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Abstract— Wireless communication systems have become increasingly
common because of advances in radio and embedded system technologies.
In recent years, a new class of applications that networks these wireless de-
vices together is evolving. A representative of this class that has received
considerable attention from the research community is the wireless sensor
network. Such a sensor networks consist of numerous tetherless devices
that are released into the environment and organize themselves in an ad-
hoc fashion. The goal of the network is to perform a monitoring task, and
knowledge the physical location of the individual nodes is therefore essen-
tial. Not only is this information needed for the sensor network to report the
location where events take place, it also assists in group-querying or rout-
ing traffic to a designated geographic destination and provides information
on physical network coverage. However, equipping every node with a GPS
receiver is not always feasible due to possible obstructions in the path of the
satellite signals or energy limitations in the nodes. In this paper, we present
a novel location discovery approach, which we call AHLoS (Ad-Hoc Lo-
calization System), for wireless sensor networks. Only a small fraction of
the nodes start with knowledge of their location and the others dynamically
estimate their positions via a distributed algorithm. Furthermore, our algo-
rithm utilizes a new iterative multi-lateration technique, such that all nodes
that meet some simple connectivity requirements are eventually able to de-
termine their position. We have analyzed the operation of AHLoS, designed
a new testbed of wireless sensor nodes and verified the behavior of our dis-
tributed localization technique. The results obtained from the testbed are
then incorporated in a simulation platform to perform scalability tests and
evaluate the effects of error propagation.
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I. I NTRODUCTION

A. Sensor Networks and Location Discovery

Nowadays, wireless devices enjoy widespread use in many
different settings and the spectrum of applications is rapidly
expanding. Ubiquitous connectivity becomes possible by net-
working these devices together. The exciting new field ofwire-
less sensor networksbreaks away from the traditional end-to-
end communication of voice and data systems, and relies on
distributed collaborate information exchange. Myriads of tiny
embedded devices, equipped with sensing capabilities, together
form an ad-hoc network. Information exchange among col-
laborating sensors becomes the dominant form of communica-
tion, and the network essentially behaves as a large, distributed
computation machine. Applications featuring such networked
devices are getting increasingly prevalent, ranging from envi-
ronmental and natural habitat monitoring, to home networking,
medical applications and smart battlefields. For example, a sen-
sor node can signal a machine malfunction to the control center
in a factory, or alternatively warn about smoke on a remote for-
est hill indicating that a dangerous fire is about to start. Other
sensor nodes can be designed to detect the ground vibrations

generated by the silent footsteps of a cat burglar and trigger an
alarm.

Typically, the question that immediately following the actual
detection of the events, is:where? Where are the abnormal vi-
brations detected, where is the fire, which house is about to be
robbed? To answer this question, a sensor node needs to possess
knowledge of its physical location in space. Location awareness
is not only needed when reporting the geographical origin of
events, but is critical in many other aspects of sensor networks
as well. It can assist in routing in large scale ad-hoc networks[6]
[7] or be used to study the coverage properties of the network.
Furthermore, queries can now be extended to a group of nodes
located in a specific area. We can envision another powerful
use in a tactical scenario context, where a sensor network is de-
signed to track the movements of targets inside its perimeter.
Based on the knowledge of their own location, a group of nodes
can discover the direction of the target movement and wake up
other nodes (which are in sleep mode to conserve power) to con-
tinue the tracking task. Knowledge of location also drives con-
text aware services[5]. In a ’smart kindergarten’, localization
techniques can keep track of the toys in an effort to monitor
the children’s progress. Other future uses may include naviga-
tion help for the blind, keeping track of equipment in hospitals,
and many more. Although the above list is by no means com-
plete, location awareness of a node is an essential requirement
for many applications of sensor networks. The incorporation
this location awareness in wireless sensor networks is far from
a trivial task. Since the network can consist of a large number
of nodes that are deployed in an ad-hoc fashion, manually pro-
gramming each node with its geographic information is impossi-
ble. Furthermore, any dynamic technique must take into account
the low-power constraints that govern every aspect of sensor
networks. Indeed, unintrusive operation in their environment
requires the node to be tetherless and to have small footprint.
It therefore has to operate on small batteries. In most applica-
tion scenarios, regular maintenance (and battery recharging) is
virtually impossible, such that energy efficiency becomes a crit-
ical requirement for these nodes. Any technique for distributed
location resolution therefore has to exhibit power awareness as
well. This restriction is exactly what inhibits us from using the
obvious solution of incorporating a Global Positioning System
(GPS) receiver in every node. The objections against this option
can be summarized as follows.
� As mentioned before, the power consumption of GPS is sub-
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stantial. It directly affects the battery lifetime of the individual
nodes and thus the overall behavior of the network.
� GPS requires line-of-sight signal reception from the GPS
satellites and therefore does not work in the presence of dense
vegetation, buildings or other obstacles.
� Also the cost factor of GPS can become an issue when large
numbers of nodes are to be produced.
We therefore need another, more efficient alternative to provide
dynamic location discovery in ad-hoc sensor networks, avoiding
the drawbacks of GPS. This issue is exactly the one we will
tackle in this paper.

Fig. 1. WINS Sensor Node from RSC

B. Our Work

We propose a new distributed technique that only requires a
limited fraction of the nodes to know their exact location (ei-
ther through GPS or manual configuration) and that neverthe-
less can attain network-wide fine-grain location awareness. Our
technique, which we call AHLoS (Ad-Hoc Localization Sys-
tem), relieves the drawbacks of GPS as only a limited number
of nodes suffer from the associated overhead. AHLoS enables
other nodes to dynamically discover their own location, based
on those few nodes that initially know their geographic posi-
tion, essentially using them in the same way as the satellites in
the GPS system. The main difference with GPS is that loca-
tion information is gradually being distributed into the ad-hoc
network as nodes compute their locations. This increases the
points of reference that nodes can use to infer their locations.
The location discovery of a node can be viewed as a two phase
process. First, the distance between that node and those with a
know position has to be estimated. Second, these distance esti-
mates together with the known positions are combined to pro-
vide an approximate location of the unknown node.

The first phase, distance estimation, is known asranging.
Since almost all ranging techniques rely on signal propagation
characteristics, they are susceptible to external factors such as
interference, multipath effects and changes in temperature and
humidity. These physical effects are difficult to predict and de-
pend greatly the actual operation environment. It is therefore
critical to characterize the behavior of different ranging alter-
natives experimentally in order to determine their usefulness in
sensor networks. We have performed an elaborate comparison
of two promising ranging techniques: one based on received RF

signal strength and the other on ultrasound. Our experiments
of distance discovery with RF signal strength are conducted on
the the WINS wireless sensor nodes [13] (figure 1) developed
by the Rockwell Science Center (RSC). To perform our eval-
uation of the ultrasound technique, we have designed and im-
plemented a testbed of new ultrasound-equipped sensor nodes,
calledMedusa (from Greek mythology - a monster with many
heads) nodes (figure 2). As mentioned before, the propagation
characteristics for both RF and ultrasound are dependent on the
environment and our ranging technique has to be robust againt
these variations. We therefore include in AHLoS the provision
to dynamically estimate the propagation characteristics on the
fly as they occur in the actual deployment environment.

The second phase in the location estimation is combining the
range measurements into a new location estimate. We advocate
a distributed algorithm, which we show to be more power ef-
ficient than a centralized solution. Furthermore, our approach
is based on an iterative process, where increasingly more nodes
are able to resolve their location. Our new technique, which we
call iterative multilateration enables us to limit the number of
original nodes with location information to an absolute mini-
mum and increases the robustness in the presence of unavoid-
able ranging errors. We have tested our entire AHLoS location
discovery scheme on a testbed comprised of the first generation
of Medusa nodes and we are able to demonstrate the ability to
estimate node locations in an ad-hoc setting with a few centime-
ters accuracy. We also present the integration of AHLoS with an
ad-hoc routing protocol and we currenlty use the results of our
testbed to study the effects of error propagation as the network
scales.

Fig. 2. Medusa experimental node

C. Paper Organization

We start off with some background on localization and survey
the related works in the next section. In section III we present
our research methodology and examine the tradeoffs between
the two ranging solutions we have evaluated. In section IV,
we present theiterative multilateration algorithm. The con-
vergence of this algorithm depends on the network connectiv-
ity and the availability of beacon nodes, which is analyzed in
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section V. In section VI we describe our testbed setup, experi-
mentation and power characterization of theMedusa nodes. In
section VII, we examine the tradeoffs between centralized and
distributed approaches. Finally, section VIII outlines our plans
for future work and concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Background

As we have mentioned in the introduction, any existing loca-
tion discovery approach consists of two basic phases: (1) dis-
tance (or angle) estimation and (2) distance (or angle) combin-
ing. Several methods for estimating the distance between two
nodes (first phase) exist. A detailed discussion of these methods
can be found in [23].
� Received Signal Strength Indicator (RSSI)techniques mea-
sure the power of the signal at the receiver. Based on the known
transmit power, the effective propagation loss can be calculated.
Theoretical models allow us to translate this loss into a distance
estimate. This method has been used mainly for RF signals.
� Time based methods (ToA,TDoA)record the time-of-arrival
(ToA) or time-difference-of-arrival (TDoA). The propagation
time can directly be translated in a distance, based on the known
propagation speed. These methods can be applied to many dif-
ferent signals, such as RF, acoustic, infrared and ultrasound
ones.
� Angle -of -Arrival (AoA) based systems strictly speaking do
not measure distance. Instead they estimate the direction of the
received signal and use simple geometric relationships to calcu-
late node positions.
We evaluate both received signal strength and time based ap-
proaches for our localization technique (section III ). Several
alternatives also exist for the second phase of combining the dis-
tance measurements into actual node locations.
� The most basic and intuitive method is called hyperbolic tri-
lateration. It locates a node by calculating the intersection of 3
circles (figure 3a).
� Triangulation is used when the direction of the node instead of
the distance is estimated, as in AoA systems. The node positions
are calculated in this case by using the trigonometry laws of
sines and cosines (figure 3c).
� The third method is Maximum Likelihood (ML) estimation
(figure 3b). It estimates the position of a node such that the dif-
ferences between the measured distance and the distance from
the estimated position to the known nodes, are minimized. This
method is directly scalable to more nodes with known locations
and also can incorporate weights to account for differences in
distance estimate reliabilities. We have therefore chosen this
technique as the basis of AHLoS.

B. Related Work

Most existing systems that perform localization are based on
the existence of a fixed infrastructure. Since such infrastruc-
ture is absent in sensor networks, these techniques are not di-
rectly applicable here. The basic principles nevertheless can
provide useful insights. We therefore first discuss some of the
infrastructure-based systems. In the past few decades, a lot of
systems have been based on RF signals. In the 1970s, these sig-
nals were used in the automatic vehicle location (AVL) system,
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which determines the position of police cars and military ground
transportation. This system consists of a set of stationary base
stations as observation points and uses ToA and TDoA tech-
niques to generate distance estimates. The vehicle position is
derived through multilaterations, using Taylor Series Expansion
to linearize the optimization problem [8][9]. Similar approaches
were also found in military applications for determining the po-
sition of airplanes. In the 1990s, RF based localization has re-
ceived attention in the cellular world as well. At that point, the
U.S Federal Communications Commission (FCC) required that
all wireless service providers give location information to the
Emergency 911 services. Cellular base stations are locate mo-
bile telephone users within a cell [10][11]. Distance estimates
are generated with TDoA, since this technique has the advan-
tage that the handset only needs to reflect the signal back to the
basestation and therefore does not require additional hardware.
Location information is calculated using least square methods.
For this system FCC requires a 125 meter RMS accuracy in 67
percent of the time. In 1993, the well-known GPS [?] sys-
tem was deployed, which is based on the NAVSTAR satellites
constellation (24 satellites). A similar system, called LORAN
[32], uses ground based beacons. An RF based system to track
the location of users within a building is the RADAR system
[1]. It uses RF signal strength measurements from three fixed
base stations. These measurements are sent to a central server
to translate them into distances. This translation is based on sig-
nal strength maps that were generated in advance for a number
of sites inside the building. Thanks to this process, the effects
of shadowing can be counteracted, at the cost of a considerable
preplanning effort.

The Cricket location support system [5] is also designed for
indoor localization. It provides support for context aware ap-
plications and is low cost. Unlike all of the systems discussed
so far, it uses ultrasound instead of RF signals. Fixed beacons
inside the building distribute geographic information to the lis-
tener nodes. Cricket can achieve a granularity of 4 by 4 feet.
A finer granularity is obtained by the active badge [25] system,
which uses infrared. The next development in this area on in-



ACCEPTED FOR PUBLICATION TO MOBICOM 2001 4

door localization is BAT [33] [34]. A BAT node carries an ul-
trasound transmitter of which the signals are picked up by an
array of receivers mounted on the ceiling. The location of a
BAT can be calculated via multilateration up to an accuracy of a
few centimeters. An RF basestation coordinates the ultrasound
transmissions such that interference from nearby transmitters is
avoided. This system relies heavily on a centralized infrastruc-
ture.

Fewer localization systems for ad-hoc networks exist, com-
pared to all the infrastructure based ones that were discussed
so far. A first approach is presented in [24], where location
of a node is given as a centroid. This centroid is generated by
counting beacon signals that are sent by a set of beacons prep-
positioned in a mesh pattern. A second approach is taken in
the Picoradio project at UC Berkeley. It provides a geolocation
scheme for an indoor environment [12], based on RF received
signal strength measurements and pre-calculated signal strength
maps.

Our system, AHLoS, also belong to the ad-hoc class. It uses
RF and ultrasound transmissions similar to the Cricket and Bat
Systems, but with some key differences. The operation does
not rely on an infrastructure setting. Instead it is a fully ad-hoc
system with distributed localization algorithms running at every
node. From a power awareness point of view, it also has the
important property that all nodes play an equal role in the lo-
cation discovery process. Our technique provides fine-grained
localization with an accuracy of a few centimeters, similar to
the BAT system but does not require infrastructure support. Un-
like all the systems discussed so far, we provision for a dynamic
on-line estimation of the ultrasound propagation characteristics.
This renders our approach extremely robust even in the presence
changing environments.

For our system, we have considered two options of measuring
distances. The first one is based on RF received signal strength
(RSSI), and the second one looks at the arrival time of ultra-
sound signals. In the next subsection, we present a detailed
study of the propagation characteristics of both options. The
results were obtained via actual field experiments on the WINS
(for RF RSSI) andMedusa (for ultrasound TDoA) nodes.

III. R ESEARCHMETHODOLOGY

The fundamental building block of most localization tech-
niques relies on the ability to measure distances to a known ref-
erence point. In an ad-hoc setting, there is no fixed point of
reference that one can use forranging. Furthermore, for pur-
poses of robustness and power conservation, one would like all
the nodes in the network to play an equal role in the location dis-
covery process. As such, for our purposes we defineranging

as the ability of adjacent nodes, (that are within communication
and sensing range with each other) to estimate their separation
distance. As a first step, we motivate our approach by first char-
acterizing theranging capabilities of our two target systems:
RF signal strength measurement using the WINS nodes and ul-
trasound measurements using theMedusa nodes. We evaluate
the tradeoffs of the two solution approaches in terms of their
ranging accuracy.

A. Ranging Characterization

A.1 Received Signal Strength

The signal strength method uses the relationship of RF sig-
nal attenuation as a function of distance. From this relationship
a mathematical propagation model can be derived . From de-
tailed studies of the RF signal propagation characteristics[19],
it is well known that the propagation characteristics of radio
signals can vary with changes in the surrounding environment
(weather changes, urban / rural and indoor / outdoor settings).
To evaluate signal strength measurements we conducted some
experiments with the target system of interest the WINS sensor
nodes [13]. WINS have a 200MHz StrongARM 1100 processor,
1MB Flash, 128KB RAM and the Hummingbird digital cordless
telephony (DECT) radio chipset that can transmit at 15 distinct
power levels ranging from -9.3 to 15.6 dBm (0.12 to 36.31 mW).
The WINS nodes also have an omni-directional antenna hence
the radio signal is uniformly transmitted with the same power in
all directions around the node. These nodes can carry a variety
of sensors such as seismic and acoustic sensors. As part of the
radio architecture the WINS nodes provide a pair of RSSI (Re-
ceived Signal Strength Indicators) resisters. RSSI registers are
a standard feature in many wireless network cards [26]. Using
these registers we conducted a set of measurements in order to
derive an appropriate model for ranging.

We also attempted measurements in several different settings
( inside our lab, in the parking lot and between buildings). Un-
fortunately, in these settings we could not obtain a consistent
model of the signal attenuation as a function of distance. This
is mainly attributed to the multipath fading and shadowing ef-
fects. Another inconsistency we noted with RSSI is related to
the height of the radio antenna. At ground level, the radio range
at the maximum transmit power level is around 30m while when
we placed one of the nodes at a height of 1.5m the usable trans-
mission range increased to around 100m. Because of these in-
consistencies, we were only able to derive a model for an ide-
alized setting; in a football field with all the nodes positioned
at ground level. For this setup we developed a model based on
the RSSI register readings at different transmission power levels
and different node separations.

A model (equation 1)is derived by obtaining a least square fit
for each power level.PRSSI is the RSSI register reading and
r is the distance between two nodes. ParametersX andn are
constants that can be derived as functions of distancer for each
power level. Averaged measurements and the corresponding de-
rived models are shown in figures 4 and 5. Table I gives theX

andn parameters for each case.

PRSSI =
X

rn
(1)

Assuming that all the nodes are placed on a flat plane, signal
strength ranging can provide a distance estimate with an accu-
racy of a few meters. This experiment has shown that the use
of radio signal strength can be very unpredictable. A problem
with the RSSI approach is that radios in sensor nodes are low
cost ones without precise well-calibrated components, such as
the DECT radios in Rockwell’s nodes or the emerging Blue-
tooth radios. As a result it is not unusual for different nodes
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Fig. 4. Radio Signal Strength Radio Characterization using WINS nodes(Levels
3,10)
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Fig. 5. Radio Signal Strength Radio Characterization using WINS nodes(levels
7,13

to exhibit significant variation in actual transmit power for the
same transmit power level setting, or in the RSSI measured for
the same actual received signal strength. Differences of several
dBs are often seen. While these variations are acceptable for us-
ing transmit power adaptation and RSSI measurements for link
layer protocols, they create problems for localization. A poten-
tial solution would be to calibrate each node against a reference
node prior to deployment, and store gain factors in non-volatile
storage so that the run-time RSSI measurements may be normal-
ized to a common scale.

From our experience we concluded that albeit the signal
strength method may be a suitable candidate for determining

TABLE I

RSSI RANGING MODEL PARAMETERS FORWINS NODES

Power Level dBm mW X n

3 -5.2 0.302 19509 0.148328
7 2.5 1.78 21778.338 0.178186
10 10 10 24449.78 0.1926
13 14.4 27.54 25753.63 0.198641

node proximity (as in [24]), it would be very hard to use for
fine grained localization especially in an ad-hoc setup. In an in-
door or urban setting, one can use this received signal strength
method by constructing signal strength maps as in [1] and [12].
This approach however, does require some preplanning so it is
not really ad-hoc. To overcome the problems caused by the sig-
nal strength amplitude variations of RF reception, we adopt a
time difference of arrival(TDoA) approach that makes use of
the time difference between simultaneously transmitted radio
and ultrasound pulses to measure distances. We evaluate this
approach using theMedusa nodes we have build. Next, we
describe theMedusa node architecture.

B. Medusa Node Architecture

TheMedusanode design 2 is based on the AVR 8535 proces-
sor [14] which carries 8KB of flash memory, 512 bytes SRAM
and 512 bytes of EEPROM memory. The radio we use is a
DR3000 module from RF Monolithics[15]. The ultrasound cir-
cuitry consists of five pairs of 40KHz transceivers arranged in a
pentagonal pattern at the center of the board. Each ultrasound
transceiver is supported by a pair of solid core wires at an ap-
proximate height of 15 cm above the printed circuit board. We
found this very convenient setup for experimentation since it al-
lows the transceivers to be rotated in different directions. The
first generation board is 3” x 4” and it is based on full size com-
ponents and it is powered by a 9V battery. We expect that future
generations will have surface mount components and a smaller
footprint. The current version of the board is intended as a re-
search and experimentation platform with several test points and
full size components, hence the larger footprint. TheMedusa

firmware is based on an event driven firmware implementation
[16]. It includes a variable size framing scheme, 4-6 bit encod-
ing [17] and 12 bit CRC. The code forranging is integrated in
the ad-hoc routing protocol described in section VI-A.

B.1 TDoA using RF and Ultrasound

The ranging experiment we have performed with the
Medusa nodes uses TDoA at the receiver of simultaneously
transmitted radio and ultrasound signals, figure 6. Our choice is
motivated by the fact that time difference methods are more tol-
erant to changing environments than amplitude based methods
since the received amplitude can be affected by many unpre-
dictable external factors.

Transmitter Receiver

Distance = (T2-T1) x S

T1

T2

Radio Signal

Ultrasound Pulse

Distance

Fig. 6. Distance measurement using ultrasound and radio signals

The ultrasound range on theMedusa nodes is about 3 meters
(approximately 11-12 feet). The ultrasound pulses can be de-
tected at larger distances (up to 12meters), but cannot provide an
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accurate distance measurement due to the loss of some of pulses.
We found this to be a convenient range for performing multihop
experiments in our lab but longer ranges are also possible. The
Polaroid 6500 ultrasonic ranging module [18] for example has a
range of more than 10 meters. Other systems have even greater
ranges but these impose higher cost and power premiums. A
detailed description of theMedusa architecture is provided in
section IV. The time between the radio and ultrasound transmis-
sions is measured using a timer routine running on the micro-
controller. By exploiting the linear relationship of sound propa-
gation as a function of distance, the time difference between the
reception of simultaneously transmitted radio an ultrasound sig-
nals provide a good approximation of range. Using these rela-
tionships we characterize TDoA ranging of theMedusa nodes
by placing them on the floor at different separations. The re-
sults from this characterization are shown in figure 7. Thex

axis represents distance in centimeters and they axis represent
the microcontroller timer counter value.
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Fig. 7. Ulrasound Ranging Characterization

The speed of sound is characterized in terms of the microcon-
troller timer ticks. To estimate the speed to sound as a function
of microcontroller time, we perform a best line fit using linear
regression (equation 2).s is the speed of sound in timer ticks,
d is the estimated distance between 2 nodes andk is a constant.
For this models = 0:4485 andk = 21:485831.

t = sd+ k (2)

This ranging system can provide an accuracy of 2 centime-
ters for node separations under 3 meters. Another convenient
property of ultrasound is that most of the multipath effects can
be detected and filtered out. Since the variance between multi-
ple measurements of the same separation distance is very small,
measurement inconsistencies due to multipath effects can be
easily detected and filtered out. One drawback of thisranging

system that the ultrasound signal can be stopped by obstacles. In
the next subsection we proceed with a comparison of between
ultrasound and signal strength ranging.

C. Signal Strength vs. Ultrasound Ranging

On comparing the 2 ranging alternatives, we found that ul-
trasound is more reliable than signal strength. While signal

strength is greatly affected by amplitude variations of the re-
ceived signal, ultrasoundranging only depends on the time
difference, a much more robust metric. In both cases, the sig-
nal propagation characteristics may change with variations in
the surrounding environment. To minimize these effects, our
proposed solution dynamically estimates the signal propaga-
tion characteristics every time sufficient location information is
available. This ensures that AHLoS will operate in many di-
verse environments without prior calibration. If the sensors are
deployed over a wide area, the signal propagation characteris-
tics may be vary across the region of interest. By calculating
the propagation characteristics locally we can achieve better ac-
curacy in the sensor location estimates. Table II summarizes
the comparison between signal strength and ultrasound ranging.
Based on our based on the outcome of our ranging characteri-
zations, we select TDoA as our primary ranging method. We
therefore continue our discussion of localization using the ul-
trasound TDoA method and theMedusa nodes as our ranging
platform. One possible solution that we are considering for our
future work is to combine signal strength and ultrasound meth-
ods. Since the signal strength method has the same effective
range as the radio communication range, it can be used to pro-
vide a location indication in places where the network is sparse.
The ultrasound approach will provide fine grained localization
in denser parts of the networks. For this configuration, we plan
to have theMedusa boards act aslocation coprocessorsfor the
WINS nodes.

IV. L OCALIZATION ALGORITHMS

Given aranging technology that estimates node separation
we can now describe theiterative multilateration algorithm.
The algorithm assumes a network of nodes where a small per-
centage of the nodes are aware of their positions either through
manual configuration or using GPS. We define these nodes as
beacon nodes. These nodes broadcast their location informa-
tion to their neighbors and when sufficient information becomes
available they can also estimate their locations. The rest of the
nodes are not aware of their locations and they are defined as
unknown. The main objective of theiterative multilateration
algorithm is to enable as many of the unknown nodes to esti-
mate their locations. Anunknown node can estimate its po-
sition by one of the multilateration processes described below.
Once a node estimates its position it can become abeacon and
broadcast its location information to the rest of the nodes, thus
enabling more and more nodes to calculate their locations. The
localization process is complete when all theunknown nodes
that meet a certain set of criteria can compute their locations.
The location discovery has to meet following challenges:

� Theranging estimates and the position estimates at the bea-
con nodes will contain errors. Besides considering these errors
when calculating a node’s position, one must also ensure that
the errors will not propagate throughout the network.
� In some cases , there may not be enough beacon nodes to
perform a successful multilateration. In this case we apply a
more complexcollaborative multilaterationprocedure.
� It must operate in a distributed manner that is fault tolerant,
and can handle local variations in the propagation conditions.



ACCEPTED FOR PUBLICATION TO MOBICOM 2001 7

TABLE II

A COMPARISON OFRSSIAND ULTRASOUND RANGING

Property RSSI Ultrasound
Range same as radio communication range3 meters (up to a few 10s of meters)
Accuracy O(m), 2-4m for WINS O(cm), 2cm for Medusa
Measurement Reliability hard to predict, multipath and shad-

owing
multipath mostly predictable,time
is a more robust metric

Hardware Requirements RF signal stregth must be available
to CPU

ultrasound transducers and ampli-
fier circuitry

Additional Power Requirements none tx and rx signal amplification
Challenges large variances in RSSI readings,

multipath, shadowing, fading ef-
fects

interference, obstacles, multipath

In the following subsections we first define the two primary
components and later on using these components we define iter-
ative multilateration.

A. Atomic Multilateration

Consider the case of a single multilateration in figure 8a. The
error distance for the observation of theith beacon node can be
expressed as the difference between theranging and the Eu-
clidian distance between a pair of adjacent nodes (equation 3).
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Fig. 8. Multilateration examples

fi(x0; y0; s) = sti0 �
p
(xi � x0)� (yi � y0) (3)

Given that an adequate number of beacon nodes are available,
a Maximum Likelihood estimate of the node’s position can be
obtained by taking the minimum mean square estimate (MMSE)
of a system off(i) equations (equation 4). Term� represents
the weight applied to eachf(i). In this basic case we solve for
all �i = 1.

F (x0; y0; s) =

2NX
i=1

�2i f(i)
2 (4)

This overdetermined system of equations can be linearized so
that a matrix solution can be used. by expanding equation (1)
and rearranging terms we get

�x2i � y2i = (x20 + y20) + x0(�2xi) + y0(�2yi)� s2t2i0 (5)

for k such equations we can eliminate the(x20 + y20) term by
subtracting the last equation from the rest.

�x2i � y2i + x2k + y2k = 2xo(xk � xi)

+2y0(2yk � yi) + s2(tik
2 � ti0

2)
(6)

this system of equations has the formy = bX and can be
solved using the matrix solution for MMSE [28] given byb =
(XTX)�1XTy

where

X =

2
6664

2(xk � x1) 2(yk � y1) tk0
2 � tk1

2

2(xk � x2) 2(yk � y2) tk0
2 � tk2

2

...
...

...
2(xk � xk�1) 2(yk � yk�1) tk0

2 � tk(k�1)
2)

3
7775

Y =

2
6664
�x21 � y21 + x2k + y2k
�x22 � y22 + x2k + y2k

...
x2k�1 � y2k�1 + x2k + y2k

3
7775

and

b =

2
4 x0

y0
s2

3
5

We note that here we can have 2 alternative formulations.
By moving thesti0 term to the left hand side in equation 5 we
assume that the ultrasound propagation parameters are known.
This solution requires only 3 beacon nodes. The solution pro-
vided here is for the case where 4 or morebeacon nodes are
available. In this case the ultrasound propagation characteristics
can be estimated dynamically.

Definition 1: For the atomic multilateration to take place it is
necessary and sufficient that the node is within 1 hop distance
from at least 3beacon nodes. To estimate the speed to of sound
locally, 4 or more beacons are required.
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B. Collaborative Multilateration

Since we consider an ad-hoc deployment, often the conditions
for atomic multilateration may not be met; i.e anunknown node
may never have 3 neighboringbeacon nodes therefore it will not
be able to estimate its position usingatomic multilateration. If
this occurs, a node may attempt to estimate its position by mak-
ing use of location information over multiple hops. If sufficient
information is available to form an overconstrained system of
equations with a unique solution set, a node can estimate its
position by solving a set of simultaneous quatratic equations.
This calculation will yield a position estimate for two or more
unknown nodes. We refer to this process ascollaborative mul-
tilateration. Figure 8b illustrates the most basic case for which
collaborative multilaterationcan be used. Nodes 2 and 4 are
unknown nodes, while nodes 1,3,5,6 arebeacon nodes. Since
both 2 and 4 have degreed = 3 and all the other nodes are
beacons an overdetermined system of equations with a unique
solution set can be formed. More formally, collaborative mul-
tilateration can be stated as follows: Consider the ad-hoc net-
work to be a connected undirected graphG = (N;E) consist-
ing of jN j = n nodes and a setE of n � 1 or more edges. The
beacon nodes are denoted by a setB whereB 2 G and the set
of unknown nodes is denoted byU whereU 2 G. Our goal is
to solve for
xu; yu 8u 2 U by minimizing

f(xu; yu) = Dij �
q
(xi � xj)2 + (yi � yj)2 (7)

for all participating node pairsi; j and all unknown nodes U
Subject to:
� xb; yb 8b 2 B,
� each participating node having degreed � 3 with at least
3 neighbors that are eitherbeacons or participating nodes. In
figure 8b if collaborative multilateration starts at node 2, node
2 must have at least 3 participating neighbors. Nodes 1,3 are
beacons therefore they are participating. Node 4 is unknown but
has 2 beacons 5 and 6. Node 4 is also connected to node 2 thus
making both of them participating nodes.

In this formulation, the nodes participating incollaborative
multilaterationis a subgraph ofG, for which an equation of the
form of 7 can be formed for each edgeE in the participating
node set. Again, in figure 8b, we have 5 edges thus a set of 5
equations can be obtained. In some cases, a system ofn equa-
tions andn unknowns may have more than one solution. In
the network in figure 8c for example, set of 4 non-linear equa-
tions and 4 unknowns can be obtained. We can easily observe
however, that nodeX can have 2 possible positions that would
satisfy this system therefore the solution is not unique and node
X is not aparticipatingnode. These systems of non-linear equa-
tions can be solved with optimization methods such as gradient
descend [30] and simulated annealing [31].

Definition 2: A node can participate in a collaborative multi-
lateration if it is abeacon or it has at least 3 neighbors which are
eitherbeacon nodes or they haveunknown locations but they
have at least 3 participating neighbors.
The algorithm in figure 9 illustrates how a node can determine
whether it can initiatecollaborative multilateration. The param-

boolean isCollaborative(node, isInitiator)
if isInitiator==true limit  3
elselimit  3
count beaconCount(node)
if count� limit return true
for eachunknown neighbor i not previously visited
if isCollaborative(i, node, false) count++
if count == limit return true

return false

Fig. 9. Algorithm for checking the feasibility for collaborative multilateration

eternodedenotes the node id from where the search for a collab-
orative multilateration begins.isInitiator is a boolean variable
that is set totrue if the node was the initiator of the process and
falseotherwise. This is used to set thelimit flag that drives the
recursion. This algorithm is used in the next subsection to study
the contribution of the collaborative multilateration algorithm in
the iterative multilateration process (figure 11).

C. Iterative Multilateration

Theiterative multilateration algorithm usesatomic andcol-
laborative multilaterationas building blocks to estimate node
locations over an ad-hoc network. This algorithm is fully dis-
tributed and can run on each individual node in the network.
Alternatively, theiterative multilateration algorithm can run
at a singe central node or a set of cluster head nodes, if the net-
work is cluster based. In any scenario, the computation takes
place in a distributed manner. When sufficient location infor-
mation becomes available at a node, a position estimate can be
computed. Once a location estimated is computed, the node be-
comes a beacon. Initially, each node will attempt to estimate
its position usingatomic multilateration. If the conditions for
atomic multilaterationare not met for a certain time threshold, a
node will try to determine if enough information is available in
its immediate neighborhood forcollaborative multilateration. If
the node can obtain all the information needed forcollaborative
multilateration, it will either calculate the node position esti-
mates locally, if enough computation power is available, it it will
send the information to a remote node that can perform the com-
putation and send back the results. Sincecollaborative multilat-
eration is computationally very expensive compared toatomic
multilateration, the iterative multilateration tries to minimize
its use. Figure 10 provides a pseudocode listing for iterative
multilateration. Since at a central location all the information
is known, always start a multilateration at theunknown node
with the maximum number of beacons to obtain better accuracy
and faster convergence.

Collaborative multilateration can help in situations where the
percentage of beacons is low. This effect is shown in figure 11.
This scenario considers a sensor field of 100 by 100 and sens-
ing range of 10 and two network sizes of 200 and 300 nodes.
As shown in the figure, at small percentage ofbeacons, the
percentage of node locations that can be resolved is substan-
tially increased with collaborative multilateration. This result
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boolean iterativeMultilateration(G)
(MaxBeaconNode, BeaconCount) unknown

node with most beacons
while BeaconCount� 3
setBeacon(MaxBeaconNode)
(MaxBeaconNode, BeaconCount) unknown

node with most beacons
while isCollaborative(MaxBeaconNode, -1, true)
set all nodes in collaborative set as beacons
(MaxBeaconNode, BeaconCount) unknown

node with most beacons
while BeaconCount� 3
setBeacon(MaxBeaconNode)
(MaxBeaconNode, BeaconCount) unknown

node with most beacons

Fig. 10. Iterative Multilateration Algorithm as it runs from a centralized node

also shows how network density is related to the localization
process. In the 300 node network, more node locations can be
estimated than in the 200 node network with the same percent-
age of beacons. This is due to the higher degree of connectivity.
The effects of node and beacon placement on the localization
process is studied in more detail in section V

V. NODE AND BEACON PLACEMENT

The success of the location discovery algorithm depends on
network connectivity and beacon placement. In this section, we
first conduct a probabilistic analysis of to determine how the
connectivity requirements can be met is nodes are to be uni-
formly deployed in a field. Based on these results, in the second
part of this section we carry out a statistical analysis to get an in-
dication on the percentage of beacons that need to be deployed.
When considering node deployment, the main metric of inter-
est is the probability with which any node in the network has a
degree of 3 or more, assuming that sensor nodes are uniformly
distributed over the area of the sensor field. In a network ofN

nodes, the probabilityP (d) of a node having degreed is given
by the binomial distribution in equation 8 and the probability
PR being in transmission range.

P (d) = P d
R:(1� PR)

N�d�1:

�
N � 1

d

�
(8)

PR =
�R2

L2
(9)

For large values ofN tending to infinity, the above binomial
distribution converges to a Poisson distribution. When taking
into account that� = N:PR we get equation 10, the probability
of a node have degree of three or more can be calculated. In
terms of�, an indication of the number of nodes per unit area to
achieve a certain densities can be calculated. Table III shows the
results for different values of�. The fourth column in the table
shows the number of nodes (with range 10) that are needed to

achieve the specified value of� using a uniform deployment in
a field of 100 by 100. The probability of a node having a degree
of d � n can be calculated as in equation 11.

P (d) =
�d

d!
:e�� (10)

P (d � n) = 1�

n�1X
i=0

P (i) (11)

TABLE III

PROBABILITY OF NODE DEGREE FOR DIFFERENT� VALUES

� P(d � 3) P(d � 4) nodes/10,000m2

2 0.323324 0.142877 39
4 0.761897 0.56653 78
6 0.938031 0.848796 117
8 0.986246 0.95762 157
10 0.997231 0.989664 196
12 0.999478 0.997708 235
14 0.999906 0.999526 274
16 0.999984 0.999907 314
18 0.999997 0.999982 353
20 1 0.999997 392
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Fig. 12. Connectivity result for a 100 x 100 field and sensor range 10

Figure 12 shows the connectivity results for an area measur-
ing 100 by 100 with node sensing range of 10. The probabilities
for nodes having 0,1 and 2 neighbors are also shown in this fig-
ure.

In addition to node connectivity, the next important aspect is
to determine the percentage beacons required to assist the con-
vergence of the localization algorithm. The feasibility of local-
ization is determined this by statistical analysis. In a sensor field
with dimensions 100 x 100, sensors with sensing range of 10 are
deployed. For this setup, we report the percentage of nodes that
estimate their locations while varying the percentage of nodes
and beacons. The results shown in figure 13 show are averages
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Fig. 11. Effect of collaborative multilateration top, 300 nodes, bottom 200 nodes

over 100 simulations. The figure shows that the percentage of
beacons required to complete the iterative multilateration pro-
cess decreases as with increasing beacon densities. Also as the
network density increases, the transitions in the required num-
ber of beacons become much sharper since the addition of a few
more beacon nodes reinforces the progress of the iterative mul-
tilateration algorithm.
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Fig. 13. Beacon Requirements for different node densities

VI. EXPERIMENTATION

Our experimental testbed consists of 9Medusa nodes 2 and
one Pentium II 300MHz PC. OneMedusa node is attached to
the PC and acts as a gateway for the rest of the nodes. The PC
runs the localization algorithms presented in IV. Some of the
nodes are programmed with locations so they can act asbeacons
while the rest of the nodes areunknowns. The nodes perform the
ranging and forward all the location and ranging information to
the PC. On the PC the localization algorithms will calculate the
location estimates and display them on our sensor visualization
tool(figures 14 and 15).

The node positions on the sensor visualization tool are up-
dated at 5 second intervals. Figures figures 14 and 15 show some

snapshots of node locations. The beacons are shown as black
dots, the unknown nodes are white circles and the node position
estimates are shown as gray dots. In all of our experiments all
the node position estimates for each unknown node always fall
within the 3” x 4” surface area of theMedusa boards. In the
next subsection we describe how the node location information
is transmitted to the PC by using a multi-hop routing protocol.

Fig. 14. 5 node schenario

A. Location Information Dissemination and Routing

To route messages to the base station, we use a lightweight
version of the DSDV routing algorithm, DSDVlite. Instead of
maintaining a routing table with the next hop information to ev-
ery node, DSDVlite only maintains a short routing table that
contains next hop information for the shortest route to the base
station. Furthermore, this algorithm drives the localization pro-
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Fig. 15. 9 node schenario

cess by carrying the location information of the sender, and by
ensuring that the ultrasound beacon signals are not misinter-
preted at the receiver. The ultrasound beacon signal transmis-
sion begins right after the transmission of the start symbol for
each routing packet. After this, the transmission of data and ul-
trasound signals proceed simultaneously. By ensuring that the
duration of the data transmission is longer than the ultrasound
transmission, the receiver can differentiate between erroneous
ultrasound transmissions from other nodes. If the data packet
is not correctly received because of a collision with another
transmission, then the ultrasound time measurement is also dis-
carded.

B. Power Characterization

In the previous subsection we verified the correct operation
of our localization system. Our experimental setup will provide
a reasonable solution for a small network but as the network
scales, the traffic to the central node will increase substantially.
Before we can evaluate the tradeoffs between estimating loca-
tions at the nodes and estimating locations at a central place we
first characterize power consumption of theMedusa nodes. Us-
ing an HP 1660 Logic Analyzer a bench power supply and a high
precision resistor we characterized the RFM radio and the AVR
microcontroller on theMedusa nodes.

DR 3000

ADC

Sensor

AS90LS8535

Power
Supply

HP 1660

VSensor Rtest

ISensor

C1 C2

Vtest

testplySensor VVV −= sup

test

test
sensor R

V
I =

sensorsensor VIPower ×=

timePowerEnergy ×=

Fig. 16. a) Power and Energy Relationships, b) Measurement Setup

The measurement setup and power/energy relationships are

shown in figure 16. The power consumption for different modes
of the AVR microcontroller are shown in table IV. The power
consumption for the different modes of the RFM radio are
shown in figure 17 and table V

TABLE IV

AVR 8535 POWER CHARACTERIZATION

AVR Mode Current Power

Active 2.9mA 8.7mW
Sleep 1.9mA 5.9mW

Power Down 1�A 3�W
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Fig. 17. RFM Radio Power Characterization

With the power characterization in hand we can now evaluate
the tradeoffs between a centralized and distributed implementa-
tions of our localization protocols.

VII. T RADEOFFS BETWEENCENTRALIZED AND

DISTRIBUTED SCHEMES

One important aspect that needs to be determined is whether
the location estimation calculation should be done at each node
(distributed) manner or at a central node(centralized). We ex-
amine this problem in the context of the AHLoS system where
each node needs to be aware of its location.

The calculation at a central node has several drawbacks. First,
to forward the location information to a central node a route
to the central node must be known. This implies the use of a
routing protocol other than location based routing and also in-
curs some additional cost due to communication that also relies
on the efficiency of the existing routing and media access con-
trol protocols. Second, it creates a time synchronization prob-
lem. Whenever there is a change in the network topology the
node’s knowledge of location will not instantaneously updated.
To keep track of events correctly the central node will need to
cache node locations to ensure consistency of event reports in
space and time. Third, the placement of the central node implies
some preplanning to ensure that the node is easily accessible by
other nodes. Also, because of the large volume of traffic to and
from the central node, the battery lifetime of the nodes around
the central node will be seriously impacted. Fourth, the robust-
ness of the system suffers. If the routes to the central node are
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TABLE V

RFM POWER CHARACTERIZATION

Mode Power
Level

OOK Modulation ASK Modulation

2.4Kbps 19.2Kbps 2.4Kbps 19.2Kbps
mA mW mA mW mA mW mA mW

Tx 0.7368 4.95 14.88 5.22 15.67 5.63 16.85 5.95 17.76
Tx 0.5506 4.63 13.96 4.86 14.62 5.27 15.80 5.63 16.85
Tx 0.3972 4.22 12.76 4.49 13.56 4.90 14.75 5.18 15.54
Tx 0.3307 4.04 12.23 4.36 13.16 4.77 14.35 5.04 15.15
Tx 0.2396 3.77 11.43 4.04 12.23 4.45 13.43 4.77 14.35
Tx 0.0979 3.13 9.54 3.40 10.35 3.81 11.56 4.08 12.36
Rx - 4.13 12.50 4.13 12.50 4.13 12.50 4.13 12.50
Idle - 4.08 12.36 4.08 12.36 4.08 12.36 4.08 12.36
Sleep - 0.005 0.016 0.005 0.016 0.005 0.016 0.005 0.016

broken, the nodes will not be able to communicate their location
information to the central node and vice versa. Finally, since
all the raw data is required at the central node, the network can-
not aggregate the data to conserve power. Overall, a centralized
implementation will not only reduce the network lifetime but
it will also increase its complexity and compromise its robust-
ness. On the other hand, if location estimation takes place at
each node in a distributed manner the above problems can be
alleviated. Topology changes will be handled locally and the
location estimate at each node can be updated at minimal cost.
In addition, the network can operate totally on location based
routing so the implementation complexity will be reduced. Also
since each node is responsible for determining its location, this
is more tolerant to node failures and node mobility.

To further evaluate the tradeoff between the centralized and
distributed setups we simulated a typical sensor network setup.
In our scenario the central node is placed at the center of a square
field. We measure the total number of bytes transmitted by all
the nodes for both distributed and centralized networks. We
vary the network size by we keep the network density constant
by using a value of� = 6 or 117 nodes for every 10,000m2

(from table III). The simulation setup considers the same packet
structures as the implementation on the medusa nodes. For the
centralized system each node forwards the range measurements
between all its neighbors. If the node isbeacon it will also for-
ward its location information (this is 96 bits long to match the
GPS readings). Once the location is computed, the central node
will send each node its computed location estimate. In the dis-
tributed setup each node transmits a short beacon signal (radio
and ultrasound pulse) followed by the senders location if this is
available. In both cases, the simulation runs for one full cycle
of the localization process. The results of these simulations are
shown in figures 18 and 19.

Figure 18 uses 10% beacons and figure 19 uses 20% beacons.
The results show that in the distributed setup creates six to 10
times less traffic than the centralized setup. Another interest-
ing trend to note is that in the centralized setup network traffic
increases as the percentage ofbeacon nodes increases. In the
distributed setup however, the traffic decreases as the percent-
age ofbeacon nodes increases. This decrease in traffic is at-
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Fig. 18. Traffic in distributed and centralized implementations with 10%

tributed to the fact that most of the times the localization process
can converge faster if more beacon nodes are available; hence
less information exchange has to take place between the nodes.
Figure 20 shows the average energy consumption per node at a
transmission power of 0.24mW. This result is based on the en-
ergy characterization from the previous section. The averages
where taken over all nodes so for the centralized scheme the
power consumption is underestimated in this calculation since
the nodes closer to the central node will burn much more energy
to forward packets to and from other nodes. From this result we
conclude that the useful lifetime of the sensor network will be
significantlyreduced due to the energy exhaustion of the nodes
that make up the routes to the central node.

VIII. C ONCLUSIONS

We have presented a new localization scheme for wireless ad-
hoc sensor networks. From our study we found that the use
of the ultrasound based TDoA method using ultrasound is the
ideal candidate for fine-grained localization as it is less sensitive
to physical effects. RF signal strength on the other hand is not
suitable for fine-grained localization. Furthermore, we found
that our fine-grained localization scheme should operate in a dis-
tributed fashion. This mode of operation will increase the sys-
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Fig. 20. Average energy spent at a node during localization, left with 10% beacons, right with 20% beacons

0

100

200

300

400

500

600

700

800

900

B
yt

es
T

ra
ns

m
itt

ed

Thous ands

100 200 300 400 500 600 700

Netw ork Size

Distributed Centralized

Fig. 19. Traffic in distributed and centralized implementations with 20%

tem robustness and also distribute the power cost of localization
evenly among the nodes in the network. The implementation of
our testbed proved to be an indispensable tool for understanding
and analyzing the strengths and limitations of our approach. Al-
though our system performed very well for our experiments, we
recommend the use of a more powerful CPU on the on the sen-
sor nodes for the following reasons. First, the CPU clock speed
affects the timer granularity of the ranging subsystem. In our
case the AVR microcontroller is dedicated to localization. Other
applications would be hard to run on the same processor due to
the very tight CPU scheduling for the ultrasound timers. Sec-
ond, as we have shown in section VII, it is more power efficient
to estimated node locations at each node. If the the localization
algorithm is required to run at all times a faster CPU is recom-
mended. If the network is static, the localization process can run
at a very low duty cycle using the existing CPU.

The overall results of these work are very promising. Based
on our experience, we are currently developing a second gener-
ation of theMedusa nodes. Together with this, as part of our
future work, we are considering a hybrid localization scheme
that employs more that one ranging technologies. One possibil-
ity is to combine ultrasound and signal strength ranging. Since
the two ranging technologies have different strengths and limi-
tations, the one can complement the other in different scenarios.
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