
1

Congestion-Free Rerouting of Multiple Flows
in Timed SDNs

Jiaqi Zheng, Bo Li, Chen Tian, Klaus-Tycho Foerster, Stefan Schmid, Member, IEEE,
Guihai Chen, Senior, IEEE, Jie Wu, Fellow, IEEE, Rui Li, Member, IEEE.

Abstract—Software-Defined Networks (SDNs) introduce great
flexibilities in how packet routes can be defined and changed
over time, and enable a more fine-grained and adaptive traffic
engineering. The recently introduced support for more accurate
synchronization in SDNs further improves the degree of control
an operator can have over the packets’ forwarding paths, and also
allows to avoid disruptions and inconsistencies during network
updates, i.e., during the rerouting of flows. However, how to
optimally exploit such technology algorithmically — to efficiently
schedule the update of multiple flows in such timed SDNs —
while accounting for possible interference and congestion, is not
well-understood today.

We in this paper initiate the study of the fundamental problem
of how to reroute the updates of multiple network flows in a
synchronized SDN in a congestion-free manner. We rigorously
prove that that the problem is NP-hard for flows of unit
size and network links with unit delay. We also show that a
greedy approach to update the network can delay the update
significantly. Our main contribution is the first solution to this
problem: Chronicle. Our approach is based on a time-extended
network construction and resource dependency graph, which
is implemented by Openflow 1.5 using the scheduled bundles
feature. Evaluation results show that Chronicle can reduce the
makespan by 63% and reduce the number of changed rules by
50% compared to state-of-the-art.

I. INTRODUCTION

The more direct, fine-grained and adaptive traffic engineer-
ing enabled by Software-Defined Networks (SDNs) is one of
the key benefits of this new networking paradigm [10]. How-
ever, reaping the benefits of a more adaptive network control
is still challenging in practice due to the inherent asynchrony
in the communication between SDN controllers and switches,
and also between the switches themselves [18]. Indeed, many
potential disruptions (transient or even permanent), incon-
sistencies, and instabilities have been identified and studied

The work is partly supported by the National Key R&D Program of China
2018YFB1004700, the National Natural Science Foundation of China under
Grant Numbers 61802172, 61602194, 61772265, 61832005 and 61672353, the
Collaborative Innovation Center of Novel Software Technology and Industrial-
ization, and the Jiangsu Innovation and Entrepreneurship (Shuangchuang) Pro-
gram, U.S. Natural Science Foundation under Grant Numbers CNS 1824440,
CNS 1828363, CNS 1757533, CNS 1629746, CNS-1651947, CNS 1564128.

Jiaqi Zheng, Bo Li, Chen Tian and Guihai Chen are with S-
tate Key Laboratory for Novel Software Technology, Nanjing Uni-
versity, China (e-mail: jzheng@nju.edu.cn, mg1633039@smail.nju.edu.cn,
tianchen@nju.edu.cn, gchen@nju.edu.cn). Klaus-Tycho Foerster and Stefan
Schmid are with Faculty of Computer Science, University of Vienna, Aus-
tria (email: klaus-tycho.foerster@univie.ac.at, stefan schmid@univie.ac.at).
Jie Wu is with Center for Networked Computing, Temple University, US-
A (jiewu@temple.edu). Rui Li is with College of Computer Science and
Network Security, Dongguan University of Technology Dongguan, China
(ruili@dgut.edu.cn). Chen Tian and Guihai Chen are corresponding authors.

empirically and analytically over the last years, making the
SDN update problem an active area of research [13].

Network updates are not only relevant in the context of a
more adaptive and fine grained traffic engineering (typically,
for minimizing network loads), but the ability to quick-
ly and consistently reroute flows is crucial for correctness,
availability, and performance more generally. For example,
network update problems arise due to changes in the network’s
(security) policy, upon link failures, or during maintenance
work.

The recent introduction of a notion of time in SDNs and
the resulting more accurate synchronization, enabled timed
updates in OpenFlow [25]: updates which can be scheduled
accurately in time and hence allow to mitigate, or even avoid
entirely, the above problems. In particularly, it has been shown
that so-called flow swaps [25], results in significantly less
packet loss during updates.

While synchronized SDNs enable faster and more consis-
tent network updates, they still pose a challenging algorithmic
problem which is hardly understood today. On the one hand,
it is desirable that the update, that is, the rerouting of flows
is completed fast. On the other hand, it is important that the
update is congestion-free, which implies that the update sched-
ule of flows needs to be jointly optimized. Due to capacity
constraints and given link latencies, flows may temporarily
interfere, resulting in packet loss and hinders performance.
Our contributions: This paper initiates the study of the
fundamental problem of how to schedule the updates of
multiple network flows in a synchronized SDN in a congestion-
free manner. We show that the problem is NP-hard for flows of
unit size and network links with unit delay. We also show that a
greedy approach to update the network can significantly delay
the update. Our approach is based on a time-extended network
construction and resource dependency graph. We implement
our system in Openflow 1.5 using the scheduled bundles
feature, and evaluate its feasibility and efficiency on a small-
scale testbed and using large-scale simulations.

First and foremost, the scheduling of multiple flow updates
raises the question of the time horizon to be considered. We
use the time-extended network to capture the dynamic process
of flow transmission during network updates. Based on this,
we ask for accurate time schedules—specifying an update time
point for each switch and flow—such that the total update
time (the makespan) is minimized and congestion-freedom is
ensured at any moment in time. We formulate this problem
as an optimization program in the time-extended network and
prove its hardness.

2

Our second contribution is Chronicle, a heuristic scheduling
algorithm. The key idea is to first divide all network update
instances into small update blocks, then build the dependen-
cy relations among blocks. Based on the constructed time-
extended network, we adjust the update time and merge the
common update blocks accordingly. Finally we construct a
resource dependency graph among the update blocks and
schedule these blocks in a time domain.

We evaluate Chronicle using both a prototype implementa-
tion and large-scale simulations. We develop a prototype using
the new scheduled bundles feature of Openflow 1.5. We
use OFSoftSwitch and Dpctl [5] as Openflow switches and
the controller. Our evaluation results show that Chronicle can
reduce the update time by 63% and reduce the number of
changed rules by 50% compared to state-of-the-art. At the
same time, Chronicle can avoid transient congestion, save flow
table space and provide a near optimal solution.
Novelty: The need for fast and consistent network update
mechanisms has been articulated well in literature in various
contexts, such as for security [23], performance [17], and
dependability [21], [22], [33] reasons. Most existing literature
focuses on “interactive” update mechanisms, involving the
controller which monitors the progress of the update (e.g.,
using acknowledgements) before deciding to start the next
stage of the update. In particular, existing approaches can be
roughly classified into (1) two-phase protocols [7], [16], [22],
[30] in which the controller first installs the new rules before
tagging packets with the new path at the ingress port, ensuring
that each packet either takes the old or the new route, but
never a combination of both; (2) node-ordering protocols [18],
[12] where the controller updates (subsets of) switches one-by-
one, such that transient inconsistencies are avoided (without
the need for tagging). While solutions between the two worlds
are emerging [31], these approaches have in common that they
need to rely on interactions with the controller to implement
synchronization.

Our approach is enabled by technologies such as
Time4 [25], [27] which allow us to synchronize network
updates using accurate time [26]. To the best of our knowledge,
the only algorithmic study of the netwok update problem in
timed SDNs is by Zheng et al. [32], which however focuses
on a single flow. While constituting an interesting first step,
we anticipate many situations in which multiple flows need
to be updated simultaneously, e.g., upon a policy change or
link failure, or even a new traffic engineering optimization.
Scheduling multiple flow updates simultaneously however
is significantly harder since different flows can interfere in
complex (potentially combinatorial) ways at different links.

II. BACKGROUND AND MOTIVATION

We consider a network where a controller updates the
forwarding rules at the switches whenever a route changes.
Fig. 1(a) illustrates a simple example: there are five switches
v1, . . . , v5 in the network. The link capacity of 〈v2, v5〉 is
assumed to be two units and the rest is one unit. The
propagation delay of link 〈v3, v4〉 is assumed to be three time
units and the rest are one time unit. That is, if one unit of

flow leaves switch u at time t on the link 〈u, v〉, one unit
of flow arrives at switch v at time t + σu,v , where σu,v is
the propagation delay between u and v. We use the notion
of dynamic flow to represent the propagation of packets of
a flow in a time domain [14]. In our example, the demand
of two “dynamic flows” colored as red and green are both
one unit, which are both routed from the source v1 to the
destination v5. The initial routings are depicted as two solid
red and green lines and the final routings are depicted as two
dashed red and green lines. With dynamic flows, the utilization
of a link varies over time. As discussed before, prior work
on the network update problem usually relies on one of two
fundamental update techniques: two-phase update protocols
and node ordering protocols.

Two-phase update protocols: In the first phase, new rules—
whose matching fields use the new version tag that corresponds
to the second stage—are added. During this phase, flows are
still forwarded according to existing rules as packets are still
stamped with the old version tag of the first stage. Once the
update is done for all switches, the protocol enters the second
phase, when we stamp every incoming packet with the new
version tag. At this point, the new rules become functional,
and old rules are removed by the controller. Reitblatt et
al. [30] initiated this line of resarch by introducing a two-phase
commit protocol that preserves consistency when changing
between two different routing configurations. Based on this,
SWAN [16] and zUpdate [22] try to find a congestion-free
two-phase update plan. SWAN shows that if each link has
a certain slack capacity, there always exists a congestion-free
update sequence. This condition is too strong to always hold in
practice. Furthermore, Brandt et al. [7] analyze the condition
that a congestion-free update sequence exists, with additional
complexity studies in [11]. As the update plan is not unique,
Dionysus [18] seeks to determine the fastest update sequence
according to different runtime conditions of switches.

A two-phase update procedure in our example of Fig. 2(b)
is: in the first phase, the routes for red and green flows
corresponding to new version tag are updated; in the second
phase, we change the version tag at the source switch v1 and
swap the red and green flows into their final path. Fig. 2(c)
shows a possible asynchronous update case, where the time
difference between two phases is assumed to be one time
unit. We can observe that the congestion happens at the link
〈v4(t4), v5(t5)〉 since one unit capacity of link 〈v4, v5〉 cannot
accommodate two flows at the same time.

Node ordering protocols: At each round, the controller waits
until all the switches have completed their updates, and only
then invokes the next round. Ludwig et al. [24] aim to min-
imize the number of sequential controller interactions when
transitioning from the initial to the final update stage. The
authors prove that finding a shortest node ordering sequence
that avoids forwarding loops is NP-hard. Furthermore, they
introduce a notion of relaxed loop-freedom, which provides
an interesting consistency-runtime tradeoff. Another work by
Ludwig et al. [23] considers secure network updates in the
presence of middleboxes [29]. The authors try to find a node
ordering sequence that preserves a specific security policy.

3

v2

v1 v5

v3 v4

v2

v1 v5

v3 v4

v2

v1 v5

v3 v4

v2

v1 v5

v3 v4

v2

v1 v5

v3 v4

v2

v1 v5

v3 v4

v2

v1 v5

v3 v4

v2

v1 v5

v3 v4

Network topology Initial and final route Time t0

Time t1 (t1=t0+1) Time t2 (t2=t1+1) Time t3 (t3=t2+1) Time t4 (t4=t3+1) Time t5 (t5=t4+1)

1 2

1 1

1

11

1 1

3

11 1 1

v2

v1 v5

v3 v4
Round 1

v2

v1 v5

v3 v4
Round 2

Fig. 1. Illustration of the network update problem considered in this paper. In this example topology, v1 is the source and v5 is the destination of both the
old (initial) route and the new (final) route. There are two flows in the network, which are depicted as green and red, respectively. The initial routing for the
two flows are illustrated as two solid lines with green and red, while the final routing are represented as two dashed lines with green and red. The solid links
represent that the load on the link is greater than zero, which indicates that the dynamic flow is passing through this link. In our example, the link capacity
of 〈v2, v5〉 is assumed to be two units and the rest is one unit. The link propagation delay of 〈v3, v4〉 is assumed to be three units and the rest is one unit.
The timed update sequence is: Fig. 1(d1) → (d2) → (d3) → (d4) → (d5) → (d6).

A possible node ordering sequence in our example of
Fig. 2(b) is: Fig. 1(c1)→ (c2). In the first round, v2 (the route
for red flow), v3 (the route for green flow) and v4 (the route for
green flow) are updated asynchronously. Then v1 (the route for
both red and green flows) and v2 (the route for green flow)
are updated in the second round. Due to the asynchronous
nature of the data plane, the new route for v2 (green flow)
may become functional earlier than that for v1 (red and green
flows) in the second round as shown in Fig. 1(c2). At this
point, the red and green flows are routed through the paths
〈v1, v3, v4, v5〉 and 〈v1, v2, v4, v5〉 respectively. Here the red
and green flows together would result in a transient congestion
on the link 〈v4, v5〉 as the sum of flow demand is two units,
which is beyond the one unit link capacity (Fig. 2(b)).
Timed update protocols: Mizrahi et al. [26] design a practical
approach to implement accurately scheduled network updates
in TCAM with the order of microseconds. Based on this, they
propose a time synchronization protocol between controller
and data plane, which uses accurate timing to trigger network
updates [25], [27], [28]. Specifically, the data plane is firstly
synchronized by Network Time Protocol. Then the controller
sends the update commands to the switch and these update
commands are stored into a temporary staging area without
taking effect. Finally the update commands will be applied
to the switch at a specific time point. The current OpenFlow
protocol [3] has already provided APIs for time-based network
updates. Though the idea of timed update has surfaced in the
literature recently, the only algorithmic study of the timed
update is by Zheng et al. [32], which however focuses on
a single flow. To this end, Zheng et al. prove that minimizing
the makespan is NP-hard, and design a heuristic algorithm to
perform network update for a single flow. The novelty of our
work lies in the first study and comprehensive exploration of
the design of timed scheduling algorithms for multiple flows.
We also extend the hardness results of Zheng et al. [32] to the
case of multiple flows, in particular we show that it is NP-hard
even for flows of unit size and network links with unit delay.

A timed update schedule (Fig. 1(d1)→ (d2)→ (d3)→ (d4)
→ (d5) → (d6)) can effectively solve our problem. Firstly,

the route of v1 for both red and green flows are updated
at t0. Then, the route of v3 for the green flow is updated
at t1. Finally the routes of v2 and v4 for green flow are
updated simultaneously at t3. The congestion-free condition
is ensured at any moment in time as shown in the time-
extended network of Fig. 2(d). This timed schedule can be
acceptable in practice because the flow table rules can be
updated accurately on the order of one microsecond [26]. In
addition, the controller can send all the update commands at
a time and the update behavior for each switch is triggered by
a pre-defined time instant, which can significantly decrease
the time overhead resulting from wait-invoke mechanism of
node ordering protocols. Also we only modify the action in
the flow table during the update process, where we do not
require additional flow table space headroom and overcome
the drawback of two-phase update protocols.

Lastly, we note that there can also be other objectives for
consistent updates, such as e.g. maintaining service availabil-
ity for inter-domain routes, which is investigated by SDN-
LIRU [34]. We refer to [13] for a general overview.

III. AN OPTIMIZATION FRAMEWORK

We introduce our optimization framework for the minimum
update time problem for multiple flows in this section.

A. Dynamic Flow Model and Problem Formulation

Before formulating the problem, we first present our net-
work model. A network is a directed graph G = (V,E), where
V is the set of switches and E the set of links with capacities
Cu,v and transmission time σu,v for each link 〈u, v〉 ∈ E. For
each flow f , the network contains two paths: pfinit and pffin.
The former is the old routing path which is depicted as a
solid line in our example and the latter is the new routing
path depicted as a dashed line. We use different colors to
distinguish different flows. Both of pfinit and pffin have a
common source v+ and destination v−. For convenience, we
summarize important notations in Table I. Let us introduce
three related notations first.

4

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t0 t1 t2 t3 t4 t5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t-4 t-3 t-2 t-1

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t6

(a) The time-extended network model that represents whether there exists
a congestion-free update schedule for the red and green flows within six
time steps, where T = {t0, t1, t2, t3, t4, t5}. The value of link capacity and
propagation delay are the same as the setting in Fig. 1(a).

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t0 t1 t2 t3 t4 t5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t-4 t-3 t-2 t-1

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t6

(b) A possible update sequence in the time-extended network resulting from
node ordering protocols shown as Fig. 1(c1) → (c2). We assume the time
difference between the first round and the second round is one time step. The
congestion happens at the link 〈v4(t2), v5(t3)〉 and 〈v4(t4), v5(t5)〉.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t0 t1 t2 t3 t4 t5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t-4 t-3 t-2 t-1

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t6

(c) A possible update sequence in the time-extended network resulting from
two-phase update protocols. We assume the time difference between the
first phase and the second phase is one time step. We can observe that the
congestion happens at the link 〈v4(t4), v5(t5)〉.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t0 t1 t2 t3 t4 t5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t-4 t-3 t-2 t-1

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t6

(d) We first update switch v1 (red and green flows) and v2 (red flow) at t0.
Then we update v3 (green flow) at t1. Finally we update v2 (green flow) and
v4 (green flow) at t3. The whole procedure is congestion-free at any moment
in time. For simplicity, we do not draw the links once the update is done.

Fig. 2. Illustration of two-phase update protocols, node ordering protocols and our timed schedule shown in the time-extended network.

TABLE I
KEY NOTATIONS IN THIS PAPER.

F The set of dynamic flow f
V The set of switches v
E The set of links 〈u, v〉
G The acyclic directed network graph G = (V,E)
ti The time point. ti+1 > ti
T The set of time point. T = {t0, t1, . . . , tn}

FT The set of flows in the time-extended network
V T The set of switches v(t), where v ∈ V and t ∈ T
ET The set of links 〈u(ti), v(tj)〉
GT The time-extended network GT = (V T , ET)
Cu,v The capacity of link 〈u, v〉
pfinit The initial path for the dynamic flow f

pffin The final path for the dynamic flow f
df The demand of the dynamic flow f
n The number of the switches. n = |V |

σu,v The transmission delay for the link 〈u, v〉.

Definition III.1. Dynamic flow [14]: A dynamic flow on G is
a function f : E×T → Z+ (Z+ represents the set of positive
integers) that satisfies the following conditions for ∀v ∈ V
and ∀t ∈ T .

∑
(u,v)∈E+(v),t−σu,v≥0

xu,v(t− σu,v)−
∑

(u,v)∈E−(v)

xu,v(t)

=

−df v = v−,∀t ∈ T

0 ∀v ∈ V − {v−, v+},∀t ∈ T
df v = v+,∀t ∈ T

(1)

The conservation condition (1) indicates that if one unit
of dynamic flow leaves switch u at t − σu,v on link 〈u, v〉,
one unit of flow arrives v at t. Here E+(v) and E−(v)
represent the set of links incoming and outgoing to the switch
v, respectively. The notation df is the flow demand, which
is a positive integer. The set T is measured in discrete steps,
where T = {t0, t1, . . . , tn}. xu,v(t) characterizes the load on
the link 〈u, v〉 at t.

Definition III.2. Congestion-free condition: The congestion-
free condition holds if and only if inequations (2) always hold
for ∀t ∈ T throughout the update process.

0 ≤ xu,v(t) ≤ Cu,v,∀〈u, v〉 ∈ E,∀t ∈ T (2)

The congestion-free condition ensures that the link capacity
Cu,v cannot go beyond the link capacity at each moment in
time for ∀t ∈ T .

Our model and approach can be visualized nicely with a
time-extended network concept: a network in which there is a
copy of each switch for every time step ti ∈ T and the links
are redrawn between these copies to express their transmission
delay. Succinctly:

Definition III.3. The time-extended network: The time-
extended network GT is a directed graph G with switches
v(t) for all v ∈ V and t ∈ T . For each link 〈u, v〉 ∈ E with
transmission delay σu,v and capacity Cu,v , the network GT

has link 〈u(t), v(t+ σu,v)〉 with capacity Cu,v .

The time-extended network captures the dynamic process
of flow transmission in the network. Fig. 2(a) gives a time-

5

extended network example of Fig. 1(a), where t−1, . . ., t−3
and t−4 represent the past time steps, t0 represents the current
time step, t1, t2, · · · represent the future time steps. The green
flow on the link 〈v1(t0), v2(t1)〉 starts at current time step
t0, while the green flow on the link 〈v2(t0), v5(t1)〉 and the
red flow on the link 〈v3(t0), v4(t3)〉 both start at past time
step t−1. The red solid line between v3 and v4 strides over
three time steps as its link transmission delay we assumed in
Fig. 1(a) are three time units. The rest only stride over one
time step as its link transmission delay is one time unit. We can
only update the switches in the current and future time steps
and cannot update them in the past steps. The reason why we
illustrate the past time steps there is that we require to check
the congestion-free condition defined in (III.2). In Fig. 2(a),
the red flow starting at past time step t−4 will occupy the
link bandwidth between v4(t0) and v5(t1), which makes a
difference to the updates at current time step t0.

Based on the above model and definition, we formulate the
Minimum Update Time Problem for Multiple Flows (MUTP-
MF) as an integer linear program in the time-extended net-
work, where the initial (solid lines) and final (dashed lines)
routing paths for each flow f are given. We seek to find an
optimal timed update sequence so as to minimize the total
update steps, such that the congestion-free condition holds at
any moment in time. Before formulating the problem, we first
describe each constraint in detail.The congestion-free constraint:

∑
f∈F

df · yfu(ti),v(tj) ≤ Cu(ti),v(tj), ∀〈u(ti), v(tj)〉 ∈ ET ,

(3a)
The LHS of constraint (3a) characterizes the load of total

flows at link 〈u(ti), v(tj)〉, which must be less than or equal
to its capacity in order to meet the congestion-free condition
defined in (III.2).

The zero-one decision variables: The zero-one integer
variable xfu(ti) equals one when the routing configuration of
switch u for flow f is updated at ti in the time-extended
network, and equals zero otherwise.

xfu(ti) ∈ {0, 1}, ∀f ∈ F,∀u(ti) ∈ V T\tn , (3b)

xfu(tn) = 1, ∀f ∈ F,∀u(tn) ∈ V T . (3c)

This optimization variable determines that which switch
should be updated at which time point. The optimization
variables xfu(ti) (ti ∈ {T \ tn}) need to be determined, while
the variable xfu(tn) (tn is the last time step in set T) is known
to be one as formulated in constraint (3c) since all updates
should be complete before the last time step tn.

yfu(ti),v(tj) = 1− xfu(ti), ∀f ∈ F, 〈u(ti), v(tj)〉 ∈ pfinit,
(3d)

The zero-one integer variable yfu(ti),v(tj) in constraint (3d)
indicates whether the flow f is routed through the link
〈u(ti), v(tj)〉 belonging to the initial path pfinit. Obviously,
it equals zero when the switch u is updated at ti, and equals
one otherwise.

yfu(ti),v(tj) = xfu(ti), ∀f ∈ F, 〈u(ti), v(tj)〉 ∈ pffin, (3e)

On the contrary, the zero-one integer variable yfu(ti),v(tj) in
constraint (3e) indicates whether the flow f is routed through
the link 〈u(ti), v(tj)〉 belonging to the final path pffin. It
equals one when the switch u is updated at ti, and equals
zero otherwise.

xfu(ti) ≥ x
f
u(tj)

, ∀f ∈ F, ti ≥ tj , (3f)

The constraint (3f) captures the fact that the routing config-
uration at a specific switch for the flow f remains unchanged
once the update is complete. That is to say, we can only update
the route from the initial to final path, not the reverse. For
example in Fig. 2(d), once the route of switch v1 for red flow
is updated at t0 (xfu(t0) = 1), it will stay the same at the next
time steps (xfu(t1) = 1,xfu(t2) = 1,· · ·).

Problem formulation of MUTP-MF: The formulation of
MUTP-MF is shown in (3). The objective is to minimize the
number of elements in set T , i,e., the time steps during the
update.

minimize |T | (3)
subject to (3a), (3b), (3c), (3d), (3e), (3f).

At the beginning, the element of set T is t0. We iteratively
add one time step ti into the set T each time until we find
a feasible solution or the number of elements in T reaches a
pre-defined threshold. The upper bound analysis of the number
of elements in T will be discussed in Theorem III.3. Note that
it’s trivial to infer the transmission delay in SDNs. To measure
the transmission delay between two switches, the controller
can firstly generate the test packets via OFPT_PACKET_IN
message to the source switch. These test packets will be
stamped with a hitting time and forwarded by the pre-defined
rules. Once the packets arrive at the destination switch, they
will be stamped with a new hitting time and sent back to
the controller via OFPT_PACKET_OUT message. Finally, the
controller can infer the link transmission delay by comparing
two hitting times. In addition, the switch’s processing delay
for updating a forwarding rule in TCAM [4] can influence
the accuracy of our model. However, recent work [6] shows
that the update time can be predictable and a constant. This
suggests that we can subtract a corresponding time offset
from the outputs of our model, indicating that the time point
triggerring the update should be earlier than the resulting
update time calculated from our model.

B. Theoretical Analysis

We establish the hardness of our problem MUTP-MF
below. We start with Theorem III.1, where we show that
deciding the feasibility in general is NP-hard, followed by
Theorem III.2, where we prove that even for the special case
of unit size flows/delays, optimization is NP-hard. Afterwards,
Corollary III.1 provides insights why a simple greedy approach
is not practicable, whereas Theorem III.3 gives bounds on the
complexity of the time-extended network.

6

Theorem III.1. The feasibility of MUTP-MF is NP-hard.

Proof: Consider a special case of MUTP-MF as shown in
Fig. 3. The capacity of all links is C units, and the delay of all
links is one unit. There are k green flows each with demand
di and

∑
i∈{1,2,··· ,k} di = C. They are routed through the

initial path 〈s1, v, w, t〉 and will be moved into their final path
〈s1, u, t〉. The red flow with demand C

2 is routed through the
initial path 〈s2, u, t〉 and will be moved into the final path
〈s2, w, t〉. The objective is to assign a update time point for
k + 1 flows such that the congestion-free condition holds at
any moment in time. The only way to do this is to firstly
update the green flows with total demand C

2 at t0 and keep
half of the link capacity at 〈w, t〉 vacant. Then we update the
red flow and the rest of the green flows simultaneously at t1,
where the time difference between t1 and t0 is one time unit.

We construct a polynomial reduction from the set partition
problem [8] to it. Consider a partition instance consisting of
k items, each with a value ai and

∑
i∈{1,2,··· ,k} ai = C. Each

item i corresponds to one of k green flows in the example
of Fig. 3, where ai = di, i ∈ {1, 2, · · · , k}. Therefore, any
feasible partition of the items corresponds to the updates of
k green flows in two time steps, and vice versa. The routing
update in the first time step forms one set of the partition, and
that in the second time step forms the other.

vs1 w

s2 tu

Fig. 3. Topology used for the reduction from Partition to MUTP-MF.

The hardness of Theorem III.1 relies on different flow sizes,
but even for unit size flows, MUTP-MF is NP-hard as well.

Theorem III.2. MUTP-MF is NP-hard, even for flows and
delays of unit size.

Proof: Our reduction from 3-SAT [19] will feature
four gadgets, called blocking-gadget (Fig. 4(a)), delay-gadget
(Fig. 4(b)), variable-gadget (Fig. 4(c)) and clause-gadget
(Fig. 4(d)). The demand of all flows and the delay of all links
will be of unit size in this proof.

A blocking-gadget consists of a flow where the only update
is performed at the source, with the old and new path being
link-disjoint. By adjusting the length of the old path, we can
block one unit of capacity on a link for any desired time.
As such, for the other (gadget-) constructions, we can assume
any capacity restrictions for new paths, as the new paths will
become eventually feasible once the blocking flows leave.

A variable-gadget consists of two flows (truth assignments)
that share a path to their destination on the old path of capacity
two, but the new paths are split into a “true” and a “false” path,
merging into a joint path to their destination, all of capacity
one. As such, only either the true or the false flow can update
for now, as they collide on the joint path of capacity one.

A clause-gadget consists of three flows (literals) that share
an old path to their destination of capacity three, but on the
new path, they first share a link of capacity one, and then

split their paths, each traversing the corresponding true or false
path of their variable-gadget for one link, then reaching their
destination. By making the true and false paths sufficiently
long enough in the variable-gadget, the paths of literal-flows
from different clause-gadgets will not overlap.

Observe that only one literal-flow of each clause can update,
but if no flow from a variable-gadget updates, every clause-
gadget can update one literal-flow without eventual congestion.
To prevent this, we introduce the delay-gadget with one flow,
where the old path has a length of three and the new path has
a length of two, but they share only the last link. Updating the
flow introduces twice the utilization of the last link for one
time unit, after one time unit. We add a delay-gadget each to
the end of the old paths of the variable- and clause-gadgets,
only sharing the last link, increasing that link’s capacity by
one. As the old paths are fully utilized, the delay-gadget cannot
update until a flow from the respective gadgets updates.

Hence, all delay-gadgets can’t update for now, unless one
literal-flow from each clause and one flow from each variable
updates. However, finding such an update is equivalent to
solving the corresponding 3-SAT instance. Let t be the earliest
time when the last delay-gadget can update in case the 3-SAT
instance is satisfiable and the blocking-gadgets have infinite
path lengths. By adjusting the blocking-gadgets appropriately
to “free” their blocked capacity for time t, it is NP-hard to
decide if all nodes can update by time t.

Corollary III.1. For unit size flows and delays, computing
the maximum number of updates at each time step is NP-
hard. Furthermore, a maximum greedy update can increase
the update sequence length by a factor of Ω(|V |).

Proof: We adapt the proof of Theorem III.2. Observe
that by adjusting the lengths of the old paths in the blocking
gadget, even approximating the time of the last update is
NP-hard: in particular, by reducing the blocking-gadgets to a
constant number (that traverses multiple blocking links), their
path lengths can be polynomially increased, i.e., for any fixed
ε > 1, a O(|V |1−ε)-approximation is NP-hard. At the cost
of approximation bounds, the number of flows can also be
reduced to a constant number, by stitching their paths together,
since every link only “hosts” a constant number of flows.

Furthermore, the above proof construction only needs a
slight modification to make maximizing a greedy update NP-
hard, i.e., maximizing the number of updates at once. We add
a large number of modified delay-gadgets to the old paths of
the variable-gadgets, s.t. they can only be updated right away
if their corresponding variable-gadget also updates one of its
flows right away. As such, a maximum update at time zero
involves updating one flow from each variable-gadget, and
then a maximum number of literal-flows. However, computing
the maximum number for those is NP-hard.

Even worse, a single greedy update (even of maximum size)
can arbitrarily delay the last update. Consider a topology of
successively connected delay-gadgets (just consisting of an old
path of length two and a new path of length one), with a
single link e at the end, with all links having a capacity of
two, traversed by a single flow of unit size. Updating them all
at once creates, after one time unit, an utilization of two on

7

sx1

vwp q

tx1

t x1s x1

flow from
clause that
contains x1

flow from
clause that
contains x1

flow from
clause that
contains x1

flow from
clause that
contains x1

sc1,x1

sc1,x2

sc1, x1

tc1,x1

tc1,x2

tc1, x1

p q

s tvu

(a) Blocking-gadget

s twu

(b) Delay-gadget (c) Variable-gadget (d) Clause-gadget

x2 is true

x1 is true

x1 is false

k

Fig. 4. (a) Blocking-gadget. The link (v, t) is blocked by one unit of traffic until k time units when s is updated at t0. (b) Delay-gadget. The flow can only
be updated when there is additional free capacity at link (w, t). (c) Variable-gadget. The capacity of link (p, q) is two units and the rest is one unit. Due to
the capacity of link (v, w) being one unit, we cannot update sx1 and s¬x1 at the same time. (d) Clause-gadget for (x1 ∨x2 ∨¬x1). As the capacity of link
(p, q) is one unit, only one of the three flows can be updated. However, this flow needs free capacity in its variable-gadget path.

e, for a time equivalent to the number of delay-gadgets. We
now add in parallel a second flow traversing a new disjoint
delay-gadget, followed by also traversing e. If we update the
second flow first, wait one time unit, and then update all others
simultaneously, we are done. However, by picking a maximum
update first, consisting of all updates from the delay-gadgets
for the first flow, the second flow has to wait a linear time.
Observe that both above considerations also hold when asking
for the maximum number of updates in a fixed timespan.

As such, we need a more intricate heuristic than just greed-
ily “updating as much as we can”, which will be discussed in
Sec. IV.

Theorem III.3. The maximum time steps in set T are bounded
by ∑

f∈F

∑
v∈pfinit∩p

f
fin

arg max
p:v∈p,v∈B

φ(p)

where pfinit and pffin represent initial and final path for flow
f , function φ(·) refers to the sum of link transmission delay.

Proof: The switches in the time-extended network have to
wait some time steps in order to ensure that the congestion-
free condition holds at any moment in time. We denote by
tv,f the waiting time steps for switch v and flow f in the
time-extended network and thus we have

|T | ≤
∑
f∈F

∑
v∈B

tv,f ≤
∑
f∈F

∑
v∈A

tv,f +
∑

v∈(B\A)

tv,f

 (4)

where A = {v|v ∈ pfinit ∩ p
f
fin} that represents the set of

switches both in the initial path pfinit and final path pffin, and
B = {v|v ∈ pfinit ∪ p

f
fin} that represents the set of switches

either in the initial path pfinit or final path pffin. Obviously,
each update in set {B \ A} does not need to wait and we
obtain

∑
v∈B\A tv,f = 0,∀f ∈ F . Combining inequation (4),

we have the following.

|T | ≤
∑
f∈F

∑
v∈A

tv ≤
∑
f∈F

∑
v∈A

arg max
p:v∈p,v∈B

φ(p)

where the function φ(p) refers to the sum of link transmission
delay on the path p. The notation p represents a mixed path

v2

v1 v5

v3 v4

v2

v1 v5

v3 v4

v2

Fig. 5. The illustration of update blocks in Fig. 1(b): (a) Update block for
red flow (b) the first update block for green flow (c) the second update block
for green flow.

traveling through the switches either in the initial path pfinit
or final path pffin.

IV. THE CHRONICLE ALGORITHM

In this section we design a scheduling algorithm to find a
feasible update sequence in polynomial time. We firstly ex-
plain the high level working of our algorithm. To increase the
flexibility, we divide the network update instance into small
update blocks that can be scheduled individually in the time-
extended network. Fig. 5 shows an example of update blocks
for the update instance in Fig. 1(b). The green flow has two
blocks (〈v1, v2〉, 〈v1, v3, v2〉) and (〈v2, v5〉, 〈v2, v4, v5〉), while
the red flow has only one block (〈v1, v3, v4, v5〉, 〈v1, v2, v5〉).
The block concept introduces more convenience as we only
need to update the rules in the first switch of a block. The rule
update operation for the intermediate switches is trivial, and
we can update all of them at initial time t0. Taking Fig. 5 as an
example, the rule update operation for the red flow in switch
v2 (Fig. 5(a)), that of the green flow in switch v3 (Fig. 5(b))
and that of the green flow in switch v4 (Fig. 5(c)), all belong
to this case and can be updated at initial time t0. Next we
map these blocks into the time-extended network (Fig. 6) and
establish the dependency relations among them, in which one’s
initial path and the other’s final path have common links. Since
the initial path of the update block for the red flow starting
at t−3 has a common link 〈v4, v5〉 (between t1 and t2) with
the final path of the second update block for the green flow,
we add one more update block starting at t−3 (Fig. 6(a)) in
the time-extended network. Note that the difference between
the update block in Fig. 6(a) and Fig. 6(b) is just the starting
time of switch v1. They can be merged into one update block
which will be discussed soon. In Fig. 6, the update of block

8

v1

v2

v3

v4

v5

t0 t1 t2 t3 t4
v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t0 t1 t2 t3 t4
v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t0 t1 t2 t3 t4 t5
v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

t-3 t-2 t-1 t0 t1 t2
v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

Fig. 6. Four update blocks (colored blue) (a) ofr1 (t−3), (b) ofr1 (t0), (c) ofg1 (t0) and (d) ofg2 (t0) in the time-extended network for red flow fr and green
flow fg of Fig. 1(b).

Fig. 7. Illustration of the resource dependency graph.

(a) should be earlier than that of block (d) as one unit capacity
of link 〈v4, v5〉 cannot accommodate red and green flows
simultaneously. Since block (a) starts at the past time point
t−3, we add the offset of three time units for each update
block in order to ensure that all the blocks start at current or
future time steps. After the adjustment process is done, we
merge the common blocks (update blocks shown in Fig. 6(a)
and Fig. 6(b)) and construct the resource dependency graph
as shown in Fig. 7. Based on this graph, we can detect the
deadlocks (dependency cycles) and output a feasible update
schedule.

Before describing the concrete algorithms, let us introduce
three related notations first.

Definition IV.1. Update block: A update block ofj (ti) for flow
f contains two edge disjoint paths p1 and p2 starting and
ending at the common node u and v, where p1 ∩ p2 = {u, v},
p1 ∈ pfinit, p2 ∈ p

f
fin.

Combining the motivating example in Fig. 1(b), four update
blocks (Fig. 6) in the time-extended network are (a) ofr1 (t−3),
(b) ofr1 (t0), (c) ofg1 (t0), and (d) ofg2 (t0). Each update block
starts and ends at a common switch in the initial and final
path. The → operator captures the update order between two
blocks. For example, the notation o1 → o2 represents that the
update time of block o1 should not be later than that of block
o2. Otherwise, the congestion-free condition will be violated.

Definition IV.2. Resource dependency graph: A resource
dependency graph captures the dependent relation between
the block ofj (ti) and the link 〈u, v〉.

Fig. 7 shows a resource dependency graph example cor-
responding to the update blocks in Fig. 6. There are two
types of rectangles in the graph — the link rectangle and
the update block rectangle. The number in the link rectangle
indicates the residual capacity C ′u,v on the link 〈u, v〉 at the
current time step, while that in the update block rectangle
represents the flow demand. For a specific update block ofj (t),
the incoming edges come from the links in the initial path,

while the outgoing edges point to the links in the final path.
The construction procedure is shown in Algorithm 1.

Algorithm 1: Constructing the resource dependency graph
Input: The set of all update blocks O; the initial path pfinit and the final

path pffin for each flow f ∈ F .
Output: The resource dependency graph Go.

1: G0 = ∅, C′u,v = 0

2: for each ofj (ti) ∈ O do
3: for each 〈u, v〉 ∈ pfinit do
4: Go = Go ∪ {〈u, v〉 → ofj (ti)}
5: C′u,v = Cu,v − df
6: for each 〈u, v〉 ∈ pffin do
7: Go = Go ∪ {Of

j (ti)→ 〈u, v〉}

v

s1

u

zw

ts2

Fig. 8. A deadlock example.

Definition IV.3. Deadlock: A deadlock indicates that we
cannot find a feasible update schedule in the network.

A deadlock forms if two conditions σs1,w > σs2,w and
σs1,u > σs2,u hold at the same time shown in Fig. 8. On one
hand, the condition σs1,w > σs2,w indicates that the update
time of s1 should be earlier than that of s2 to avoid congestion
at the path 〈w, z, t〉. On the other hand, the condition σs1,u >
σs2,u indicates that the update time of s1 should be later than
that of s2 in order to avoid congestion at the path 〈u, v, t〉.
This is a contradiction as we cannot find a feasible update
time point for each switch. Fig. 9 captures this case in the
time-extended network, where σs1,w = σs1,u = 2 and σs2,w =
σs2,u = σu,v = σv,t = σw,z = σz,t = 1.

The complete process of our scheduling algorithm is shown
in Algorithm 2. We first calculate the set of all update blocks
{ofj (t0)} starting at time step t0 (line 1). Then we add the
set of update blocks {ofj (t−x)} at the past time steps whose

9

t0 t1 t2 t3 t4

s1

s2

u

v

w

z

t

s1

s2

u

v

w

z

t

s1

s2

u

v

w

z

t

s1

s2

u

v

w

z

t

s1

s2

u

v

w

z

t

t-1

s1

s2

u

v

w

z

t

Fig. 9. The time-extended network of a deadlock example shown in Fig. 8,
where σs1,w = σs1,u = 2 and σs2,w = σs2,u = 1.
Algorithm 2: Calculating a timed update sequence

Input: The directed acyclic network G; the initial path pfinit and the final
path pffin for each flow f ∈ F .

Output: A boolean variance that indicates whether there exists a feasible
update sequence or not.

1: Construct the set of all update blocks {ofj (t0)} starting at t0 in the
time-extended network

2: Construct the set of update blocks {ofj (t−x)} starting at past time
steps, where ofj (t−x)→ ofj (t0)

3: O = {ofj (t0)} ∪ {o
f
j (t−x)}

4: Adjust each element in set O such that all the update blocks start at
current or future time steps

5: Merge the common elements in set O
6: if there exists an integer α such that ofj (t− α) = ofj (t)

(ofj (t− α),o
f
j (t) ∈ O) then

7: return false
8: Apply Algorithm 1 to construct the resource dependency graph G0

9: for each ti ∈ T do
10: Apply Algorithm 3 to obtain the set of independent update block Ô

at ti
11: Apply Algorithm 4 to update each block in set Ô and obtain the

return value σ
12: if σ = −1 then
13: return false
14: O = O \ Ô
15: for each ofj (t) ∈ O do
16: ofj (t) = ofj (t+ σ)
17: Finding the rest of dependent update blocks O∗ at ti
18: Apply Algorithm 4 to update each block in set O∗ and obtain the

return value σ
19: if σ = −1 then
20: return false
21: O = O \O∗
22: if Go = ∅ then
23: return true
24: return false

update time points should be earlier than that in {ofj (t0)} (line
2). After that, we construct the set O and adjust each update
block such that all of them start at current or future time
steps (lines 3-4). When the merge operation is done, we check
whether the equation ofj (t − α) = ofj (t) can be established
or not. If this condition holds, the algorithm stops because a
deadlock forms, and we cannot schedule the update block ofj at
two different time points (t − α and t) simultaneously (lines
5-7). Next we apply Algorithm 1 to construct the resource
dependency graph G0 and schedule each update block step by
step (lines 8-20). In each time step, we apply Algorithm 3 to

obtain the independent set Ô and try to update them using
Algorithm 4 (lines 10-11). If all updates are feasible, we add
σ time steps for the rest of each update block, where σ is the
maximum path delay obtained from Algorithm 4 (lines 15-16).
For the rest of the dependent update block, we update using
Algorithm 4 as well (lines 17-18). When the loop terminates
and the set Go is empty, our algorithm outputs a feasible
update sequence. Otherwise, it indicates that a feasible solution
does not exist (lines 22-24). For convenience, the main steps
are illustrated in Table II.

TABLE II
MAIN STEPS FOR THE EXAMPLE SHOWN IN FIG. 1(B).

1 Calculate all update blocks: ofr1 (t−3), o
fr
1 (t0), o

fg
1 (t0), o

fg
2 (t0)

2 Establish the relation: ofr1 (t−3)→ o
fg
2 (t0), o

fr
1 (t0)↔ o

fg
1 (t0)

3 Adjust the starting time: ofr1 (t0)→ o
fg
2 (t3), o

fr
1 (t0)↔ o

fg
1 (t0)

4 Merge the common update block: ofg2 (t3)← ofr1 (t0)↔ o
fg
1 (t0)

5 Construct the resource dependency graph (Fig. 7)
6 Break the dependency cycles: ofg2 (t3), o

fr
1 (t0), o

fg
1 (t0)

7 Assign the update time instant for each switch

Algorithm 3: Finding the set of independent blocks
Input: The resource dependency graph Go; the set of all update blocks O;

the time step t.
Output: The set of independent update blocks Ô.

1: for each ofj (t) ∈ O do
2: for each 〈u, v〉 ∈ pffin do
3: if C′u,v < df then
4: continue
5: Ô = Ô ∪ {ofj (t)}

Algorithm 3 describes the procedure of finding the set of
independent update blocks. For each one, if it can directly
move to the final path without link capacity violation, we add
it into set Ô and the algorithm enters into the next loop.

Algorithm 4: Updating the resource dependency graph

Input: The set of update blocks O; the initial path pfinit and the
final path pffin for each flow f ∈ F .

Output: The resource dependency graph Go and an indicator
variance that indicates whether the update is feasible or not.

1: σmax = σ = 0
2: for each ofj (t) ∈ O do
3: Update ofj at t
4: for each 〈u, v〉 ∈ pfinit do
5: Go = Go \ {〈u, v〉 → ofj (t)}
6: C′u,v = C′u,v + df
7: σ = σ + σu,v

8: for each 〈u, v〉 ∈ pffin do
9: Go = Go ∪ {ofj (t)→ 〈u, v〉}

10: C′u,v = C′u,v − df
11: if C′u,v < 0 then
12: return −1
13: if σ > σmax then
14: σmax = σ
15: σ = 0
16: return σmax

Algorithm 4 shows how to update a resource dependency
graph.. A possible schedule for a specific update block is

10

that the residual capacity C ′u,v of all links in the final path
can accommodate the flow demand. If so, the delay σmax
is returned and will be used in Algorithm 2. Otherwise, the
integer −1 is returned, indicating that the update is infeasible
(lines 11-12). When the update is done, the residual capacity
C ′u,v of all links on the initial (final) path will be increased
(decreased) by a flow demand (lines 4-10).

Based on the above, we have the following theorem.

Theorem IV.1. The timed update sequence obtained from
Algorithm 2 is congestion-free.

V. EXPERIMENTAL EVALUATION

We evaluate our scheduling algorithm using both prototype
implementation and large-scale simulation.

Benchmark schemes: We compare the following schemes
with our algorithm.
• TPP: The two-phase update protocol [30] where we use
VLAN ID as the version number in our experiments.

• NOP: The node ordering protocol [24] that avoids black
holes and forwarding loops [18].

• Chronicle: Our scheduling algorithm in Algorithm 2.
• OPT: The optimal solution of the MUTP integer program

obtained using branch and bound.
We use two types of trace — the uniform trace generated

in [1] and the production data mining trace [15] — in our
evaluation, and the flow volume distribution is shown in
Tab. III. We change the flow demand to simulate traffic
variations. Given the demand, we calculate the initial and final
routing to maximize the network utilization [9].

TABLE III
TRACE DATA USED IN OUR EVALUATION.

Flow volume 1-10K 10-100K 0.1-1M 1-10M > 10M
Uniform [1] 20% 20% 20% 20% 20%

Data mining [15] 81.25% 2.15% 7.95% 4.15% 4.5%

A. Implementation and Testbed Emulations

Implementation: We develop a prototype of our algorithm
using OFSoftSwitch and Dpctl [5] as Openflow switches
and the controller. Now we describe how to perform accu-
rate timing in our algorithm. We first obtain a solution to
MUTP using Algorithm 2. Next we send update messages
to each switch. We first send an OFPBCT_OPEN_REQUEST
message to open a bundle, and then send a sequence of
OFPT_BUNDLE_ADD_MESSAGE messages in order to mod-
ify the rules. Modifications are stored in a temporary staging
area without taking effect. Next we close the bundle. Finally
when a bundle is committed, the modifications will be applied
to the switch at a specific time point.
Testbed setup: Our experiments are performed using a 5-
server testbed, equipped with two Intel E5-2650 CPUs with 12
cores and 64 GB memory. Each server runs a software-based
Openflow switch [5]. We adopt a small scale topology with 5
switches and seven 1 Gbps links as illustrated in Fig. 1(a).
We use the Network Time Protocol (NTP) to synchronize

the clocks of all the switches. The scheduled bundles
feature [3] is used to guarantee accurate timing. We use
pktgen to generate different numbers of flows according to
the trace information shown in [1] and [15]. The aggregate
flow rate is 1 Gbps in total. The forwarding rules are installed
and updated via Dpctl API [5].

20 40 60 80 100
Number of flows

0

10

20

30

40

50

60

U
p

d
at

e
ti

m
e

(m
ill

is
ec

o
n

d
)

Chronicle
NOP
TPP

Fig. 10. Update time.

Experiment results: Since the flow volume differences in [1]
and [15] cannot have a significant impact on the update time,
we only use one figure to show them. Fig. 10 shows the total
update time for different schemes. As Openflow barrier
feature cannot provide accurate acknowledgments [20] to
indicate the completion of an update operation, we use
tcpdump—a powerful packet analyzer—to confirm when
the new rules take effect. We can observe that the update
time of TPP and NOP is around 55 ms on average, while
Chronicle is around 20 ms. Specifically, the update time of
Chronicle, NOP and TPP is 21.59 ms, 53.96 ms and 58.19
ms, respectively, when the number of flows is 20, while that
of them is 21.80 ms, 57.29 ms and 59.86 ms, when the
number of flows is 100. Chronicle can hence reduce the update
time by 63% compared to NOP and TPP. This demonstrates
that Chronicle can leverage the benefits of accurate timing
to accelerate the update process, reducing the time overhead
resulting from the wait-invoke pattern.

In Fig. 11, we measure flow completion time based on data
mining workloads. In our experiments, the number of flows is
fixed at 1000 and the maximum length for each switch port is
250KB. We can observe that the average FCT of Chronicle,
NOP and TPP is 227.6ms, 488.2ms and 614.6ms, respectively.
Obviously, NOP and TPP have more FCT than Chronicle. This
is because the number of congested links using NOP and TPP
is greater than that using Chronicle, due to the asynchronous
network updates, which results in more FCT. Chronicle takes
advantage of accurate timing to reduce congestion during
network updates and thus has a better FCT. In addition, we
note that FCT for TPP is slightly longer due to packet tagging.

To assess the sensitivity of different flow volumes, we define
DFCT for TCP flows as the following equation.

DFCT = FCTupdate − FCTnormal
where FCTupdate and FCTnormal indicate the flow com-

pletion time with and without network updates. Fig. 12 and
Fig. 13 show the DFCT results for data mining workloads with
smaller and larger link delay, respectively. In Fig. 12, we can
observe that the flow with larger volume has more DFCT. The
reason for this is that only the flow with larger volume has
the opportunity to enter the congestion avoidance phase and

11

1K-10K
10K-100K

100K-1M
1M-10M >10M

Average

Flow volume (Byte)

100

101

102

103

104

105

F
C

T
 (

m
ill

is
ec

o
n

d
) Chronicle

NOP
TPP

Fig. 11. FCT for data mining trace.

1K-10K
10K-100K

100K-1M
1M-10M >10M

Average

Flow volume (Byte)

10-2

100

102

104

D
F

C
T

 (
m

ill
is

ec
o

n
d

) Chronicle
NOP
TPP

Fig. 12. DFCT with smaller link delay.

1K-10K
10K-100K

100K-1M
1M-10M >10M

Average

Flow volume (Byte)

10-2

100

102

104

D
F

C
T

 (
m

ill
is

ec
o

n
d

) Chronicle
NOP
TPP

Fig. 13. DFCT with larger link delay.

500 1000 1500 2000 2500

Number of flows

0

100

200

300

400

500

N
u

m
b

er
 o

f
co

n
g

es
te

d
 f

lo
w

s

Chronicle
NOP
TPP

(a) Uniform trace

500 1000 1500 2000 2500

Number of flows

0

100

200

300

400

500
N

u
m

b
er

 o
f

co
n

g
es

te
d

 f
lo

w
s

Chronicle
NOP
TPP

(b) Data mining trace
Fig. 14. Number of congested flows with different numbers of flows.

cut the TCP window size in half once the congestion happens
during network update, leading to prolonged FCTupdate. The
flow with smaller volume terminates during the slow start
phase and cannot enter into the congestion avoidance phase.
Once the packet drops happen during network update, the slow
start phase can be restarted. Specifically, the average DFCT of
Chronicle, NOP and TPP is 0.78ms, 0.91ms and 1.87ms when
the flow volume is between 10K and 100K. In general, NOP
and TPP have more DFCT than Chronicle. This is because the
number of congested links using NOP and TPP can be larger
than that using Chronicle due to the asynchronous network
updates, which result in more FCTupdate. Chronicle can take
advantage of accurate timing to reduce congestion during
network updates and thus has a better FCTupdate than NOP
and TPP. Fig. 12 shows the DFCT results with larger link
delay. We can observe that the flows routed through the link
with larger delay have more opportunities to enter congestion
avoidance phase and thus have more FCTupdate.

B. Simulation

We also conduct extensive simulations to evaluate our
algorithm at scale.
Setup. In addition to the small-scale topology used in our
testbed, here we use a large-scale synthetic scale-free topology
that is randomly produced by the scale_free_graph
function [2]. There are 100 switches and 586 10 Gbps links in
total. We generate different numbers of flows according to the
flow volume information in [1] and [15] with demand ranging
from 100 Mbps to 800 Mbps. Accordingly, we adjust the link
capacity in order to ensure that the congestion-free condition
holds in both initial and final stages. The link delay between
switches is set to be a random number ranging from 1 to 50
time units. We run the algorithms on a server with Intel Xeon
CPU and 15 GB memory. Each data point is an average of
ten runs.
Experiment results: We first investigate the number of con-
gested flows with different numbers of network flows during

50 100 150 200 250

Number of switches

0

100

200

300

400

500

N
u

m
b

er
 o

f
co

n
g

es
te

d
 f

lo
w

s

Chronicle
NOP
TPP

(a) Uniform trace

50 100 150 200 250

Number of switches

0

100

200

300

400

N
u

m
b

er
 o

f
co

n
g

es
te

d
 f

lo
w

s

Chronicle
NOP
TPP

(b) Data mining trace
Fig. 15. Number of congested flows with different numbers of switches.

the entire update process. We can see that in Fig. 14, as the
number of flows increases, NOP and TPP yield significantly
more congested flows, while Chronicle yields zero all the time.
Specifically in Fig. 14(a), the number of congested flows for
NOP and TPP is 471 and 478 respectively, when the number
of flows is 2500. The congested flows for NOP and TPP
account for around 20% of the total flows in the network.
Furthermore, we conduct experiments to show the number of
congested flows with different numbers of switches. In this
settings, we fix the number of flows to 1000 and vary the
number of switches in each run. As shown in Fig. 15, we
observe that using NOP and TPP in small-scale networks can
lead to more congested flows. This demonstrates that Chron-
icle takes full advantage of accurate timing and completely
avoids congestion by assigning different update points for each
flow.

0 5 10 15 20 25 30 35 40 45 50 55 60
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

Time (unit)

M
a

xi
m

u
m

 l
in

k
u

ti
li

za
ti

o
n

NOP
TPP
Chronicle

(a) Uniform trace

0 5 10 15 20 25 30 35 40 45 50 55 60
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

Time (unit)

M
a

xi
m

u
m

 l
in

k
u

ti
li

za
ti

o
n

NOP
TPP
Chronicle

(b) Data mining trace

Fig. 16. The link utilization varies with the time.

Fig. 16 shows the maximum link utilization varying with
time across active links for different schemes. For this sim-

12

500 1000 1500 2000 2500

Number of flows

0

20

40

60

80

100
C

o
n

g
es

ti
o

n
 d

u
ra

ti
o

n
 (

u
n

it
)

Chronicle
NOP
TPP

(a) Uniform trace

500 1000 1500 2000 2500

Number of flows

0

20

40

60

80

100

C
o

n
g

es
ti

o
n

 d
u

ra
ti

o
n

 (
u

n
it

)

Chronicle
NOP
TPP

(b) Data mining trace
Fig. 17. Congestion duration.

0.5 1 1.5 2
Maximum link utilization

0

0.2

0.4

0.6

0.8

1

C
D

F

NOP
TPP
Chronicle

(a) Uniform trace

0.5 1 1.5 2
Maximum link utilization

0

0.2

0.4

0.6

0.8

1

C
D

F

NOP
TPP
Chronicle

(b) Data mining trace
Fig. 18. Congestion duration.

ulation we fix the number of flows at 1000. Intuitively,
congestion happens when the utilization is larger than one, and
a larger value indicates more severe congestion in the network.
Chronicle can guarantee that the network is congestion-free at
any moment, and its link utilization is always less than or
equal to one. In contrast, the maximum link utilization for
NOP and TPP are over 1.1 both in Fig. 16(a) and Fig. 16(b).
Specifically in Fig. 16(a), the congestion duration for NOP
and TPP is around 17 and 23 time units, respectively. This
demonstrates that Chronicle in general can avoid congestion
during the update, and significantly outperforms NOP and TPP
by around 30%.

Fig. 17 shows the congestion duration when the number
of flows varies from 500 to 2500 at the increment of 500.
Intuitively, longer congestion duration will lead to more severe
congestion. Specifically, the congestion duration for NOP and
TPP is around 80 and that of Chronicle is always zero. Note
that the congestion duration for uniform trace is slightly larger
than that for data mining trace, as the flow volume of at
least 80% flows in data mining trace is less than 10KB.
Furthermore, we investigate the CDFs of the maximum link
utilization across active links that carry traffic for different
schemes as shown in Fig. 18. The number of switches is
fixed at 100 and we vary the number of flows from 500 to
2500 in this setting. The black dashed line in the figure is the
baseline which indicates the link utilization is equal to one.
We can observe that Chronicle can ensure that the maximum
link utilization is always less than one while that of NOP and
TPP is 1.6 and 1.7 respectively in Fig. 18(b). Finally during
our experiments, we note that the maximum link utilization
for NOP and TPP increases as the number of flows increases.

In Fig. 19, we show the maximum number of forwarding
rules during update. The maximum number of rules for TPP
increases more significantly than NOP and Chronicle, as the
time evolves. Specifically, the maximum number of rules using
TPP, NOP, and Chronicle is 936, 450, and 396, respectively,

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (unit)

200

400

600

800

1000

 N
u

m
b

er
 o

f
fo

rw
ar

d
in

g
 r

u
le

s

NOP
TPP
Chronicle

Fig. 19. The number of forwarding rules.

when the time step is 25. We observe that Chronicle and NOP
can save over 35% more rules than TPP on average as shown in
Fig. 19. Note that we only show the number of rules during the
update; the old rules will be removed by the controller when
the update is done. Note that these results become inaccurate
for switches that apply longest prefix matching or wild-card
rules. However, such rules are increasingly being substituted
with exact match rules in SDNs [18].

500 1000 1500 2000 2500

Number of flows

0

0.5

1

1.5

2

N
u

m
b

er
 o

f
ch

an
g

ed
 r

u
le

s 104

Chronicle
NOP
TPP

Fig. 20. Number of changed rules.

500 1000 1500 2000 2500
Number of flows

0

10

20

30

O
p

ti
m

al
it

y
g

ap
 (

%
)

Fig. 21. The optimality gap in
percentile.

Fig. 20 shows the number of changed rules during update.
We define the number of changed rules as the number of
rules that needs to be added, modified or deleted during the
update. Essentially this measures the number of operations, as
well as the number of flow table entries required to perform
the update. We observe that TPP induces more changed
rules than NOP and Chronicle. When the number of flows
is 2000, the changed rules of TPP, NOP and Chronicle are
16569, 9069 and 9069 respectively. TPP has almost twice
the amount of changed rules as that of NOP and Chronicle.
This is because TPP relies on different version numbers to
indicate two stages during the update. This process involves
more update (add/remove) operations compared to NOP and
Chronicle.

Finally, we show the optimality gap in percentile. Fig. 21
shows the box plot of the optimality gap between Chroni-
cle and OPT as the number of flows increases. We can see
that the optimality gap in the worst-case is 30% and that in
the average-case is 20%. In general, the difference between
Chronicle and OPT can be accepted in practice.

VI. CONCLUSION

This paper initiated the algorithmic study of minimizing
the makespan in timed SDNs, an interesting optimization
opportunity introduced by recent SDN technology. We proved
that the problem is NP-hard in general and proposed Chron-
icle to find a feasible update sequence in polynomial time.
Our evaluation results show that Chronicle can significantly
reduce the update makespan. We believe that our work opens
interesting directions for future research. In particular, while
our algorithms and prototype show the potential of such opti-
mizations, it will be interesting to chart a more comprehensive

13

landscape of the tradeoff between update time and quality
of the resulting schedule. We could approach it analytically,
but also in different experimental case studies or considering
randomized approaches (which may tolerate a short and small
amount of congestion if it reduces the update time).

REFERENCES

[1] Fnss. http://fnss.github.io/.
[2] Networkx. https://networkx.github.io/.
[3] Openflow switch specification. http://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.4.0.pdf.

[4] Broadcom trident. http://www.broadcom.com/docs/features/
StrataXGSTridentIIpresentation.pdf, 2012.

[5] Cpqd ofsoftswitch. https://github.com/CPqD/ofsoftswitch13, 2014.
[6] R. Ben-Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard.

Constant time updates in hierarchical heavy hitters. In SIGCOMM, 2017.
[7] S. Brandt, K.-T. Foerster, and R. Wattenhofer. On consistent migration

of flows in SDNs. In INFOCOM, 2016.
[8] S. Chopra and M. R. Rao. The partition problem. Math. Program.,

59:87–115, 1993.
[9] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz. On the effect of

forwarding table size on sdn network utilization. In INFOCOM, 2014.
[10] N. Feamster, J. Rexford, and E. W. Zegura. The road to SDN: an intel-

lectual history of programmable networks. Computer Communication
Review, 44(2):87–98, 2014.

[11] K.-T. Foerster. On the consistent migration of unsplittable flows: Upper
and lower complexity bounds. In IEEE NCA, 2017.

[12] K.-T. Foerster, A. Ludwig, J. Marcinkowski, and S. Schmid. Loop-free
route updates for software-defined networks. IEEE/ACM Transactions
on Networking, 26(1):328–341, 2018.

[13] K.-T. Foerster, S. Schmid, and S. Vissicchio. Survey of consistent
software-defined network updates. IEEE Communications Surveys
Tutorials, to appear, 2018.

[14] L. R. Ford and D. R. Fulkerson. Construct maximal dynamic flows from
static flow. Operation Research., 6:419–433, 1958.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data
center network. In SIGCOMM, volume 39, pages 51–62, 2009.

[16] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
wan. In SIGCOMM, 2013.

[17] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache. Dynamic
pricing and traffic engineering for timely inter-datacenter transfers. In
SIGCOMM, 2016.

[18] X. Jin, H. H. Liu, X. Wu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network updates.
In SIGCOMM, 2014.

[19] R. M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations, The IBM Research Symposia Series, pages
85–103. Plenum Press, New York, 1972.

[20] M. Kuzniar, P. Peresı́ni, and D. Kostic. Providing reliable FIB update
acknowledgments in SDN. In CoNEXT, 2014.

[21] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic
engineering with forward fault correction. In SIGCOMM, 2014.

[22] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz.
zupdate: updating data center networks with zero loss. In SIGCOMM,
2013.

[23] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. Transiently secure
network updates. In SIGMETRICS, 2016.

[24] A. Ludwig, J. Marcinkowski, and S. Schmid. Scheduling loop-free
network updates: It’s good to relax! In PODC, 2015.

[25] T. Mizrahi and Y. Moses. Software defined networks: It’s about time.
In INFOCOM, 2016.

[26] T. Mizrahi, O. Rottenstreich, and Y. Moses. Timeflip: Scheduling
network updates with timestamp-based TCAM ranges. In INFOCOM,
2015.

[27] T. Mizrahi, E. Saat, and Y. Moses. Timed consistent network updates.
In SOSR, 2015.

[28] T. Mizrahi, E. Saat, and Y. Moses. Timed consistent network updates in
software-defined networks. IEEE/ACM Trans. Netw., 24(6):3412–3425,
2016.

[29] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying middlebox policy enforcement using SDN. In SIGCOMM, 2013.

[30] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In SIGCOMM, 2012.

[31] S. Vissicchio and L. Cittadini. Safe, efficient, and robust SDN updates
by combining rule replacements and additions. IEEE/ACM Trans. Netw.,
25(5):3102–3115, 2017.

[32] J. Zheng, G. Chen, S. Schmid, H. Dai, and J. Wu. Chronus: Consistent
data plane updates in timed sdns. In ICDCS, 2017.

[33] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng. We’ve got you covered:
Failure recovery with backup tunnels in traffic engineering. In ICNP,
2016.

[34] H. Zhou, C. Wu, Q. Cheng, and Q. Liu. SDN-LIRU: A lossless and
seamless method for SDN inter-domain route updates. IEEE/ACM Trans.
Netw., 25(4):2473–2483, 2017.

Jiaqi Zheng is currently a Research Assistant Pro-
fessor from Department of Computer Science and
Technology, Nanjing University, China. His research
area is computer networking, particularly data center
networks, SDN/NFV, and machine learning system.
He received Ph.D. degree from Nanjing University
in 2017. He was a Research Assistant in the City
University of Hong Kong in 2015, and a Visiting
Scholar in Temple University in 2016. He received
the best paper award from IEEE ICNP 2015, Doc-
torial Dissertation Award from ACM SIGCOMM

China 2018 and the First Prize of Jiangsu Science and Technology Award
in 2019. He is a member of ACM and IEEE.

Bo Li Bo Li received the B.S. degree from the
department of Computer Science and Engineering at
the Nanjing University of Science and Technology,
China, in 2016. He is a 3rd-year M.S. student in
Nanjing University, China. His research interests
include distributed networks and systems.

Chen Tian is an associate professor with State
Key Laboratory for Novel Software Technology,
Nanjing University, China. He was previously an
associate professor with School of Electronics Infor-
mation and Communications, Huazhong University
of Science and Technology, China. Dr. Tian received
the BS (2000), MS (2003) and Ph.D (2008) de-
grees at Department of Electronics and Information
Engineering from Huazhong University of Science
and Technology, China. From 2012 to 2013, he
was a postdoctoral researcher with the Department

of Computer Science, Yale University. His research interests include data
center networks, network function virtualization, distributed systems, Internet
streaming and urban computing.

Klaus-Tycho Foerster is a Postdoctoral Researcher
at the University of Vienna, working with Stefan
Schmid. He was previously a PostDoc at Aalborg
University, Denmark, and a Visiting Researcher at
Microsoft Research, Redmond, USA, with Ratul
Mahajan. He obtained his PhD degree (2016) from
ETH Zurich, advised by Roger Wattenhofer. His
research interests revolve around algorithms and
complexity in the areas of networking and distribut-
ed computing.

14

Stefan Schmid is Professor for Computer Science
at the University of Vienna, Austria. He received
his MSc (2004) and PhD (2008) from ETH Zurich,
Switzerland. Subsequently, Stefan Schmid worked
as postdoc at TU Munich and the University of
Paderborn (2009). From 2009 to 2015, he was a
senior research scientist at the Telekom Innovations
Laboratories (T-Labs) in Berlin, Germany, and from
2015 to 2018, an Associate Professor at Aalborg
University, Denmark. He serves as associate editor
for the Bulletin of the European Association of

Theoretical Computer Science (BEATCS), IEEE Transactions on Network and
Service Management (TNSM), and IEEE/ACM Transactions on Networking
(ToN). Stefan Schmid’s research interests revolve around the fundamental
algorithmic problems of networked and distributed systems.

Guihai Chen is a distinguished professor of Shang-
hai Jiao Tong University. He earned BS degree in
computer software from Nanjing University in 1984,
ME degree in computer applications from Southeast
University in 1987, and PhD degree in computer
science from the University of Hong Kong in 1997.
He has a wide range of research interests with
focus on parallel computing, wireless networks, data
centers, peer-to-peer computing, high-performance
computer architecture and data engineering.

Jie Wu is the Associate Vice Provost for Interna-
tional Affairs at Temple University. He also serves as
the Chair and Laura H. Carnell professor in the De-
partment of Computer and Information Sciences. His
current research interests include mobile computing
and wireless networks, routing protocols, cloud and
green computing, network trust and security, and
social network applications. Dr. Wu is a CCF Dis-
tinguished Speaker and a Fellow of the IEEE. He is
the recipient of the 2011 China Computer Federation
(CCF) Overseas Outstanding Achievement Award.

Rui Li received his M.S. Degree from Central
South University in 2004 and Ph.D. Degree in
Computer Science from Hunan University in 2012.
He received the Outstanding Young Teacher Award
of Hunan Province in 2009 and the Distinguished
Young Teacher Award by luanxiong Liu Funding
in 2010. He is currently an Associate Professor of
Dongguan University of Technology. His research
interests are in cloud computing, sensor networks,
and security.

