Table of Contents

- Introduction
- Infrastructured networks
 - Handoff
 - location management (mobile IP)
 - channel assignment
Table of Contents (cont’d.)

- Infrastructureless networks
 - Wireless MAC (IEEE 802.11 and Bluetooth)
 - Ad hoc routing protocols
 - Multicasting and broadcasting
 - Power optimization
 - Coverage
 - Security
Table of Contents (cont’d.)

- Infrastructureless networks (cont’d.)
 - Localization
 - Network coding and capacity
- Applications
 - Sensor networks
 - Cognitive radio networks
 - Pervasive computing
- Delay tolerant and social networks
- Sample on-going projects
An ad hoc network is a collection of wireless mobile host forming a temporary network without the aid of any centralized administration or standard support services regularly available on the wide area network to which the hosts may normally be connected (Johnson and Maltz)
Ad Hoc Wireless Networks (Infrastructureless networks)

- **Manet** (mobile ad hoc networks)
- Mobile distributed multihop wireless networks
- Temporary in nature
- No base station and rapidly deployable
- Neighborhood awareness
- Multiple-hop communication
- **Unit disk graph**: host connection based on geographical distance
Sample Ad Hoc Networks

- Sensor networks
- Indoor wireless applications
- Mesh networks
- People-based networks
 - “small world” that are very large graphs that tend to be sparse, clustered, and have a small diameter.
 - “six degree of separation”
Characteristics

- Self-organizing: without centralized control
- Scarce resources: bandwidth and batteries
- Dynamic network topology
Unit Disk Graph

Figure 1: A simple ad hoc wireless network of five wireless mobile hosts.
Applications

- Defense industry (battlefield)
- Law enforcement
- Academic institutions (conference and meeting)
- Personal area networks and Bluetooth
- Home networking
- Embedding computing applications
- Health facilities
- Disaster recovery (search-and-rescue)
Major Issues

- Mobility management
 - Addressing and routing*

- Location tracking
 - Absolute vs. Relative, GPS

- Network management
 - Merge and split

- Resource management
 - Networks resource allocation and energy efficiency

- QoS management*
 - Dynamic advance reservation and adaptive error control techniques
Major Issues (Cont’d.)

- **MAC protocols***
 - Contention vs. contention-free

- **Applications and middleware**
 - Measurement and experimentation

- **Security***
 - Authentication, encryption, anonymity, and intrusion detection

- **Error control and failure**
 - Error correction and retransmission, deployment of back-up systems

- **Network coding**
 - Reduce number of transmissions
Issues to be Covered

- Wireless Media Access Protocols (MAC)
- Ad Hoc Routing Protocols
- Multicasting and Broadcasting
- Power Optimization
- Security
- Network Coding
Wireless MAC

- A MAC (Media Access Protocol) is a set of rules or procedures to allow the efficient use of a shared medium.
 - Contention vs. contention-free
 - Sender-initiated vs. receiver-initiated
Wireless MAC: Major Issues

- Distributed operations
- Synchronization
- Hidden terminals
- Exposed terminals
- Throughput
- Access delay
- Fairness

- Real-time traffic
- Resource reservation
- Ability to measure resource availability
- Power and rate control
- Directional antennas
Wireless MAC

Contention-based

- ALOHA: no collision avoidance
 - Pure: transmitted at arbitrary time
 - Slotted: transmitted at start of a time slot
 - ρ-persistent: slotted and transmitted with a probability ρ
Wireless MAC

- Carrier Sense Multiple Access (CSMA): listen to determine whether there is activity on the channel
 - Persistent: continuously listens
 - Nonpersistent: waits a random amount of time before re-testing
 - ρ-persistent: slotted and transmit when idle with a probability of ρ
Wireless MAC

Contention-free protocols

- Bit-map protocol: each contention period consists of N slots.
- Binary countdown: use binary station address in bidding.

Hybrid

- Mixed contention-free with contention
Wireless MAC

- Hidden Terminal Problem
 - Two nodes, hidden from one another (out of transmission range), attempt to send information to the same receiving node.
 - Packet collisions.

- Exposed Node Problem
 - A node is inhibited from transmitting to other nodes on overhearing a packet transmission.
 - Wasted bandwidth.
Wireless MAC

- Sender-initiated
 - MACA (Multiple Access with Collision Avoidance) (RTS-CTS-data)
 - MACAW (MACA with Acknowledgement)
 - BTMA (Busy Tone Multiple Access)
 - DBTMA (Dual BTMA)
- Receiver-initiated
 - MACA-BI (By Invitation)
- Other extensions
 - March and PAMAS
MACA (P. Khan)

- No carrier-sensing for channel
- Two special signals
 - RTS: request-to-send
 - CTS: clear-to-send
- Packet lost
 - Binary exponential back-up
- Overcomes the hidden terminal issue
Sample collision

- RTS-CTS problem 1
Sample collision

RTS-CST problem 2
MACAW (S. Shenker and L. Zhang)

- RTS+CTS+DS+DATA+ACK
 - DS: data-sending (avoid unnecessary back-off counter build up)

- RRTS: request-for-request-to-send

- Distinct back-off counter per flow
DBTMA (Z. Haas)

- BTMA (Busy Tone Multiple Access)
 - Separate control and data (busy tone)
 - Nodes sense data carry also send busy tone
 - Too restrictive (Disable two-hop neighbors)

- Dual BTMA
 - RTS
 - Receive busy tone + CTS
 - Transmit busy tone + Data
MACA-BI (M. Gerla)

- Receiver-initiated
 - RTR: ready-to-receive
 - Data: data transmission
MARCH (C. T. Toh)

Media Access with Reduced Handshake (MARCH)
PAMAS (C. S. Raghavendra)

Power-Aware Multi-Access Protocol with Signaling (PAMAS)

- Temp. reducing transmitter range
- Turn off
Others (N. H. Vaidya)

- Different ranges
 - TR: transmission range, IR: interference range, SR: sensing range (TR < IR < SR)
 - Different ranges for RTS, CTS, Data, and Ack

- Directional antennas
 - DO (sender: omni (O) and receiver: directional (D))
 - Other models: OO, OD, and DD
Others (M. Fang)

- Impact of MAC on communication
 - Intra-flow contention
 - Inter-flow contention

- Physical layer related issues
 - Rate-adaptation (varying the data rate)
 - Other options: varying the transmission power or the packet length
 - Link Diversity: Multi-output link diversity and multi-input link diversity
Power Saving (Y. –C. Tseng)

Tseng’s Power-saving Protocols:
Use periodic active window to discover neighbors
- Overlapping Awake Intervals
- Wake-up Prediction
Power Saving

- Dominating-Awake-Interval Protocol
Power Saving

- Periodically-Fully-Awake-Interval
Power Saving

- Quorum-Based Protocols
IEEE 802.11

- Two operational modes
 - Infrastructure-based
 - Infrastructureless or ad hoc

- Two types of service at the MAC layer
 - Contention-free service by Distributed Coordination Function: DCF
 - Contention-free service by Point Coordination Function: PCF
IEEE 802.11

- Two operational modes
 - Infrastructure-based
 - Infrastructureless or ad hoc
- Two types of service at the MAC layer
 - Contention-free service by Distributed Coordination Function: DCF
 - Contention-free service by Point Coordination Function: PCF
IEEE 802-11

- RTS-CTS handshake
IEEE 802.11

- RTS-CTS handshake
 - RTS (request to send)
 - CTS (clear to send)
 - Data trasmission
 - Ack

- Other items
 - Network Allocation Vector (NAV)
 - Distributed InterFrame Space (DIFS)
 - Short InterFrame Space (SIFS)
 - Backoff time
IEEE 802.11

- RTS-CTS: contention
- Data transmission contention-free
- NAV setup cannot work properly when there are collisions
- All packets: RTS, CTS, Data, Ack are subject to collisions
- SIFS < DIFS to increase the priority
- Backoff time: an integer from (0, CW-1), where CW (contention window) is doubled at each retransmission
Routing in Ad Hoc Networks

Types: (n: network size)
- Unicasting: (1, 1) = (source, destination)
- Multicasting: (1, k), 1 < k < n
- Broadcasting: (1, n)
- Geocasting: (1, k in a region)
- Gossip: (n, n)
- Gathering: (k, 1)
- Fusion: a special type of gathering (with simple data processing at intermediate nodes)
Routing in Ad Hoc Networks

Qualitative properties:
- Distributed operation
- Loop-freedom
- Demand-based operation
- Proactive operation
- Security
- Sleep period operation
- Unidirectional link support
Routing in Ad Hoc Networks

Quantitative metrics:
- End-to-end data throughput and delay
- Route acquisition time
- Percentage out-of-order delivery
- Efficiency
Basic Routing Strategies in Internet

Source Routing vs. Distributed Routing

Figure 2: A sample source routing

Figure 3: A sample distributed routing
Classification

- Proactive vs. reactive
 - proactive: continuously evaluate network connectivity
 - reactive: invoke a route determination procedure on-demand.
 - Right balance between proactive and reactive

- Flat vs. hierarchical
Sample Protocols

- Proactive Protocols
 - Destination sequenced distance vector (DSDV)

- Reactive Protocols
 - Dynamic source routing (DSR)
 - Ad hoc on-demand distance vector routing (AODV)
 - Temporally ordered routing algorithms (TORA)
Sample Protocols

- Hybrid:
 - Zone routing
- Hierarchical
 - Cluster-based
 - Connected-dominating-set-based
Proactive: DSDV

- Based on Bellman-Ford routing algorithms
- Enhanced with freedom from loops.
- Enhanced with differentiation of stale routes from new ones by *sequence numbers*.
Reactive

Three steps
- Route discovery
- Data forwarding
- Route maintenance
DSR

- There are no periodic routing advertisement messages (thereby reducing network bandwidth overhead).
- Each host maintains a route cache: source routes that it has learned.
- If a route is not found from route cache, the source attempts to discover one using route discovery.
- Route maintenance monitors the correct operation of a route in use.
DSR Routing (Cont’d.)

A sample DSR route discovery
AODV

- Combination of DSR and DSDV
 - Routing table is constructed on demand.
 - Sequence numbers (issued from different destinations) are used to avoid looping
- The node should respond (ROUTE_REPLY) a request (ROUTE_REQ) if
 - It is the destination node
 - An intermediate node with a route of a destination sequence number no less than that in the request packet.
TORA

- For each destination, a DAG is maintained with destination as the *sink*:
 - Each node has a height metric.
 - A directed link always points to a node with a lower height metric.
- To send a packet, a host forwards the packet to any neighbor with a lower metric.
Proactive: Data Forwarding

- Source routing: centralized at the source
- Distributed routing: decentralized
- Multiple paths
Proactive: Route Maintenance

- Source routing vs. distributed routing.
- Global re-construction vs. local fix
- Single path vs. multiple path
TORA: route maintenance

- **Full reversal**
 - At each iteration each node other than the destination that has no outgoing link reverses the directions of all its incoming links.

- **Partial reversal**
 - Every node u other than the destination keeps a list of its neighboring nodes v that have reversed the direction of the corresponding link (u, v).
 - At each iteration each node u that has no outgoing link reverses the directions of the links $(u; v)$ for all v which do not appear on its list, and empties the list. If no such v exists, node u reverses the directions of all incoming links and empties the list.
TORA: route maintenance
Hybrid: Zone-based Routing

- Trade-offs: network capacity usage in proactive approaches and the long delay in reactive approaches.
- A routing zone (for a host) includes the nodes within a given number of hops.
- Each host maintains routing information only to nodes within its routing zone.
- Information outside the routing zone is obtained through on demand.
Zone-based Routing (Cont’d.)

Figure 5: Zone routing
Hierarchical: Domination-set-based

School bus routing
Graph-theoretic Definition

A set in $G(V, E)$ is dominating if all the nodes in the system are either in the set or neighbors of nodes in the set.
Five-Queen Problem (1850’s)
Desirable Features

- Simple and quick
- Connected dominating set

Figure 6: A simple ad hoc wireless network of five wireless mobile hosts.
Existing Approaches

- Graph theory community:
 - Bounds on the *domination number* (Haynes, Hedetniemi, and Slater, 1998).
 - Special classes of graph for which the domination problem can be solved in polynomial time.
Existing Approaches (Cont’d.)

- **Ad hoc wireless network community:**
 - **Global:** MCDS (Sivakumar, Das, and Bharghavan, 1998).
 - **Quasi-global:** spanning-tree-based (Wan, Alzoubi, and Frieder, 2002).
 - **Quasi-local:** cluster-based (Lin and Gerla, 1999).
 - **Local:** marking process (Wu and Li, 1999).
MCDS (Sivakumar, Das, and Bharghavan, UIUC)

- All nodes are initially colored white.
- The node with the maximum node degree is selected as the root and colored black. All the neighbors of the root are colored gray.
- Select a gray node that has the maximum white neighbors. The gray node is colored black and its white neighbors are marked gray.
- Repeat step (3) until there is no more white node.
MCDS (Cont’d.)

black nodes = CDS (connected dominating set)

Figure 7: MCDS as an approximation of CDS
Spanning-tree-based (Wan, Alzoubi, and Frieder, IIT)

- A spanning tree rooted at ν (selected through an election process) is first constructed.
- Nodes are labeled according to a topological sorting order of the tree.
Spanning-tree-based (Cont’d.)

- Nodes are marked based on their positions in the order starting from root ν.
 - All nodes are white initially.
 - ν is marked black and all nodes are labeled black unless there is a black neighbor.
- Each black node (except root ν) selects a neighbor with the largest label but smaller than its own label and mark it gray.
Spanning-tree-based (Cont’d.)

black nodes = DS
black nodes + gray nodes = CDS

Figure 8: selecting CDS in a spanning tree
Cluster-based (Lee and Gerla, UCLA)

- All nodes are initially white.
- When a white node finds itself having the lowest id among all its white neighbors, it becomes a cluster head and colors itself black.
- All its neighbors join in the cluster and change their colors to gray.
Cluster-based (Cont’d.)

- Repeat steps (1) and (2) until there is no white node left.
- Special gray nodes: gray nodes that have two neighbors in different clusters.
Cluster-based (Cont’d.)

black nodes = DS
black nodes + special gray nodes = CDS

Figure 9: sequential propagation in the cluster-based approach.
Localized Algorithms

- Processors (hosts) only interact with others in a restricted vicinity.
- Each processor performs exceedingly simple tasks (such as maintaining and propagating information *markers*).
- Collectively these processors achieve a desired global objective.
- There is **no sequential propagation** of information.
Marking Process (Wu and Li, 1999)

- A node is marked true if it has two unconnected neighbors.
- A set of marked nodes (gateways nodes) V' form a connected dominating set.
Marking Process (Cont’d.)

Figure 10: A sample ad hoc wireless network
Dominating-set-based Routing

- If the source is not a gateway host, it forwards packets to a source gateway neighbor.
- This source gateway acts as a new source to route packets in the induced graph generated from the connected dominating set.
- Eventually, packets reach a destination gateway, which is either the destination host itself or a gateway of the destination host.
Dominating Set Reduction

- Reduce the size of the dominating set.
- Role of gateway/non-gateway is rotated.
Dominating Set Reduction
(Cont’d.)

\[N[v] = N(v) \cup \{v\} \text{ is a closed neighbor set of } v \]

- **Rule 1:** If \(N[v] \subseteq N[u] \) in \(G \) and \(id(v) < id(u) \), then unmark \(v \).

- **Rule 2:** If \(N(v) \subseteq N(u) \cup N(w) \) in \(G \) and \(id(v) = \min\{id(v), id(u), id(w)\} \), then unmark \(v \).
Dominating Set Reduction
(Cont’d.)

Figure 12: two sample examples

(a) (b)
Example

Figure 13: (a) Dominating set from the marking process (b) Dominating set after dominating set reduction
Directed Networks: dominating node and absorbant node

Figure 15: Dominating and absorbant nodes
Directed Networks (Cont’d.)

Finding a subset that is both dominating and absorbant (Wu, IEEE TPDS 2002).

Figure 16: An absorbant set and a dominating set
Mobility Management

- Update/re-calculation
 - on/off
 - movement
 - recognizing a new link
 - recognizing a broken link
- Localized maintenance (update)
QoS routing

- Wireless link’s bandwidth may be affected by the transmission activities of adjacent links.
- Unlike one-hop network (cellular), one must guarantee the quality of multiple hops in a path.
- Existing links may disappear and new links may be formed as mobile hosts move.
QoS: Signal stability-based adaptive (SSA)

- Each node maintains a signal stability table.
- A receiving node propagates a request if
 - The request is received over a strong link.
 - The request has not been forwarded previously.
- The level of qualify can be lowered at the source if the source fails to receive a reply within a time-out period.
QoS: Ticket-based routing

- Each probing packet carries a number of tickets.
- The number of route-searching packets is confined to avoid blind flooding.
Hierarchical routing protocols

- Hierarchical state routing (HSR)
 - Multi-level clustering
 - A node can be a head at different levels
Hierarchical routing protocols

- Zone-based Routing Protocol (ZRP)
 - Proactive intra-zone and reactive inter-zone.
- Fisheye State Routing Protocol (FSR)
 - A fish’s eye that can capture pixel information with greater accuracy near its eve’s focal point.
 - The frequency of exchanges decreases with an increase in scope.
Geometric Routing

- **GPS-based routing**
 - The space is partitioned into a 2d grid
 - One clusterhead is selected in each grid point.

- **Sparse a graph**
 - **Gabriel graph**: link uv exists iff the open disk with diameter uv contains no other nodes.
 - **RNG** (relative neighborhood graph): link exists if \(d(u,v) \leq d(u,w) \) and \(d(u,v) \leq d(v,w) \).
 - **Yao graph**: For each node \(u \), any \(k (k \geq 6) \) equal-separated rays originated at \(u \) define \(k \) cones. In each cone, choose the closest \(v \) (if any) within the transmitter range of \(u \) and add a directed link \((u,v)\).
Samples

(a) 2D grid. (b) Gabriel graph. (c) RNG graph. (d) Yao graph.
Geometric Routing

- Greedy algorithm
 - Closer to the destination
 - Different greedy: most forwarding progress within radius
- Face routing
 - Route on a face in Gabriel graph
 - Alternate between right-hand and left-hand rule at intersection (of the line connected source and dest.)
- Greedy-Face-Greedy
- GFG on CDS
Sample
Collective Communication

- **Broadcast**: one source and all destinations.
- **Multicast**: one source and many destinations.
Broadcast: Blind Flooding

Redundant transmission may cause contention and collision
Broadcast

- **Static vs. dynamic**
 - Forwarding status determined before or after the broadcast process)

- **Self-pruning vs. neighbor-designating**
 - Forwarding status determined by each node itself or by neighbors.
Broadcast

- Connected-dominating-set-based
 - Only dominating nodes forward the broadcast packet.

- Cluster-based (independent set)
 - Only clusterheads forward the packet, some gateways (that connect two adjacent clusters) are selected to relay the packet.
Broadcast

- Dominant pruning (multipoint relays)
 - Select a subset of 1-hop neighbor to cover all 2-hop neighbors
Broadcast

- A generic rule:
 - Node v has a non-forwarding status if any two neighbors are connected by a path consists of visited nodes and nodes with a higher priorities.
Multicast

- Source-initiated protocols
 - JoinReq and JoinReply
- Receiver-initiated protocols
 - JoinReq and JoinAck
- Tree-based vs. mesh-based
- Soft-state vs. hard-state
Multicast

- Shortest path tree: for a particular multicast
- Core tree: shared tree for all multicast
Multicasting: ODMRP

- On-demand multicast routing protocol
Multicasting: Multicast AODV
Dealing with Mobility

- Node mobility is considered to be undesirable in MANETs using a connection-based model.
- Recovers from and tolerates “bad” effects caused by mobility.
- Nodes are assumed to be relatively stable.
Two Schemes

- **Recovery Scheme**
 - If a routing path is disrupted by node mobility, it can be repaired quickly
 - E.g., route discovery and route repair

- **Tolerant Scheme**
 - Masks the bad effects caused by node mobility
 - E.g., transmission buffer zone and view consistency
Mobility as a Serious Threat

- Mobility threatens localized protocols that use local information to achieve certain global objectives.
- “Bad” decisions occur because of:
 - Asynchronous sampling of local information
 - Delays at various stages of handshake
 - Mobile node movement
Local Information

- 1-hop information
- 2-hop information
- 3-hop information

- k-hop information
 - Discovered via k rounds of Hello exchanges
 - Usually $k = 1, 2, \text{or } 3$

- Neighborhood vs. location information
Time-Space View

- **Snapshot**: a global state in time-space view

Diagram:
- Hello interval
- Time
Applications

- **Energy saving:**
 - **Sleep mode**
 - Connected dominating set (CDS)
 - Wu and Li’s 2-hop neighborhood solution
 - **Adjustable transmission range**
 - Topology control (TC)
 - Li, Hou, Sha’s 1-hop location solution

![Virtual backbone (CDS)](image1)

![Topology control (TC)](image2)
Two Technical Issues

- **Link Availability**
 - How protocols deal with imprecise neighborhood information caused by node mobility and delays

- **Inconsistent Local Views**
 - How each node collects and uses local information in a consistent way
Tolerant Scheme I (link availability)

- A buffer zone is used in existing protocols without having to redesign them.
Sample I (inconsistent local view)

- **Wu and Li’s marking process** (for CDS construction)
 - Node u is marked if there are two unconnected neighbors
 - Node u is unmarked if its neighbor set is covered by several connected marked nodes with higher IDs

(a) w's position at t_0 and t_1

(a) u's decision as an unmarked node at t_1

(a) v's decision as an unmarked node at t_1
Tolerant Scheme II (inconsistent local view)

- Consistent Local View
 - Each view keeps a version by using a timestamp

- Conservative Local View
 - Maintaining a window of multiple views
 - New-view(i) = F(view(i), view(i-1), ...view(i-k))
 where F: \{union, max, min, ...\}