Boolean (F for all except one process)
token-held: Boolean (F)
token: array (1..n) of clock (initialized 0)
request: array (1..n) of clock (initialized 0)
Pseudo Code (Cont’d)

- others ::= all the other actions that do not request to enter the critical section.
- consume ::= consumes the resource after entering the critical section
- request-resource ::=

 \[
 \begin{align*}
 &\left[\text{token present} = F \right] \\
 \rightarrow &\left[\text{send} \left(\text{request-signal, clock, i} \right) \text{ to all;} \right. \\
 &\left. \text{receive} \left(\text{access-signal, token} \right); \right. \\
 &\text{token-present} := T; \\
 &\text{token-held} := T \\
 \end{align*}
 \]
release-resource ::=
 [token (i):=clock;
 token-held:= F;
 min j in the order [i + 1,... n,1,2,...,i – 2, i – 1]
 \land (request(j) > token(j))
 \rightarrow [token-present:= F;
 send (access-signal, token) to P_j
]
]
Pseudo Code (Cont’d)

treat-request-message ::= [
 receive (request-signal, clock; j)
 \[request(j) := \max(request(j), clock);
 \text{token-present} \land \neg \text{token-held} \rightarrow \text{release-resource}
 \]
]
Ring-Based Algorithm

\[P(i:0..n-1):= \]

\[
\begin{array}{l}
[\text{receive token from } P((i-1) \mod n); \\
\text{consume the resource if needed; } \\
\text{send token to } P \ ((i + 1) \mod n)]
\end{array}
\]

distributed-mutual-exclusion::= \parallel P(i:0..n-1)
The simple token-ring-based algorithm (a) and the fault-tolerant token-ring-based algorithm (b).
Tree-Based Algorithm

A tree-based mutual exclusion algorithm.
Maekawa's Algorithm

- Permission from every other process but only from a subset of processes.
- If R_i and R_j are the request sets for processes P_i and P_j, then $R_i \cap R_j \neq \emptyset$.
Example 11

\[R_1 : \{ P_1; P_3; P_4 \} \]
\[R_2 : \{ P_2; P_4; P_5 \} \]
\[R_3 : \{ P_3; P_5; P_6 \} \]
\[R_4 : \{ P_4; P_6; P_7 \} \]
\[R_5 : \{ P_5; P_7; P_1 \} \]
\[R_6 : \{ P_6; P_1; P_2 \} \]
\[R_7 : \{ P_7; P_2; P_3 \} \]
Related Issues

- **Election**: After a failure occurs in a distributed system, it is often necessary to reorganize the active nodes so that they can continue to perform a useful task.

- **Bidding**: Each competitor selects a bid value out of a given set and sends its bid to every other competitor in the system. Every competitor recognizes the same winner.

- **Self-stabilization**: A system is self-stabilizing if, regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite number of steps.
Focus 11: Garcia-Molina's Bully Algorithm for Election

- When P detects the failure of the coordinator or receives an ELECTION packet, it sends an ELECTION packet to all processes with higher priorities.
- If no one responds (with packet ACK), P wins the election and broadcast the ELECTED packet to all.
- If one of the higher processes responds, it takes over. P's job is done.
Focus 11 (Cont’d)

Bully algorithm.
Lynch's Non-Comparison-Based Election Algorithms

- Process id is tied to time in terms of rounds.
- *Time-slice algorithm:* (n, the total number of processes, is known)
 - Process P_i (with its id(i)) sends its id in round id(i)2n, i.e., at most one process sends its id in every 2n consecutive rounds.
 - Once an id returns to its original sender, that sender is elected. It sends a signal around the ring to inform other processes of its winning status.
 - message complexity: $O(n)$
 - time complexity: $\min\{id(i)\} \ n$
Lynch's Algorithms (Cont’d)

- **Variable-speed algorithm**: (n is unknown)
 - When a process \(P_i \) sends its id \((id(i)) \), this id travels at the rate of one transmission for every \(2id(i) \) rounds.
 - If an id returns to its original sender, that sender is elected.

- message complexity: \(n + n/2 + n/2^2 + \ldots + n/2^{(n-1)} < 2n = O(n) \)

- time complexity: \(2^{\min\{id(i)\}}n \)
Dijkstra's Self-Stabilization

- **Legitimate state** P: A system is in a legitimate state P if and only if one process has a privilege.
- **Convergence**: Starting from an arbitrary global state, S is guaranteed to reach a global state satisfying P within a finite number of state transitions.
Example 12

- A ring of finite-state machines with three states. A privileged process is the one that can perform state transition.

- For P_i, $0 < i \leq n - 1$,
 - $P_i \neq P_{i-1} \rightarrow P_i := P_{i-1}$,
 - $P_0 = P_{n-1} \rightarrow P_0 := (P_0 + 1) \mod k$
<table>
<thead>
<tr>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>Privileged processes</th>
<th>Process to make move</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>P0,P1,P2</td>
<td>P0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>P1,P2</td>
<td>P1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>P2</td>
<td>P2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>P0</td>
<td>P0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>P1</td>
<td>P1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>P2</td>
<td>P2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P0</td>
<td>P0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>P1</td>
<td>P1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>P2</td>
<td>P2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>P0</td>
<td>P0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>P1</td>
<td>P1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>P2</td>
<td>P2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>P0</td>
<td>P0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>P1</td>
<td>P1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>P2</td>
<td>P2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>P0</td>
<td>P0</td>
</tr>
</tbody>
</table>

Table 1: Dijkstra’s self-stabilization algorithm.
Extensions

- The role of demon (that selects one privileged process)
- The role of asymmetry.
- The role of topology.
- The role of the number of states
Detection and Resolution of Deadlock

- **Mutual exclusion.** No resource can be shared by more than one process at a time.

- **Hold and wait.** There must exist a process that is holding at least one resource and is waiting to acquire additional resources that are currently being held by other processes.

- **No preemption.** A resource cannot be preempted.

- **Circular wait.** There is a cycle in the wait-for graph.
Detection and Resolution of Deadlock (Cont’d)

Two cities connected by (a) one bridge and by (b) two bridges.

(a)

(b)
Strategies for Handling Deadlocks

- Deadlock prevention
- Deadlock avoidance (based on "safe state")
- Deadlock detection and recovery
- Different Models
 - AND condition
 - OR condition
Types of Deadlock

- Resource deadlock
- Communication deadlock

An example of communication deadlock
Conditions for Deadlock

- AND model: a cycle in the wait-for graph.
- OR model: a knot in the wait-for graph.
Conditions for Deadlock (Cont’d)

A knot \((K)\) consists of a set of nodes such that for every node \(a\) in \(K\), all nodes in \(K\) and only the nodes in \(K\) are reachable from node \(a\).

Two systems under the OR condition with (a) no deadlock and without (b) deadlock.
Focus 12: Rosenkrantz' Dynamic Priority Scheme (using timestamps)

T1:
 lock A;
 lock B;
 transaction starts;
 unlock A;
 unlock B;

wait-die (non-preemptive method)
[$LC_i < LC_j \rightarrow \textbf{halt } P_i$ (wait)
 $LC_i \geq LC_j \rightarrow \textbf{kill } P_i$ (die)]

wound-wait (preemptive method)
[$LC_i < LC_i \rightarrow \textbf{kill } P_i$ (wound)
 $LCi \geq LCj \rightarrow \textbf{halt } P_i$ (wait)]
A system consisting of five processes.

<table>
<thead>
<tr>
<th>Process id</th>
<th>Priority</th>
<th>1st request time</th>
<th>Length</th>
<th>Retry interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P2</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>P3</td>
<td>4</td>
<td>2.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P4</td>
<td>5</td>
<td>3.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P5</td>
<td>3</td>
<td>4.0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Example 13 (Cont’d)

wait-die:

wound-wait:
Load Distribution

A taxonomy of load distribution algorithms.
Static Load Distribution (task scheduling)

- Processor interconnections
- Task partition
 - Horizontal or vertical partitioning.
 - Communication delay minimization partition.
 - Task duplication.
- Task allocation
Models

- **Task precedence graph**: each link defines the precedence order among tasks.
- **Task interaction graph**: each link defines task interactions between two tasks.

(a) Task precedence graph and (b) task interaction graph.
Example 14

Mapping a task interaction graph (a) to a processor graph (b).
Example 14 (Cont’d)

- The *dilation* of an edge of G_t is defined as the length of the path in G_p onto which an edge of G_t is mapped. The dilation of the embedding is the maximum edge dilation of G_t.

- The *expansion* of the embedding is the ratio of the number of nodes in G_t to the number of nodes in G_p.

- The *congestion* of the embedding is the maximum number of paths containing an edge in G_p where every path represents an edge in G_t.

- The *load* of an embedding is the maximum number of processes of G_t assigned to any processor of G_t.
Periodic Tasks With Real-time Constraints

- Task T_i has request period t_i and run time c_i.
- Each task has to be completed before its next request.
- All tasks are independent without communication.
Liu and Layland's Solutions (priority-driven and preemptive)

- **Rate monotonic scheduling** (fixed priority assignment). Tasks with higher request rates will have higher priorities.

- **Deadline driven scheduling** (dynamic priority assignment). A task will be assigned the highest priority if the deadline of its current request is the nearest.
Schedulability

- **Deadline driven schedule:** iff
 \[\sum_{i=0}^{n} \frac{c_i}{t_i} \leq 1 \]

- **Rate monotonic schedule:** if
 \[\sum_{i=0}^{n} \frac{c_i}{t_i} \leq n(2^{1/n} - 1); \]

 may or may be not when

 \[n(2^{1/n} - 1) < \sum_{i=0}^{n} \frac{c_i}{t_i} \leq 1 \]
Example 15 (schedulable)

- $T_1: c_1 = 3$, $t_1 = 5$ and $T_2: c_2 = 2$, $t_2 = 7$ (with the same initial request time).
- The overall utilization is $0:887 > 0:828$ (bound for $n = 2$).
Example 16 (un-schedulable under rate monotonic scheduling)

- T_1: $c_1 = 3$, $t_1 = 5$ and T_2: $c_2 = 3$, $t_2 = 8$ (with the same initial request time).
- The overall utilization is $0.975 > 0.828$

An example of periodic tasks that is not schedulable.
Example 16 (Cont’d)

- If each task meets its first deadline when all tasks are started at the same time then the deadlines for all tasks will always be met for any combination of starting times.
- **scheduling points** for task T: T's first deadline and the ends of periods of higher priority tasks prior to T's first deadline.
- If the task set is schedulable for one of scheduling points of the lowest priority task, the task set is schedulable; otherwise, the task set is not schedulable.
Example 17 (schedulable under rate monotonic schedule)

- $c_1 = 40$, $t_1 = 100$, $c_2 = 50$, $t_2 = 150$, and $c_3 = 80$, $t_3 = 350$.
- The overall utilization is $0.2 + 0.333 + 0.229 = 0.762 < 0.779$ (the bound for $n > 3$).
- c_1 is doubled to 40. The overall utilization is $0.4+0.333+0.229 = 0.962 > 0.779$.
- The scheduling points for T_3: 350 (for T_3), 300 (for T_1 and T_2), 200 (for T_1), 150 (for T_2), 100 (for T_1).
Example 17 (Cont’d)

c_1 + c_2 + c_3 \leq t_1, \\
40 + 50 + 80 > 100; \\
2c_1 + c_2 + c_3 \leq t_2, \\
80 + 50 + 80 > 150; \\
2c_1 + 2c_2 + c_3 \leq 2t_2, \\
80 + 100 + 80 > 200; \\
3c_1 + 2c_2 + c_3 \leq 2t_3, \\
120 + 100 + 80 = 300; \\
4c_1 + 3c_2 + c_3 \leq t_1, \\
160 + 150 + 80 > 350.
A schedulable periodic task.
Dynamic Load Distribution (load balancing)

A state-space traversal example.

A state-space traversal example.
Dynamic Load Distribution (Cont’d)

A dynamic load distribution algorithm has six policies:

- Initiation
- Transfer
- Selection
- Profitability
- Location
- Information
Focus 13: Initiation

Sender-initiated approach:

Sender-initiated load balancing.
/* a new task arrives */
queue length ≥ HWM →

* [poll_set := φ ;

 [| poll_set | < poll_limit →
 [select a new node u randomly;
 poll_set := poll_set ∪ node u;
 queue_length at u < HWM →
 transfer a task to node u and **stop**
]
]
]
Receiver-Initiated Approach

Receiver-initiated load balancing.
Receiver-Initiated Approach (Cont’d)

/* a task departs */
queue length < LWM →
[poll limit := φ;
 * [| poll_set | < poll limit →
 [select a new node u randomly;
 poll_set := poll set ∪ node u;
 queue_length at u > HWM →
 transfer a task from node u and stop
]
]
]
Bidding Approach

Bidding algorithm.
Focus 14: Sample Nearest Neighbor Algorithms

Diffusion

- At round $t + 1$ each node u exchanges its load $L_u(t)$ with its neighbors' $L_v(t)$.
- $L_u(t + 1)$ should also include new incoming load $\phi_u(t)$ between rounds t and $t + 1$.
- Load at time $t + 1$:

$$L_u(t + 1) = L_u(t) + \sum_{v \in A(u)} \alpha_{u,v}(L_v(t) - L_u(t)) + \phi_u(t)$$

where $0 \leq \alpha_{u,v} \leq 1$ is called the diffusion parameter of nodes u and v.
Gradient

- Maintain a contour of the gradients formed by the differences in load in the system.
- Load in high points (overloaded nodes) of the contour will flow to the lower regions (underloaded nodes) following the gradients.
- The propagated pressure of a processor u, $p(u)$, is defined as $p(u) =$
 - 0 (if u is lightly loaded)
 - $1 + \min\{p(v) | v \in A(u)\}$ (otherwise)
(a) A 4 x 4 mesh with loads. (b) The corresponding propagated pressure of each node (a node is lightly loaded if its load is less than 3).
Dimension Exchange: Hypercubes

- A sweep of dimensions (rounds) in the n-cube is applied.
- In the i^{th} round neighboring nodes along the i^{th} dimension compare and exchange their loads.
Load balancing on a healthy 3-cube.
Extended Dimension Exchange: Edge-Coloring

Extended dimension exchange model through edge-coloring.
Exercise 4

1. Provide a revised Misra's ping-pong algorithm in which the ping and the pong are circulated in opposite directions. Compare the performance and other related issues of these two algorithms.

2. Show the state transition sequence for the following system with $n = 3$ and $k = 5$ using Dijkstra's self-stabilizing algorithm. Assume that $P_0 = 3$, $P_1 = 1$, and $P_2 = 4$.

3. Determine if there is a deadlock in each of the following wait-for graphs assuming the OR model is used.

(a) ![Wait-for Graph A](image1.png)
(b) ![Wait-for Graph B](image2.png)
Exercise 4 (Cont’d)

<table>
<thead>
<tr>
<th>Process id</th>
<th>Priority</th>
<th>1st request time</th>
<th>Length</th>
<th>Retry interval</th>
<th>Resource(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>P2</td>
<td>4</td>
<td>1.5</td>
<td>2</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>P3</td>
<td>1</td>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>A,B</td>
</tr>
<tr>
<td>P4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>B,A</td>
</tr>
</tbody>
</table>

Table 2: A system consisting of four processes.

4. Consider the following two periodic tasks (with the same request time)
 - Task T_1: $c_1 = 4$, $t_1 = 9$
 - Task T_2: $c_2 = 6$, $t_2 = 14$

(a) Determine the total utilization of these two tasks and compare it with Liu and Layland's least upper bound for the fixed priority schedule. What conclusion can you derive?
Exercise 4 (Cont’d)

(b) Show that these two tasks are schedulable using the rate-monotonic priority assignment. You are required to provide such a schedule.
(c) Determine the schedulability of these two tasks if task T_2 has a higher priority than task T_1 in the fixed priority schedule.
(d) Split task T_2 into two parts of 3 units computation each and show that these two tasks are schedulable using the rate-monotonic priority assignment.
(e) Provide a schedule (from time unit 0 to time unit 30) based on deadline driven scheduling algorithm. Assume that the smallest preemptive element is one unit.
Exercise 4 (Cont’d)

5. For the following 4 x 4 mesh find the corresponding propagated pressure of each node. Assume that a node is considered lightly loaded if its load is less than 2.
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Motivation</td>
</tr>
<tr>
<td>Theoretical Foundations</td>
</tr>
<tr>
<td>Distributed Programming Languages</td>
</tr>
<tr>
<td>Distributed Operating Systems</td>
</tr>
<tr>
<td>Distributed Communication</td>
</tr>
<tr>
<td>Distributed Data Management</td>
</tr>
<tr>
<td>Reliability</td>
</tr>
<tr>
<td>Applications</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
<tr>
<td>Appendix</td>
</tr>
</tbody>
</table>
Distributed Communication

One-to-one (**unicast**)

One-to-many (**multicast**)

One-to-all (**broadcast**)

Different types of communication
Classification

- Special purpose vs. general purpose.
- Minimal vs. nonminimal.
- Deterministic vs. adaptive.
- Source routing vs. distributed routing.
- Fault-tolerant vs. non fault-tolerant.
- Redundant vs. non redundant.
- Deadlock-free vs. non deadlock-free.
Router Architecture

A general PE with a separate router.
Four Factors for Communication Delay

- **Topology.** The topology of a network, typically modeled as a graph, defines how PEs are connected.

- **Routing.** Routing determines the path selected to forward a message to its destination(s).

- **Flow control.** A network consists of channels and buffers. Flow control decides the allocation of these resources as a message travels along a path.

- **Switching.** Switching is the actual mechanism that decides how a message travels from an input channel to an output channel: store-and-forward and cut-through (wormhole routing).
General-Purpose Routing

Source routing: link state (Dijkstra's algorithm)

A sample source routing
General-Purpose Routing (Cont’d)

Distributed routing: distance vector (Bellman-Ford algorithm)

A sample distributed routing
Distributed Bellman-Ford Routing Algorithm

- **Initialization.** With node \(d \) being the destination node, set \(D(d) = 0 \) and label all other nodes (., \(\infty \)).

- **Shortest-distance labeling of all nodes.** For each node \(v \neq d \) do the following: Update \(D(v) \) using the current value \(D(w) \) for each neighboring node \(w \) to calculate \(D(w) + l(w, v) \) and perform the following update:

\[
D(v) := \min\{D(v), D(w) + l(w; v)\}
\]
Distributed Bellman-Ford Algorithm
(Cont’d)
Example 18

A sample network.
Example 18 (Cont’d)

Bellman-Ford algorithm applied to the network with P_5 being the destination.

<table>
<thead>
<tr>
<th>Round</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>$(., \infty)$</td>
<td>$(., \infty)$</td>
<td>$(., \infty)$</td>
<td>$(., \infty)$</td>
</tr>
<tr>
<td>1</td>
<td>$(., \infty)$</td>
<td>$(., \infty)$</td>
<td>(5,20)</td>
<td>(5,2)</td>
</tr>
<tr>
<td>2</td>
<td>(3,25)</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(5,2)</td>
</tr>
<tr>
<td>3</td>
<td>(2,7)</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(5,2)</td>
</tr>
</tbody>
</table>
Looping Problem

Link \((P_4; P_5)\) fails at the destination \(P_5\).

(a) Network delay table of \(P_1\)

<table>
<thead>
<tr>
<th>Time next node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(4 < k < 15)</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>(20, (\infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>(\lfloor n/2 \rfloor + 9)</td>
<td>25</td>
<td>27</td>
<td>27</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>(P_3)</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>(\lfloor n/2 \rfloor + 7)</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>(P_3)</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>(\lfloor n/2 \rfloor + 3)</td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>23*</td>
<td>23</td>
</tr>
</tbody>
</table>

(b) Network delay table of \(P_2\)

<table>
<thead>
<tr>
<th>Time next node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(4 < k < 15)</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>(20, (\infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_2)</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>(\lfloor n/2 \rfloor + 7)</td>
<td>23</td>
<td>23</td>
<td>25</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>(P_3)</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>(\lfloor n/2 \rfloor + 9)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25*</td>
</tr>
</tbody>
</table>
Looping Problem (Cont’d)

<table>
<thead>
<tr>
<th>Time next node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>K, 4<k<15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>(20, ∞)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>2\lfloor n/2 \rfloor +10</td>
<td>26</td>
<td>28</td>
<td>28</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>P2</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2\lfloor n/2 \rfloor +5</td>
<td>22</td>
<td>22</td>
<td>24</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>P4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>2\lfloor n/2 \rfloor +4</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>P5</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20*</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

(c) Network delay table of P3

<table>
<thead>
<tr>
<th>Time next node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>K, 4<k<15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>(20, ∞)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>2\lfloor n/2 \rfloor +4</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>P3</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2\lfloor n/2 \rfloor +5</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22*</td>
</tr>
<tr>
<td>P5</td>
<td>∞</td>
</tr>
</tbody>
</table>

(d) Network delay table of P4
Special-Purpose Routing

E-cube routing in n-cube: $u \oplus w$ as a navigation vector.

A routing in a 3-cube with source 000 and destination 110:
(a) Single path. (b) Three node-disjoint paths.
Binomial-Tree-Based Broadcasting in N-Cubes

The construction of binomial trees.
Hamiltonian-Cycle-Based Broadcasting in N-Cubes

(a) A broadcasting initiated from 000.
(b) A Hamiltonian cycle in a 3-cube.
Parameterized Communication Model

Postal model:

- \(\lambda = l/s \) where \(s \) is the time it takes for a node to send the next message and \(l \) is the communication latency.
- Under the **one-port model** the binomial tree is optimal when \(\lambda = 1 \).
Example 19: Broadcast Tree

Comparison with $\lambda = 6$: (a) binomial tree and (b) optimal spanning tree.
Wu's safety level:

- The safety level associated with a node is an approximated measure of the number of faulty nodes in the neighborhood.
- Let \((S_0, S_1, S_2, \ldots, S_{n-1})\), \(0 \leq S_i \leq n\), be the non-descending safety status sequence of node \(a\)'s neighboring nodes in an \(n\)-cube such that \(0 \leq S_i \leq S_{i+1} \leq n-1\).
- If \((S_0, S_1, S_2, \ldots, S_{n-1}) \geq (0, 1, 2, \ldots, n-1)\) then \(S(a) = n\)
 - else if \((S_0, S_1, S_2, \ldots, S_{k-1}) \geq (0, 1, 2, \ldots, k-1)^\land (S_k = k-1)\) then \(S(a) = k\).
Focus 15: Fault-Tolerant Routing (Cont’d)

Localized algorithms:

```
  Sn-1  S1  S2  S3  S4  S5
    |    |    |    |    |
    S(a) S(a) S(a) S(a) S(a)
```

Si
If the safety level of a node is k ($0 < k \leq n$), there is at least one Hamming distance path from this node to any node within k-Hamming-distance.

A fault-tolerant routing using safety levels.
Fault-Tolerant Broadcasting

If the source node is n-safe, there exists an n-level injured spanning binomial tree in an n-cube.

Broadcasting in a faulty 4-cube.
Wu's Extended Safety Level in 2-D Meshes

A sample region of minimal paths.
Deadlock-Free Routing

Virtual channels and virtual networks:

(a) A ring with two virtual channels, (b) channel dependency graph of (a), and (c) two virtual rings vr_1 and vr_0.

(a)

(b)

(c)
Focus 16: Deadlock-Free Routing Without Virtual Channels

- **XY-routing** in 2-D meshes: X dimension followed by Y dimension.

- Glass and Ni's **Turn model**: Certain turns are forbidden.

(a) Abstract cycles in 2-d meshes, (b) four turns (solid arrows) allowed in XY-routing, (c) six turns allowed in positive-first routing, and (d) six turns allowed in negative-first routing.
Basic Routing Strategies in Internet

Source routing: link state

header

| B-C-D | packet |

A --- B --- C --- D

Figure 1: A sample source routing

Distributed routing: distance vector

header

| D | packet |

A --- B --- C --- D

Routing table

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Figure 2: A sample distributed routing
Routing in Ad Hoc Wireless Networks

The **dynamic nature** of ad hoc wireless networks presents a challenge to current routing techniques.
Major Challenges

- Scalable design
- Low power design
- Mobility management
- Low latency
Classification

- **Proactive vs. reactive**
 - proactive: continuously evaluate network connectivity
 - reactive: invoke a route determination procedure on-demand.

- **Flat vs. cluster-based**
DSR Routing (Johnson, CMU)

- There are no periodic routing advertisement messages (thereby reducing network bandwidth overhead).
- Each host maintains a *route cache*: source routes that it has learned.
- If a route is not found from route cache, the source attempts to discover one using *route discovery*.
- *Route maintenance* monitors the correct operation of a route in use.

![Figure 3: A sample DSR routing](image-url)
Zone-Based Routing (Hass, Cornell)

- Trade-offs: network capacity usage in proactive approaches and the long delay in reactive approaches.
- A routing zone (for a host) includes the nodes within a given number of hops.
- Each host maintains routing information only to nodes within its routing zone.
- Information outside the routing zone is obtained through on demand.

Figure 4: Zone routing
DOMINATION-SET-BASED ROUTING (WU AND LI, FAU)

Figure 5: School bus route.
Desirable Features

- Simple and quick
- Connected dominating set

Figure 6: A simple ad hoc wireless network of five wireless mobile hosts.
Existing Approaches

- **Graph theory community:**
 - Bounds on the *domination number* (Haynes, Hedetniemi, and Slater, 1998).
 - Special classes of graph for which the domination problem can be solved in polynomial time.

- **Ad hoc wireless network community:**
 - **Global:** MCDS (Sivakumar, Das, and Bharghavan, 1998).
 - **Quasi-global:** spanning-tree-based (Wan, Alzoubi, and Frieder, 2002).
 - **Quasi-local:** cluster-based (Lin and Gerla, 1999).
 - **Local:** marking process (Wu and Li, 1999).
MCDS (Sivakumar, Das, and Bharghavan, UIUC)

- All nodes are initially colored white.
- The node with the maximum node degree is selected as the root and colored black. All the neighbors of the root are colored gray.
- Select a gray node that has the maximum white neighbors. The gray node is colored black and its white neighbors are marked gray.
- Repeat step (3) until there is no more white node.
MCDS (Cont’d.)

black nodes = CDS (connected dominating set)

Figure 7: MCDS as an approximation of CDS
Spanning-Tree-Based (Wan, Alzoubi, and Frieder, IIT)

- A spanning tree rooted at v (selected through an election process) is first constructed.
- Nodes are labeled according to a topological sorting order of the tree.
- Nodes are marked based on their positions in the order starting from root v.
 - All nodes are white initially.
 - V is marked black and all nodes are labeled black unless there is black neighbor.
- Each black node (except root v) selects a neighbor with the largest label but smaller than its own label and mark it gray.
black nodes = DS
black nodes + gray nodes = CDS

Figure 8: selecting CDS in a spanning tree
Cluster-Based (Lee and Gerla, UCLA)

- All nodes are initially white.
- When a white node finds itself having the lowest id among all its white neighbors, it becomes a cluster head and colors itself black.
- All its neighbors join in the cluster and change their colors to gray.
- Repeat steps (1) and (2) until there is no white node left.
- Special gray nodes: gray nodes that have two neighbors in different clusters.
Cluster-Based (Cont’d.)

black nodes = DS
black nodes + special gray nodes = CDS

Figure 9: sequential propagation in the cluster-based approach.
Localized Algorithms

- Processors (hosts) only interact with others in a restricted vicinity.
- Each processor performs exceedingly simple tasks (such as maintaining and propagating information markers).
- Collectively these processors achieve a desired global objective.
- There is no sequential propagation of information.
Focus 17: Wu and Li's Marking Process

- A node is marked true if it has two unconnected neighbors.
- A set of marked nodes (gateways nodes) V' form a connected dominating set.
Example 20

Figure 10: A sample ad hoc wireless network

marked node (gateway node)
unmarked node (nongateway node)
Properties

- **Property 1**: V' is empty if and only if G is a complete graph; otherwise, V' forms a dominating set.
- **Property 2**: V' includes all the intermediate vertices of any shortest path.
- **Property 3**: The induced graph $G' = G[V']$ is a connected graph.
Dominating-set-based Routing

- If the source is not a gateway host, it forwards packets to a source gateway neighbor.
- This source gateway acts as a new source to route packets in the induced graph generated from the connected dominating set.
- Eventually, packets reach a destination gateway, which is either the destination host itself or a gateway of the destination host.

Figure 11: Dominating-set-based routing
Other Results

- Dominating set reduction*
 (Wu and Li, Dial M 1999)
- Extended marking process (Rule-k)
 (Dai and Wu, Globecom 2002)
- Localized maintenance*
 (Wu and Dai, I-SPAN 2002)
- Networks with unidirectional links*
 (Wu, IEEE TPDS 2002)
Other Results (Continue)

- Scalable design: hierarchical routing*
 (Wu and Li, Telecom. Sys. J. 2001)
- Mobility management*
 (Wu and Li, Telecom. Sys. J. 2001)
- Power-aware routing and Power-aware broadcasting*
- Dominating-set- and GPS-based routing*
 (Datta, Stojmenovic, and Wu, IPDPS workshop, 2001 and Wu, IEEE TPDS 2002)
Dominating Set Reduction

- Reduce the size of the dominating set.
- Role of gateway/non-gateway is rotated.

\[N[v] = N(v) \cup \{v\} \text{ is a closed neighbor set of } v \]

- Rule 1: If \(N[v] \subseteq N[u] \) in \(G \) and \(id(v) < id(u) \), then unmark \(v \).
- Rule 2: If \(N(v) \subseteq N(u) \cup N(w) \) in \(G \) and \(id(v) = \min\{id(v), id(u), id(w)\} \), then unmark \(v \).

Figure 12: Two sample examples.
Figure 13: (a) Dominating set from the marking process (b) Dominating set after dominating set reduction.
Exercise 5

1. Provide an addressing scheme for the following *extended mesh* (EM) which is a regular 2-D mesh with additional diagonal links.

2. Provide a general shortest routing algorithm for EMs.

3. Suppose the postal model is used for broadcasting and \(* = 8\). What is the maximum number of nodes that can be reached in time unit 10. Derive the corresponding broadcast tree.
4. Consider the following turn models:
 - **West-first routing.** Route a message first west, if necessary, and then adaptively south, east, and north.
 - **North-last routing.** First adaptively route a message south, east, and west; route the message north last.
 - **Negative-first routing.** First adaptively route a message along the negative X or Y axis; that is, south or west, then adaptively route the message along the positive X or Y axis.
 Show all the turns allowed in each of the above three routings.

5. Show the corresponding routing paths using (1) positive-last, (2) west-first, (3) north-last, and (4) negative-first routing for the following unicasting:

6. Wu and Fernandez (1992) gave the following safe and unsafe node definition: A nonfaulty node is unsafe if and only if either of the following conditions is true: (a) There are two faulty neighbors, or (b) there are at least three unsafe or faulty neighbors. Consider a 4-cube with faulty nodes 0100, 0011, 0101, 1110, and 1111. Find out the safety status (safe or unsafe) of each node.
Exercise 5 (Cont’d)

7. To support fault-tolerant routing in 2-D meshes, D. J. Wang (1999) proposed the following new model of faulty block: Suppose the destination is in the first quadrant of the source. Initially, label all faulty nodes as faulty and all non-faulty nodes as fault-free. If node u is fault-free, but its north neighbor and east neighbor are faulty or useless, u is labeled useless. If node u is fault-free, but its south neighbor and west neighbor are faulty or can't-reach, u is labeled can't-reach. The nodes are recursively labeled until there are no new useless or can't-reach nodes.

(a) Give an intuitive explanation of useless and can't-reach.

(b) Re-write the definition when the destination is in the second quadrant of the source.
8. Chiu proposed an *odd-even turn model*, which is an extension to Glass and Ni's turn model. The odd-even turn model tries to prevent the formation of the *rightmost column segment of a cycle*. Two rules for turn are given in:

- **Rule 1:** Any packet is *not* allowed to take an EN (east-north) turn at any nodes located in an even column, and it is *not* allowed to take an NW turn at any nodes located in an odd column.
- **Rule 2:** Any packet is *not* allowed to take an ES turn at any nodes located in an even column, and it is *not* allowed to take a SW turn at any nodes located in an odd column.

(a) Use your own word to explain that the odd-even turn model is deadlock-free.

(b) Show *all the shortest paths* (permissible under the extended odd-even turn model) for

 (a) $s_1:(0,0)$ and $d_1:(2,2)$ and (b) $s_2:(0,0)$ and $d_2:(3,2)$

(c) Prove Properties 1, 2, and 3 of Wu and Li's marking process for ad hoc wireless networks.
9. Suppose we use the following two rules to reduce the size of the dominating set derived from Wu and Li's marking process.

- **Rule 1:** Consider two vertices \(v \) and \(u \) in \(G' \). If \(N[v] \subseteq N[u] \) in \(G \) and \(id(v) < id(u) \), change the marker of \(v \) to \(F \) if node \(v \) is marked, i.e., \(G' \) is changed to \(G' \setminus \{v\} \),

- **Rule 2:** Assume that \(u \) and \(w \) are two marked neighbors of marked vertex \(v \) in \(G' \). If \(N(v) \subseteq N(u) \cup N(w) \) in \(G \) and \(id(v) = \min\{id(v), id(u), id(w)\} \), then change the marker of \(v \) to \(F \).

1. Why \(id \) is used in both rules?
2. If \(N[v] \subseteq N[u] \) in \(G \) can Rule 1 be changed without checking the id's of \(v \) and \(u \)? (Consider two cases: (a) Rule 1 is used alone and (b) Rule 1 and Rule 2 are used together.)
Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix
Distributed Data Management

- Data objects
 - Files
 - Directories

- Data objects are dispersed and replicated
 - Unreplicated
 - Fully replicated
 - Partially replicated
Serializability Theory

Atomic execution

- A transaction is an "all or nothing" operation.
- The concurrent execution of several transactions affects the database as if executed serially in some order. The interleaved order of the actions of a set of concurrent transactions is called a *schedule*.
Example 22: Concurrent Transactions

T_1 begin
 1 read A (obtaining $A_{balance}$)
 2 read B (obtaining $B_{balance}$)
 3 write $A_{balance}-$10 to A
 4 write $B_{balance}+$10 to B
end

T_2 begin
 1 read B (obtaining $B_{balance}$)
 2 write $B_{balance}-$5 to B
end
Three types of conflict: \(r-w\) (read-write), \(w-r\) (write-read), and \(w-w\) (write-write).

\(r_j[x]\) reads from \(w_i[x]\) iff
- \(w_i[x] < r_j[x]\).
- There is no \(w_k[x]\) such that \(w_i[x] < w_k[x] < r_j[x]\).

Two schedules are equivalent iff
- Every read operation reads from the same write operation in both schedules.
- Both schedules have the same final writes.

When a non-serial schedule is equivalent to a serial schedule, it is called serializable schedule.
A nonserializable schedule (a) and serializable schedule (b) for Example 22.

<table>
<thead>
<tr>
<th>Transaction (step)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1(1))</td>
<td>read (A) (obtaining (A_{\text{balance}}))</td>
</tr>
<tr>
<td>(T_1(2))</td>
<td>read (B) (obtaining (B_{\text{balance}}))</td>
</tr>
<tr>
<td>(T_1(3))</td>
<td>write (A_{\text{balance}}) - $10) to (A)</td>
</tr>
<tr>
<td>(T_2(1))</td>
<td>read (B) (obtaining (B_{\text{balance}}))</td>
</tr>
<tr>
<td>(T_2(1))</td>
<td>write (B_{\text{balance}}) - $5) to (B)</td>
</tr>
<tr>
<td>(T_2(4))</td>
<td>write (B_{\text{balance}}) + $10) to (B)</td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>Transaction (step)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1(1))</td>
<td>read (A) (obtaining (A_{\text{balance}}))</td>
</tr>
<tr>
<td>(T_2(1))</td>
<td>read (B) (obtaining (B_{\text{balance}}))</td>
</tr>
<tr>
<td>(T_2(1))</td>
<td>write (B_{\text{balance}}) - $5) to (B)</td>
</tr>
<tr>
<td>(T_1(2))</td>
<td>read (B) (obtaining (B_{\text{balance}}))</td>
</tr>
<tr>
<td>(T_1(3))</td>
<td>write (A_{\text{balance}}) - $10) to (A)</td>
</tr>
<tr>
<td>(T_1(4))</td>
<td>write (B_{\text{balance}}) + $10) to (B)</td>
</tr>
</tbody>
</table>

(b)
Concurrency Control

- Locking scheme
- Timestamp-based scheme
- Optimistic concurrency control
Focus 18: Two-Phase Locking

- A transaction is **well-formed** if it
 - locks an object before accessing it,
 - does not lock an object that is already locked, and
 - before it completes, unlocks each object it has locked.

- A schedule is **two-phase** if no object is unlocked before all needed objects are locked.
Example 23: Well-Formed, Two-Phase Transactions

T_1: \textbf{begin} \\
lock A \\
\textbf{read} A (obtaining A balance) \\
lock B \\
\textbf{read} B (obtaining B balance) \\
\textbf{write} A_balance-$10\text{ to } A$ \\
unlock A \\
\textbf{write} B_balance+$10\text{ to } B$ \\
unlock B \\
\textbf{end}$

T_2: \textbf{begin} \\
lock B \\
\textbf{read} B (obtaining B balance) \\
\textbf{write} B_balance-$5\text{ to } B$ \\
unlock B \\
\textbf{end}$
Different Looking Schemes

- **Centralized locking algorithm**: distributed transactions, but centralized lock management.

- **Primary-site locking algorithm**: each object has a single site designated as its primary site (as in INGRES).

- **Decentralized locking**: The lock management duty is shared by all the sites.
Focus 19: Timestamp-based Concurrency Control

- $Time_r(x)$ ($Time_w(x)$): the largest timestamp of any read (write) processed thus far for object x.

 (Read) If $ts < Time_w(x)$ then the read request is rejected and the corresponding transaction is aborted; otherwise, it is executed and $Time_r(x)$ is set to $\max\{Time_r(x), ts\}$.

 (Write) If $ts < Time_w(x)$ or $ts < Time_r(x)$, then the write request is rejected; otherwise, it is executed and $Time_w(x)$ is set to ts.
Example 24

- $Time_r(x) = 4$ and $Time_w(x) = 6$ initially.
- Sample:
 - $read(x,5)$, $write(x,7)$, $read(x,9)$, $read(x, 8)$, $write(x,8)$
- First and last are rejected and $Time_r(x) = 7$, $Time_w(x)$
 = 9 when completed.
Conservative Timestamp Ordering

Each site keeps a write queue (W-queue) and a read queue (R-queue).

- A read \((x, ts)\) request is executed if all W-queues are nonempty and the first write on each queue has a timestamp greater than \(ts\); otherwise, the read request is buffered in the R-queue.

- A write \((x, ts)\) request is executed if all R-queues and W-queues are nonempty and the first read (write) on each R-queue (W-queue) has a timestamp greater than \(ts\); otherwise, the write request is buffered in the W-queue.
Strict Consistency

- Any read returns the result of the most recent write.
- Impossible to enforce, unless
 - All writes are instantaneously visible to all processes.
 - All reads get the then-current values, no matter how quickly next writes are done.
 - An absolute global time order is maintained.
Weak Consistency

- **Sequential consistency**: All processes see all shared accesses in the same order.
- **Causal consistency**: All processes see causally-related shared accesses in the same order.
- **FIFO consistency**: All processes see writes from each process in the order they were issued.
Weak Consistency (Cont’d)

- **Weak consistency**: Enforces consistency on a group of operations, not on individual reads and writes.
- **Release consistency**: Enforces consistency on a group of operations enclosed by acquire and release operations.
- **Eventual consistency**: All replicas will gradually become consistent. (Web pages with dominated read operations.)
Example 25: Sample Consistent Models

<table>
<thead>
<tr>
<th></th>
<th>W(x,a)</th>
<th></th>
<th>W(x,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>R(x,a)</td>
<td></td>
<td>W(x,b)</td>
</tr>
<tr>
<td>P3</td>
<td>R(x,a)</td>
<td></td>
<td>R(x,c)</td>
</tr>
<tr>
<td>P4</td>
<td>R(x,a)</td>
<td></td>
<td>R(x,b)</td>
</tr>
</tbody>
</table>

causally-consistent

<table>
<thead>
<tr>
<th></th>
<th>W(x,a)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>R(x,a)</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>R(x,a)</td>
<td></td>
</tr>
</tbody>
</table>

non-causally-consistent
Example 25 (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>(W(x,a))</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>(R(x,a))</td>
<td>(W(x,b))</td>
<td>(W(x,c))</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td>(R(x,b))</td>
<td>(R(x,a))</td>
<td>(R(x,c))</td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td>(R(x,a))</td>
<td>(R(x,b))</td>
<td>(R(x,c))</td>
</tr>
</tbody>
</table>

FIFO-consistent
Update Propagation

- **State versus Operations**
 - Propagate a notification of an update (such as invalidate signal)
 - Propagate data
 - Propagate the update operation

- **Pull versus Push**
 - Push-based approach (server-based)
 - Pull-based approach (client-based)
 - Lease-based approach (hybrid of push and pull)

- **Consistency of duplicated data**
 - **Write-invalidate vs. write-through**
 - **Quorum-voting** as an extension of single-write/multiple-read
Focus 20: Quorum-Voting

\[w > \frac{v}{2} \text{ and } r + w > v \]

where \(w \) and \(r \) are write and read quorum and \(v \) is the total number of votes.
Hierarchical Quorum Voting

A 3-level tree in the hierarchical quorum voting with read quorum = 2 and write quorum = 3.
Gray's Two-Phase Commitment Protocol

The finite state machine model for the two-phase commit protocol.
Phase 1

At the coordinator:

/*prec: initiate state (q) */
1. The coordinator sends a commit_request message to every participant and waits for replies from all the participants.

/*postc: waiting state (w) */

At participants:

/*prec: initiate state (q)*/
1. On receiving the commit_request message, a participant takes the following actions. If the transaction executing at the participant is successful, it writes undo and redo log, and sends a yes message to the coordinator; otherwise, it sends a no message.

/*postc: wait state (w) if yes or abort state (a) if no*/
Phase 2

At the coordinator

/*prec: wait state (w)*/
1. If all the participants reply yes then the coordinator writes a commit record into the log and then sends a commit message to all the participants. Otherwise, the coordinator sends an abort message to all the participants.

/*postc: commit state (c) if commit or abort state (a) if abort */

2. If all the acknowledgments are received within a timeout period, the coordinator writes a complete record to the log; otherwise, it resends the commit/abort message to those participants from which no acknowledgments were received.
Phase 2 (Cont’d)

At the participants

/*prec: wait state (w) */
1. On receiving a commit message, a participant releases all the resources and locks held for executing the transaction and sends an acknowledgment.

/*postc: commit state (c) */
/*prec: abort state (a) or wait state (w) */

2. On receiving an abort message, a participant undoes the transaction using the undo log record, releases all the resources and locks held by it, and sends an acknowledgment.

/*postc: abort state (a) */
Site Failures and Recovery Actions

<table>
<thead>
<tr>
<th>Location</th>
<th>Time of failure</th>
<th>Actions at coordi.</th>
<th>Actions at parti.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordi.</td>
<td>Before commit</td>
<td>Broadcasts abort on recovery</td>
<td>Committed parti. Undo the trans.</td>
</tr>
<tr>
<td>Coordi.</td>
<td>Before complete after commit</td>
<td>Broadcasts commit on recovery</td>
<td></td>
</tr>
<tr>
<td>Coordi.</td>
<td>After complete</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Parti.</td>
<td>In Phase 1</td>
<td>Coordi. aborts the transaction</td>
<td>__</td>
</tr>
<tr>
<td>Parti.</td>
<td>In Phase 2</td>
<td>__</td>
<td>Commit/abort on recovery</td>
</tr>
</tbody>
</table>
Two Types of Logs

- **undo** log allows an uncommitted transaction to record in stable storage values it wrote.
- **redo** log allows a transaction to commit before all the values written have been recorded in stable storage.

A recovery example.
A protocol is *synchronous* within one state transition if one site never leads another site by more than one state transition.

concurrent set $C(s)$: the set of all states of every site that may be concurrent with state s.

In two-phase commitment: $C(w(c)) = \{c(p), a(p), w(p)\}$ and $C(q(p)) = \{q(c), w(c)\}$ ($w(c)$ is the w state of coordinator and $q(p)$ is the q state of participant).

In three-phase commitment: $C(w(c)) = \{q(p), w(p), a(p)\}$ and $C(w(p)) = \{a(c), p(c), w(c)\}$.
Skeen's Three-Phase Commitment Protocol

F: failure transition
T: timeout transition
Exercise 6

1. For the following two transactions:

 T1 begin
 1 read A (obtaining A balance)
 2 write A balance\Gamma Gamma $10 to A
 3 read B (obtaining B balance)
 4 write A balance+$10 to B
 end

 T2 begin
 1 read A (obtaining A balance)
 2 write A balance+$5 to A
 end

 (a) Provide all the interleaved executions (or schedules).
 (b) Find all the serializable schedules among the schedules obtained in (a).
Exercise 6 (Cont’d)

2. Point out serializable schedules in the following

L1 = w2(y)w1(y)r3(y)r1(y)w2(x)r3(x)r3(z)r2(z)
L2 = r3(z)r3(x)w2(x)r2(z)w1(y)r3(y)w2(y)r1(y)
L3 = r3(z)w2(y)w2(x)r1(y)r3(y)r2(z)r3(x)w1(y)
L4 = r2(z)w2(y)w2(x)w1(y)r1(y)r3(y)r3(z)r3(x)

3. A voting method called voting-with-witness replaces some of the replicas by witnesses. Witnesses are copies that contain only the version number but no data. The witnesses are assigned votes and will cast them when they receive voting requests. Although the witnesses do not maintain data, they can testify to the validity of the value provided by some other replica. How should a witness react when it receives a read quorum request? What about a write quorum request? Discuss the pros and cons of this method.
Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix
Type of Faults

- **Types of faults:**
 - **Hardware** faults
 - **Software** faults
 - **Communication** faults
 - **Timing** faults

- **Schneider’s classification:**
 - Omission failure
 - Failstop failure (detectable)
 - Crash failure (undetectable)
 - Crash and link failure
 - Byzantine failure
Redundancy

- **Hardware redundancy**: extra PE's, I/O's
- **Software redundancy**: extra version of software modules
- **Information redundancy**: error detecting code
- **Time redundancy**: additional time used to perform a function
Fault Handling Methods

- Active replication
- Passive replication
- Semi-active replication
Building Blocks of Fault-Tolerant Design

- **Stable storage** is a logical abstraction for a special storage that can survive system failure.

- **Fail-stop processors** do not perform any incorrect action and simply cease to function.

- An **atomic action** is a set of operations which are executed indivisibly by hardware. That is, either operations are completed successfully and fully or the state of the system remains unchanged (operations are not executed at all).
Domino Effect

- Storage of checkpoints
- Checkpointing methods

An example of domino effect.
Focus 21: Byzantine Faults

- Several divisions of the Byzantine army camp outside an enemy city. Each division commanded by its own general. Generals from different divisions communicate only through messengers. Some of the generals may be traitors. After observing the enemy, the generals must decide upon a common battle plan.
Two Requirements

- All loyal generals decide upon \textit{the same plan} of action
- A small number of traitors \textit{cannot} cause the loyal generals to \textit{adopt a wrong plan}
Theoretical result:

\[n \geq 3m + 1 \]

where \(n \) is the total number of generals and \(m \) is the number of traitors.
An algorithm for reaching agreement.

<table>
<thead>
<tr>
<th>P1*</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>First round:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-,v₂,v₃,v₄)</td>
<td>(v₁², -,v₃, v₄)</td>
<td>(v₁¹,v₂, - v₄)</td>
<td>(v₁³,v₂, v₃, -)</td>
</tr>
<tr>
<td>Second round:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v₁², -, v₃, v₄)</td>
<td>(v₁¹, v₂, -, v₄)</td>
<td>(v₁¹, -, v₃, v₄)</td>
<td>(v₁², -, v₃, v₄)</td>
</tr>
<tr>
<td>(v₁¹, v₂, -, v₄)</td>
<td>(v₁³, v₂, v₃, -)</td>
<td>(v₁³, v₂, v₃, -)</td>
<td>(v₁¹, v₂, -, v₄)</td>
</tr>
<tr>
<td>(v₁³, v₂, v₃, -)</td>
<td>(-, v₂⁴, v₃⁴, v₄⁴)</td>
<td>(-, v₂⁵, v₃⁵, v₄⁵)</td>
<td>(-, v₂⁶, v₃⁶, v₄⁶)</td>
</tr>
<tr>
<td>(d₁, d₂,d₃, d₄)</td>
<td>(v₁⁷, v₂, v₃, v₄)</td>
<td>(v₁⁷, v₂, v₃, v₄)</td>
<td>(v₁⁷, v₂, v₃, v₄)</td>
</tr>
</tbody>
</table>
No-Agreement Among Three Processes

Cases leading to failure of the Byzantine agreement.
Extended Agreement Protocols

- Boolean values or arbitrary real values for the decisions.
- Unauthenticated or authenticated messages.
- Synchronous or asynchronous.
- Completely connected network or partially connected networks.
- Deterministic or randomized.
- Byzantine faults or fail-stop faults.
- Non-totally decentralized control system and, in particular, hierarchical control systems.
Reliable Communication

- Acknowledgement: acknowledge the receipt of each packet.
- TCP: transport protocol for reliable point-to-point comm.
- Negative acknowledgement
 - Signal for a missing packet.
 - Pros: better scalability (without positive acknowledgement).
 - Cons: sender is forced to keep each packet in the buffer forever.
Reliable Group Communication

- **Feedback suppression**: multicast or broadcast each positive (or negative) acknowledge.
- Combination of positive and negative acknowledgements
Example 26: Combination of Positive and Negative Acknowledgements in Broadcasting.

Let A be a packet and a (a) the positive (negative) acknowledgement for A.

A, Ba, Cb, Db, Ec, F cd, Cb, Gdef

1. Message A is sent first, acknowledged by the sender of B, which is in turn acknowledged by the senders of C and D.

2. The sender of E acknowledges C and the sender of F acknowledges the receipt of D but a negative acknowledgment of C.

3. Some node (not necessarily the original sender) retransmits C.

4. The sender of G acknowledges both E and F but sends a negative acknowledgment of D (after receiving F).
Different Types of Reliable Multicasting

- Reliable multicast: no message ordering
- FIFO multicast: FIFO-ordered delivery
- Causal multicast: causal-ordered delivery
- Atomic multicast: reliable multicast + total-ordered delivery
- FIFO atomic multicast: FIFO multicast + total-ordered delivery
- Causal atomic multicast: Causal multicast + total-ordered delivery
Focus 22: Total-Ordered Multicasting

- **Total-ordered multicasting**
 - Each transfer order (message) can be assigned a global sequence number.
 - There exists a global sequence.

- **Sequencer**
 - The sender sends message to a sequencer
 - The sequencer allocates a global sequence number to the message.
 - The message is delivered by every destination based on the order.
Implementations of Sequencer

- Privilege-based (token circulated among the senders)
- Fixed sequencer (a fixed third party)
- Moving sequencer (token circulated among the third-party nodes)
Multicast with Total Order

Multicast with total order

Multicast without total order

Neither seq(m₁) < seq(m₂) nor seq(m₂) < seq(m₁)
Focus 23: Birman’s Virtual Synchrony

- Virtual synchrony: reliable multicast with a special property.
- View: a multicast group.
- View change: (a) a new process joins, (b) a process leaves, and (c) a process crashes.
- Each view change is multicast to members in the group.
- Special property: each view change acts as a barrier across which no multicast can pass. (Application: distributed debugging.)
Virtual synchrony.
Implementing a Virtual Synchronous Reliable Multicast

- Message received versus message delivered.
- If message m has been delivered to all members in the group, m is called **stable**.
- Point-to-point communication is reliable (TCP).
- Sender may crash before completing the multicasting. (Some members received the message but others did not.)

Message receipt versus message delivery.
At group view G_i, a view changed is multicast.

When a process receives the view-change message for G_{i+1}, it multicasts to G_{i+1} a copy of unstable messages for G_i followed by a **flush message**.

A process installs the new view G_{i+1} when it has received a flush message from everyone else.
Reliable Process

Active model

Passive model
Exercise 7

1. Use a practical example to illustrate the differences among faults, errors, and failures.

2. Illustrate the correctness of the agreement protocol for authenticated messages using a system of four processes with two faulty processes. You need to consider the following two cases:
 - The sender is healthy and two receivers are faulty (the remaining receiver is healthy).
 - The sender is faulty and one receiver is faulty (the remaining receivers are healthy).

3. In Byzantine agreement protocol $k + 1$ rounds of message exchanges are needed to tolerate k faults. The number of processes n is at least $3k + 1$. Assume P_1 and P_2 are faulty in a system of $n = 7$ processes.
 - (a) Show the messages P_3 receives in first, second, and third round.
 - (b) Demonstrate the correctness of the protocol by showing the final result vector (after a majority voting) for P_3.
 - (c) Briefly show that result vectors for other non-faulty processes are the same.
Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix
Distributed Operating Systems

- Key issues
 - Communication primitives
 - Naming and protection
 - Resource management
 - Fault tolerance
 - Services: file service, print service, process service, terminal service, file service, mail service, boot service, gateway service

- Distributed operating systems vs. network operating systems

- Commercial and research prototypes
 - Wiselow, Galaxy, Amoeba, Clouds, and Mach
A file system is a subsystem of an operating system whose purpose is to provide long-term storage.

Main issues:
- Merge of file systems
- Protection
- Naming and name service
- Caching
- Writing policy

Some research prototypes:
- UNIX United, Coda, Andrew (AFS), Frangipani, Sprite, Plan 9, DCE/DFS, XFS, and Farsite (Microsoft Research).
A distributed shared memory is a shared memory abstraction that is implemented on a loosely coupled system.

Distributed shared memory.
Focus 24: Stumm and Zhou's Classification

- **Central-server algorithm** (nonmigrating and nonreplicated).
 - (Client) Sends a data request to the central server.
 - (Central server) Receives the request, performs data access and sends a response.
 - (Client) Receives the response.
Focus 24 (Cont’d)

- **Migration algorithm** (migrating and non-replicated).
 - (Client) If the needed data object is not local, determines the location and then sends a request.
 - (Remote host) Receives the request and then sends the object.
 - (Client) Receives the response and then accesses the data object (read and/or write).
Focus 24 (Cont’d)

- **Read-replication algorithm** (migrating and replicated)
 - (Client) If the needed data object is not local, determines the location and sends a request.
 - (Remote host) Receives the request and then sends the object.
Focus 24 (Cont’d)

- (Client) Receives the object and then multicasts by sending either invalidate or update messages to all sites that have a copy of the data object.
- (Remote host) Receives an invalidation signal and then invalidates its local copy, or receives an update signal and then updates the local copy.
- (Client) Accesses the data object (write).
Focus 24 (Cont’d)

- **Full-replication algorithm** (non-migrating and replicated)
 - (Client) If it is a write, sends the data object to the sequencer.
 - (Sequencer) Receives the data object and adds a sequence number. Sends the client a signal with the sequence number and multicasts the data object together with the sequence number to all the other sites.
Focus 24 (Cont’d)

- (Client) Receives the acknowledgment and updates local memory based on the sequence number of each data object.

(Other sites) Receive the data object and update local memory based on the sequence number of each data object.
Focus 24 (Cont’d)

- **Main Issues:**
 - Structure and granularity
 - Coherence semantics
 - Scalability
 - Heterogeneity

- **Several research prototypes:**
 - Dash, Ivy, Munin, and Clouds
 - Alewife (MIT), Treadmarks (Rice), Coherent Virtual machine (Maryland), and Millipede (Israel Inst. Tech.)
Distributed Database Systems

A distributed database is a collection of multiple, logically interrelated databases distributed over a computer network.

- Possible design alternatives:
 - Autonomy
 - Distribution
 - Heterogeneity
Distributed Database Systems (Cont’d)

Alternative architectures.
Essentials of Distributed Database Systems

- Local autonomy
- No reliance on a central site
- Continuous operation
- Location independence
- Fragment independence
- Replication independence
- Distributed query processing
- Distributed transaction management
- Hardware independence
- Operating system independence
- Network independence
- Data independence
Open Research Problems

- Network scaling problem
- Distributed query processing
- Integration with distributed operating systems
- Heterogeneity
- Concurrency control
- Security
- Next-generation database systems:
 - Object-oriented database management systems
 - Knowledge base management systems
Research Prototypes and Commercial Products

- ADDS (Amocha Distributed Database Systems)
- JDDBS (Japanese Distributed Database Systems)
- Ingres/star
- SWIFT (Society for Worldwide Interbank Financial Financial Telecommunication)
- System R
- MYRIAD
- MULTIBASE
- MERMAID
Heterogeneous Processing

- Tuned use of diverse processing hardware to meet distinct computational needs.
 - **Mixed-machine systems.** Different execution modes by inter-connecting several different machine models.
 - **Mixed-mode systems.** Different execution modes by reconfigurable parallel architecture obtained by interconnecting the same processors.
Classifications

- Single Execution Mode/Single Machine Model (SESM)
- Single Execution Mode/Multiple Machine Models (SEMM)
- Multiple Execution Modes/Single Machine Model (MESM)
- Multiple Execution Modes/Multiple Machine Models (MEMM)
Focus 25: Optimization

An optimization problem that minimizes

$$\sum t_{i,j}$$

such that

$$\sum c_j \leq C$$

where $t_{i,j}$ equals the time for machine i on code segment j, c_i equals the cost for machine i, C equals the specified overall cost constraint.
Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix
"Killer" Applications

- Distributed Object-based Systems: CORBA
- Distributed Document-based Systems: WWW
- Distributed Coordination-based Systems: JINI
- Distributed Multimedia Systems: QoS requirements
Recent Applications: MapReduce

- A framework for processing highly distributable problems across huge datasets on a file system or a database.
 - **Map**: In a recursive way, the master node takes the input, divides it into smaller sub-problems, and distributes them to worker nodes. A multi-level tree structure is formed.
 - **Reduce**: The master node then collects the answers to all the sub-problems and combines them in some way to form the output – the answer to the problem it was originally trying to solve.

- **Apache Hadoop**: a software framework that supports data-intensive distributed applications under a free license. It was derived from Google’s MapReduce and Google File System (GFS).
Recent Applications: PageRank

A link analysis algorithm

- PR(E): Page Rank of E
- likelihood that a person randomly clicking on links will arrive at any particular page

\[
PR(p_i) = \frac{1 - d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)}
\]

M(p_j): set of pages link to p_i,
L(p_j): the number of outgoing links on p_j, d: dumping factor, N: total number of pages.

HITS (Jon Kleinberg): each node has two values in a mutual recursion

- Authority: the sum of the Hub Scores of each node that points to it.
- Hub: the sum of the Authority Scores of each node that it points to.
Emerging Systems

- **Wireless networks and mobile computing: mobile agents**
 - Move the computation to the data rather than the data to the computations.

- **Grid**
 - TeraGrid: 13.6 teraflops of Linux Cluster computing power distributed at the four TeraGrid sites.
 - Open Grid Services Architecture (OGSA): delivering tighter integration between grid computing networks and Web services technologies.
 - Grid Computing (via OGSA) as the basis of evolution of Internet computing in the future.
Distributed Grid

OptIPuter (UC San Diego and U. of Chicago)
- Parallel optical networks using IP
- Supernetworks: networks faster than the computers attached to them
- Parallelism takes the form of multiple wavelengths, or lambdas (1-10 Gbps)
- A new resource abstraction: distributed virtual computer

E-Science (UK Research Councils, 2001)
- Large-scale science carried out through distributed global collaboration enabled by networks, requiring access to very large data collaborations, very large-scale computing resources, and high-performance visualization.
Cloud Computing

Sharing of resources to achieve coherence and economies of scale similar to utility (e.g. electricity grid) over a network (e.g. Internet)

- Characteristics
 - Agility, API, cost, device, virtualization, multi-tenancy, reliability, scalability, performance, security, maintenance

- Service
 - Infrastructure as a Service (LaaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)
Cyber infrastructure

Infrastructure composed of “cyber” elements

- Includes High-End Computing (Supercomputing), grid computing, distributed computing, etc

Working definition

- An integrated system of interconnected computation, communication, or information element that supports a range of applications
Cyberinfrastructure (con’t)

Cyberinfrastructure consists of

- Computational engines (supercomputers, clusters, workstations, small processors, …)
- Mass storage (disk drives, tapes, …)
- Networking (including wireless, distributed, ubiquitous)
- Digital libraries/data bases
- Sensors/effectors
- Software (OS, middleware, domain specific tools)
- Services (education, training, consulting, user assistance)
Cyberinfrastructure (con’t)

Characteristics

- Built on broadly accessible, highly capable network: 100’s of terabits backbones down to intermittent, wireless connectivity at very low speeds;
- Contains significant and varied computing resources: 100’s of petaflops at high ends, with capacity to support most scientific work;
- Contains significant storage capacity: exabyte collections common; high-degree of DB confederation possible;
- Allows wide range of of sensors/effectors to be connected: sensor nets of millions of elements attached;
- Contains a broad variety of intelligent visualization, search, database, programming and other services that are fitted to specific disciplines.
Cyberinfrastructure (con’t)

Technical Challenges

- Computer Science and Engineering broadly
- How to build the components
- Networks, processors, storage devices, sensors, software
- How to shape the technical architecture
- Pervasive, many cyberinfrastructures, constantly evolving/changing capabilities
- How to customize cyberinfrastructures to particular S&E domains
Vision of the Field

Convergence of Multiple Disciplines

- Parallel processing, distributed systems, and network computing
- Distributed computing as an important component in Cyberinfrastructure
 - Upper and middle layers in integrated cyberinfrastructure
- Ultimate Cyberinfrastructure
 - Network-Centric
 - Petascale computing, exabyte storage, and terabit networks
Vision of the Field (Con’t.)

Diverse aspects (ICDCS’04 areas)

- Agents and Mobile Code
- Distributed Algorithms
- Distributed Data Management
- Distributed Operating Systems
- Middleware
- Multimedia
- Network Protocols
- Peer-to-Peer Communication
- Real-time and Embedded Systems
- Security and Fault Tolerant Systems
- Ubiquitous Computing
- Wireless Communication and Networks
The Future of Distributed Computing

- **Theoretical aspects**, including global state, logical/physical clock, synchronization, and algorithm verification.
- **Fault tolerance** and crash recovery through software fault tolerance.
- **Tools** (for CASE and performance measure) and **languages** are badly needed.
- **High-performance systems** that connect 10^5 or more processors.
- **Real-time distributed systems** used for automated manufacturing, remote sensing and control, and other time-critical missions.
- **Actual distributed systems** with significantly improved fault tolerance, resource sharing, and communications. These systems will function as single, coherent, powerful, virtual machines providing transparent user access to network-wide resources.
Major “old” Challenges

- Transparency
- Scalability
- The need to meet various goals
 - Real time constraints
 - Fault tolerance
 - Security
 - Other quality/performance related objectives
- Cross-field interaction
Major “New” Challenges: Others

Supernetworks: networks are faster than the computers attached to them
- Endpoints scale to **bandwidth-match** the network with multiple-10Gbps lambdas
- Models that simplify distributed application programming
- Middleware for bandwidth-matching distributed resources

High-speed, parallel-access storage abstractions
Adaptive and peer-to-peer data access
Real-time object models enabling predictable performance
Fault tolerance and security protocols and models
Major “New” Challenges: Green Computing

- Also green IT and ICT Sustainability
- Article: *Harnessing Green IT: Principles and Practices*
- Government
 - EPA’s Energy Star program
- Industry
 - Climate Savers Computing Initiative
 - The Green Grid
 - Green500
 - Green Comm Challenge
 - Algorithmic efficiency
 - Resource allocation
 - Virtualization
 - Terminal servers (thin client)
 - Power management
 - Data center power
 - Operating system support
 - Power supply
 - Storage
 - Video card
 - Display
 - Materials recycling
 - Telecommuting
Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix
A List of Common Symbols in DCDL

□ Alternate
* Repetition
∥ Parallel
→ Condition
; Sequence
Send
:= Assignment
Receive
:: Definition

[Begin
] End
∀ For all (universal quantifier)
∃ There exist (existential quantifier)
= Equal
≠ Unequal
∨ OR
∧ AND
¬ NOT
Ideas for Projects

- **Scalability metric**
 - Amdahl's law and Gustafson law
 - time-constrained
 - efficiency-constrained
 - memory-constrained scaling

- **Parallel/distributed environment**
 - MPI
 - PVM

- **Parallel/distributed system model**
 - including criteria to access their suitability.

- **Networks of workstations**
 - with applications

- **Distributed simulation**
 - Petri nets and other related models
Ideas for Projects (Cont’d)

- Mobile computing
 - Routing
 - Checkpointing
 - channel allocation

- Information model
 - switch-based LANS
 - internet

- Routing
 - Optimal
 - fault tolerant
 - deadlock-free.

- Scheduling
 - static and dynamic load distribution.
Ideas for Projects (Cont’d)

- Fault tolerance
 - various applications
- Scalable design
 - interconnection networks.
- Survey
 - Database, file, DSM, heterogeneous computing, OS, etc.
- Collective communication
 - multicast, broadcast, barrier sync., etc.
- RPC and remote message passing
 - different approaches.
- Consistency models and applications
 - different weak consistency models.
Thank you!