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a b s t r a c t

Traffic flow monitoring systems aim to measure and monitor vehicle trajectories in smart cities. Their
critical applications include vehicle theft prevention, vehicle localization, and traffic congestion solution.
This paper studies an RoadSide Unit (RSU) placement problem in traffic flow monitoring systems, in
order to secure vehicles through location proofs. Given some traffic flows on streets, the objective is
to place a minimum number of RSUs to cover and distinguish all traffic flows. A traffic flow is covered
and distinguishable, if the set of its passing RSUs is non-empty and unique among all traffic flows. The
RSU placement problem is NP-hard, monotonic, and non-submodular. It is a non-trivial extension of
the traditional set cover problem that is submodular. Three bounded RSU placement algorithms are
proposed with respect to the number of given traffic flows. To further reduce the number of deployed
RSUs, this paper extends a credential propagation mechanism via vehicle-to-vehicle communications,
which essentially enlarges the coverage of an RSU. Extensive real data-driven experiments demonstrate
the efficiency and effectiveness of the proposed algorithms.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Recent breakthroughs on Traffic Flow Monitoring Systems
(TFMSs) have enabled accurate measurements and monitors of
vehicle trajectories in smart cities. Applications of TFMSs include:
(i) vehicle theft preventions by trajectory monitoring [24,17], (ii)
vehicle localizations by trajectory analysis and prediction [10], and
(iii) traffic congestion solutions by traffic flow management [33].
Due to the growing popularity of location-based vehicle services,
the measurement and monitoring capacities of TFMSs would fur-
ther benefit intelligent transportation systems [24]. Most TFMSs
are implemented through WiFi technologies [27], Bluetooth low
energy radios [11], or GSMs [18]. These TFMS implementationswill
deploy RoadSide Units (RSUs) as the infrastructure for measuring
andmonitoring passing traffic flows. Since RSUs are expensive, the
manufacturing cost of a TFMS depends heavily on the placement
(or deployment) of the RSU.
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This paper considers a scenario where the TFMS measures and
monitors vehicles through location proofs [36,21,13]. The location
proof is a means for a vehicle to demonstrate that it was indeed in
a specific traffic flow. RSUs are deployed on streets and broadcast
their unique RSU IDs via RSU-messages to passing vehicles. A
location proof for a given vehicular trajectory is created based
on the collected RSU IDs along the moving path of the vehicle.
When a vehicle claims to be in a specific vehicle flow, we must
be able to verify this claim by comparing its collected RSU IDs
against a known database of every RSU’s geographic information.
All malicious vehicles, such as thieved vehicles that were in other
traffic flows but not in the claimed one, should be unable to obtain
the correct set of RSU IDs.

This paper studies an RSU placement problem to reduce the
manufacturing cost of the TFMS in a smart city. An example is
shown in Fig. 1, which involves multiple streets and intersections.
On streets, there exist some given traffic flows, which are com-
posed of moving vehicles. The TFMS should measure and monitor
these given traffic flows. An RSU can be placed on a street to
broadcast its unique RSU ID to passing vehicles. A traffic flow is said
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Fig. 1. An illustration of the RSU placement scenario.

to be covered, if it goes through at least one RSU. Clearly, all given
traffic flows should be covered in the TFMS. Otherwise, some given
traffic flows may not be monitored. However, even if all traffic
flows are covered, the TFMS cannotmeasure andmonitor different
traffic flows. The reason for this is that anRSU cannot distinguish its
passing vehicles if they belong to different traffic flows. A covered
traffic flow is said to be distinguishable, if the set of its passing RSUs
is unique among all traffic flows. To measure and monitor traffic
flows through secure location proofs, the TFMS should be able to
cover and distinguish all given traffic flows in the smart city.

To satisfy the coverage and distinguishability requirements, we
can simply place an RSU on each street that is passed by each given
traffic flow. However, this placement strategy is impractical, since
RSUs are expensive. We should minimize the number of placed
RSUs to reduce the manufacturing cost of the TFMS. The objective
of this paper is to minimize the number of placed RSUs, and the
constraint is that all given traffic flows are covered and distinguish-
able. Challenges come from the difference between coverage and
distinguishability: some given traffic flows can be indistinguish-
able, even if all given traffic flows are covered. An example is shown
Fig. 1, which involves six streets (e1 to e6) and four given traffic
flows (f1 to f4). As an RSUplacement strategy, three RSUs are placed
on e1, e3, and e6, respectively. Clearly, all given traffic flows are
covered, since each traffic flow goes through one RSU. However,
f2 and f3 are indistinguishable, since they go through the same set
of placed RSUs (i.e., the RSU placed on e3). Consequently, we should
place onemore RSUon e4 or e5 to distinguish f2 and f3. The coverage
anddistinguishability requirements pose unique challenges for our
problem.

The RSU placement problem is NP-hard, monotonic, and non-
submodular [9,28]. It is a non-trivial extension of the traditional
set cover problem that is submodular [3]. Let f and f ′ denote an
arbitrary pair of traffic flows (in terms of their sets of passing
streets). We demonstrate that, to cover and distinguish f and f ′,
two RSUs are necessary and sufficient to be placed on the streets
from two different subsets of f \ f ′, f ′

\ f , and f ∩ f ′. Three
RSU placement algorithms are proposed. They are bounded with
respect to the number of given traffic flows (denoted by n). The
first algorithm iteratively places a pair of streets to cover and
distinguish maximum pairs of traffic flows, resulting in a ratio of
n ln n(n−1)

2 that belongs to O(n ln n). The second algorithm places
redundant RSUs on streets from each subset of f \ f ′, f ′

\ f , and
f ∩ f ′. Its approximation ratio is n+1

2 ln 3n(n−1)
2 , which also belongs

to O(n ln n). However, it has a lower time complexity than the first
algorithm. The third algorithm has the lowest time complexity, as
well as the best ratio of ln n(n+1)

2 that belongs to O(ln n). It avoids
redundant RSU placements by subtly redefining subsets.

The remainder of this paper is organized as follows. Section 2
surveys related works. Section 3 describes the model and for-
mulates the problem. Section 4 analyzes the problem. Section 5
proposes bounded algorithms. Section 6 extends a credential prop-
agation mechanism. Section 7 includes the experiments. Section 8
concludes the paper.

2. Related work

2.1. Existing traffic flow monitoring systems and applications

In the past decade, TFMSs have brought multiple promising
and emerging applications to pedestrians and vehicles [24]. One
application is vehicle theft prevention through trajectory moni-
toring. Lee et al. [17] designed a vehicle tracking system using
GPS/GSM/GPRS technologies and smartphone applications. Perera
et al. [20] monitored traffic flows based on vehicle trajectory pre-
dictions. Autowitness [8] can track stolen properties (e.g., vehi-
cles) with robust tolerances of GPS outages. TFMSs can be applied
to localize passing pedestrians and vehicles [10]. Jin et al. [15]
explored a pedestrian tracking system with sparse infrastructure
supports. Sivaraman et al. [25] surveyed recent vehicle detection
and localization technologies through RSUs and cameras. Kyun
queue technology [23] monitored and localized road traffic queues
to manage traffic congestion. Janecek et al. [12] estimated the bus
travel time based on the cellular data and the vehicular traffic
theory.

2.2. Location-based TFMSs

Popular TFMSs usually measure and monitor vehicles through
location proofs [16], which are widely used in the mobile com-
puting community. Location proofs are used to securely demon-
strate that a claimer has indeed appeared at a specific location
at a specific time. To verify the spatiotemporal claims, different
types of schemes are designed. Using the distance-bounding pro-
tocols [1] as a common approach, we can measure the physical
times/distances for messages to transmit between a claimer and
its verifiers, and estimate the claimer’s real physical location based
on these physical times. However, the accuracy of the distance-
bounding approaches relies on the deploying density of the veri-
fiers and their trustworthiness [29]. Recently, people have begun
to consider using unique impacts of environmental factors on sur-
rounding objects to create evidence for location verification [32].
Consequently, this paper is motivated by indoor-tracking tech-
nologies [10], where a set of collectedWiFi data is used to associate
identities with different moving objects in surveillance videos.
More specifically, we verify the presence of a vehicular trajectory
by providing spatiotemporal-bounded messages on some crucial
road stretches, the combination of which can cover and uniquely
distinguish one trajectory from others.

2.3. Location-based TFMSs with RSU placement

This paper studied theRSUplacement problem,where the TFMS
places RSUs on streets to monitor passing traffic flows. A similar
scenario includes Xu’s work [30], which places RSUs for vehicle
communications. Randomized and bounded algorithms were in-
troduced to optimize the RSU placement. Zheng and Wu [35] use
RSUs in smart cities to disseminate advertisements to drivers on
passing vehicles. Reis et al. [22] placed RSUs as intermediate relays,
which can improve communications in sparse vehicular networks.
This paper differs from classic placement problems [37] in terms of
the coverage and distinguishability requirements. Our RSU place-
ment problem extends the traditional set cover problem [3] in
terms of the coverage and distinguishability requirements. Given
some elements and a collection of sets of elements, the traditional
set cover problem aims to select minimum sets to cover all given
elements [2]. Elements in a set are covered, if this set is selected.
In contrast to the existing literature, our RSU placement problem
is not submodular, and is a non-trivial extension of the traditional
set cover problem that is submodular [4] (see Table 1).
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Table 1
Comparison to existing work.

Comparison Objective Problem property

Khan [16] Vehicle localization Non-optimization
Xu [30] Vehicle communication Optimization, submodular
Zheng [35] Advertisement dissemination Optimization, submodular
Reis [22] Vehicle communication Optimization, submodular
Our problem Traffic flow measurement Optimization, non-submodular

2.4. Submodularity technique

Our problem brings more unique challenges, since it involves
submodular techniques and non-submodular techniques. Note
that the problem of non-submodular function maximization [6]
has not been perfectly solved in the literature [5]. This is because
certain properties of the objective function are required to design
approximation algorithms. Although the problem of supermodular
function maximization can be optimally solved by the minimum-
norm-point algorithm [7], non-submodular functions are not the
same. The latest approach is based on the curvature [26], which
typically assumes that the marginal gain of the non-submodular
function varies within a given curvature. This approach is based
on modifications of the continuous greedy algorithm and non-
oblivious local search, and allows us to approximately maximize
the sum of a nonnegative, nondecreasing submodular function
and a (possibly negative) linear function. Meanwhile, it has been
proved that these approximation results are the best possible in
the value oracle model, even in the case of a cardinality constraint.

3. Model and problem formulation

3.1. Model and traffic flow analysis

The RSU placement scenario is based on a directed graph G =

(V , E), where V is a set of nodes (i.e., street intersections), and
E ⊆ V 2 is a set of directed edges (i.e., one-way and two-way
streets). We use ei to denote the ith edge. The graph G includes
n given traffic flows of F = {f1, f2, . . . , fn} on the streets. Each
given traffic flow is represented as a walk, which is a sequence of
edges, i.e., f = (e1, e2, . . .). An example is shown in Fig. 1, where
f1 = (e6, e5), f2 = (e3, e5), f3 = (e3, e4), and f4 = (e1, e2). Both
nodes and edges can be repeated in a walk. All given traffic flows
are unique, i.e., we have f ̸= f ′ for ∀f , f ′

∈ F . A given traffic
flow is composed of moving vehicles that need to be monitored
by the TFMS. Applicable scenarios include vehicle theft prevention,
vehicle localization, and traffic congestion management in smart
cities.

To obtain the traffic flow information of F , we rely on the GPS
approach. GPS-enabled devices are widely spread between drivers
making the collection of GPS data more accessible. So there is
an opportunity to infer useful traffic flow patterns. Emilian [19]
applied a statistical analysis on 10000 vehicle GPS traces, from
around 3600 drivers which are mined to extract the outlier traffic
pattern. The urban area can be divided into a grid and organizing
the road infrastructure as segments in a graph. The relationship be-
tween the time (e.g., morning/afternoon or weekdays/weekends)
and the traffic flow can be figured out using the GPS trace data.
As a result, a state-space analysis can be obtained with respect
to the vehicle flow-time pattern. The vehicle flow in this paper
refers to all vehicle flows that are aggregated over time in the
state-space analysis. Note that, in practice, vehicles move in an
arbitrary manner on the road depending on the traffic density and
the pathway ahead. Therefore, it is impossible to track the full trace
of each vehicle. To resolve this problem, we can just focus on the
major roads with in the city, such as expressways and highways.
In other words, we can mainly consider the vehicle flows onmajor
roads instead of all roads.

3.2. Problem formulation

The TFMS places RSUs on streets (i.e., edges) to monitor and
measure passing vehicles through location proofs. Let S denote an
RSU placement strategy, which is our variable. S is the set of edges
with placed RSUs. For example, in Fig. 1, we have S = {e1, e3, e6}.
Let S(f ) denote the subset of S, the edges inwhich f goes through. In
Fig. 1, we have S(f1) = {e6}, S(f2) = S(f3) = {e3}, and S(f4) = {e1}.
A traffic flow is said to be covered, if it goes through at least one
RSU. To monitor all given traffic flows in F , each given traffic flow
should be covered, meaning that S(f ) ̸= ∅ for ∀f ∈ F . However,
the coverage requirement is insufficient to distinguish different
traffic flows. A covered traffic flow is said to be distinguishable,
if the set of its passing RSUs is unique among all traffic flows. To
accurately monitor the traffic flow, a covered traffic flow should
be distinguishable, meaning that S(f ) ̸= S(f ′) for ∀f , f ′

∈ F , f ̸= f ′.
Since RSUs are expensive, the manufacturing cost of a TFMS

depends on the placement of the RSU. To reduce themanufacturing
cost, our objective is tominimize the number of placed RSUs, while
all given traffic flows must be covered and distinguishable for
location proofs. Let |S| denote the set cardinality of S. Our problem
is formulated as follows:

minimize |S|
subject to S(f ) ̸= ∅ for ∀f ∈ F (1)

S(f ) ̸= S(f ′) for ∀f , f ′
∈ F , f ̸= f ′

4. Problem analysis

This section shows that our problem isNP-hard,monotonic, and
non-submodular. The key theorem is also presented.

4.1. Problem hardness

Theorem 1. The RSU placement problem is NP-hard.

The proof of Theorem 1 is available in [34]. The key idea is that
the coverage and distinguishability requirements can be unified
under a special assumption. This proof also indicates that our prob-
lem is a non-trivial extension of the traditional set cover problem.

4.2. Monotonicity and non-submodularity

This subsection presents two basic properties of the RSU place-
ment problem: monotonicity and non-submodularity. Let N(S)
denote the number of covered and distinguishable traffic flows,
under the RSUplacement strategy of S. By definition, 0 ≤ N(S) ≤ n.
Let T denote a superset of S, i.e., S ⊆ T . The monotonicity is stated
as follows:

Theorem 2. The RSU placement problem is monotonic, meaning that
N(S) ≤ N(T ) for ∀S ⊆ T , T ⊆ E.

The proof of Theorem 2 is available in [34]. Theorem 2 shows
that more RSUs can always cover and distinguish no fewer traffic
flows. Since the RSU placement problem is monotonic, it can be
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Fig. 2. An example to illustrate Theorems 4 and 8.

solved by greedy algorithms. However, the monotonicity is insuf-
ficient to obtain bounded solutions. In general, the submodular-
ity [4] is desired. N(S) is submodular, if it satisfies

N(S ∪ {e}) − N(S) ≥ N(T ∪ {e}) − N(T ) (2)

for ∀e ∈ E, S ⊆ T , T ⊆ E. Here, e denotes an arbitrary edge (street
to place an RSU). The submodularity means that the marginal gain
ofN(S) decreaseswith respect to the size of S. It is also knownas the
diminishing return property [4]. Unfortunately, the RSU placement
problem is proven to benon-submodular in the following theorem:

Theorem 3. The RSU placement problem is not submodular, meaning
that N(S∪{e})−N(S) < N(T∪{e})−N(T ) for ∃e ∈ E, S ⊆ T , T ⊆ E.

The proof of Theorem 3 is available in [34]. Due to the non-
submodularity, simple greedy algorithms are not bounded [2].
Non-submodularity clearly differentiates our RSU placement prob-
lem from the traditional set cover problem that is submodular [4].
The coverage and distinguishability requirements pose unique
challenges for our problem, which is a non-trivial extension of the
traditional set cover problem. Therefore, further observations are
needed to obtain approximation results.

4.3. Key observation and trivial bound

This paper minimizes the number of placed RSUs under the
coverage and distinguishability requirements. For a traffic flow
(say f ), S(f ) should be non-empty and unique. Note that S(f ) is
unique, if and only if S(f ) ̸= S(f ′) for ∀f , f ′

∈ F , f ̸= f ′. The
distinguishability requirement should be analyzed in a pairwise
manner. The key observation is that two RSUs are necessary and
sufficient to cover and distinguish an arbitrary pair of given traffic
flows (say f and f ′). In the following paper, we slightly abuse the
notation, inwhich f can also denote the set of streets (edges) it goes
through. Then, we can divide the set of f ∪ f ′ into three disjoint
subsets of f \ f ′, f ′

\ f , and f ∩ f ′. These subsets are depicted in the
following:

The key observation is formally presented as follows:

Theorem 4. To cover and distinguish a given pair of traffic flows
(f and f ′), two RSUs should be placed on streets from two different
subsets of f \ f ′, f ′

\ f , and f ∩ f ′.

The proof of Theorem 4 can be done by checking all the combi-
national possibilities. RSUs,which are not placed on streets in f ∪f ′,
will not cover or distinguish f and f ′. An example is shown in Fig. 2,
where we have:

Algorithm 1 Pair-Based Greedy (PBG)
Input: A graph, G, and a set of traffic flows, F .
Output: A RSU placement strategy, S.
1: Initialize S = ∅.
2: Initialize F 2 as the set of all pairs of traffic flows.
3: for each pair of streets, e ∈ E and e′

∈ E do
4: Initialize a counter of Cee′ = 0.
5: while F 2

̸= ∅ do
6: for each pair of traffic flows, f and f ′, in F 2 do
7: for a pair of streets, e and e′, in f ∪ f ′ do
8: if (e /∈ S or e′ /∈ S) and (e and e′ are in two different

subsets of f \f ′, f ′
\f , and f ∩ f ′) then

9: Update Cee′ = Cee′ + 1.
10: Update S = S ∪ {argmaxee′ Cee′}.
11: Remove f and f ′ for argmaxee′ Cee′ from F 2.
12: Reset Cee′ = 0 for each pair of streets, e and e′.
13: return S as the RSU placement strategy.

Three disjoint subsets for f1 ∪ f2 f1 \ f2 f2 \ f1 f1 ∩ f2
Corresponding streets (edges) e1, e5 e3, e4, e7 e2, e6

To satisfy S(f1) ̸= ∅, S(f2) ̸= ∅, and S(f1) ̸= S(f2), we can have
S = {e1, e3}, S = {e2, e4}, or S = {e5, e6}. In contrast, we cannot
have S = {e1, e5}, S = {e3, e4}, or S = {e2, e6}. Theorem 4 results
in a trivial bound as follows:

Theorem 5. The minimum number of placed RSUs, which can cover
and distinguish all n given traffic flows, should be no smaller than
⌈log2n⌉ and no larger than n(n − 1).

The proof of Theorem 5 is available in [34].

5. Algorithmic design

5.1. Pair-based greedy

This subsection presents a bounded greedy algorithm based on
Theorem 4. Two RSUs are necessary and sufficient to cover and
distinguish an arbitrary pair of given traffic flows. The key idea
is to place a pair of RSUs in each greedy iteration. Such pairwise
placements convert our problem to be submodular, and thus, have
a bounded performance.

Algorithm 1 is proposed to pairwisely place RSUs. In lines 1 and
2, it initializes S as an empty set and F 2 as the set of all traffic flow
pairs. A counter is maintained for each pair of streets (lines 3 and
4). Algorithm 1 iteratively updates a pair of RSUs to the current S
though a greedy placement (lines 5 to 12). The iteration terminates,
when all pairs of given traffic flows are covered and distinguishable
(F 2

̸= ∅ in line 5). In each iteration (lines 6 to 9), Algorithm 1
calculates Cee′ for each pair of streets that are not both in S (i.e., the
streets e or e′ may already be in S, but not both of them are in S).
Cee′ is the number of covered and distinguishable pairs of traffic
flows, if two RSUs are placed on the pair of streets e and e′. Based
on Theorem 4, f and f ′ are covered and distinguishable, if e and e′

are in two different subsets of f \ f ′, f ′
\ f , and f ∩ f ′ (line 8). e and e′

may cover and distinguish multiple pairs of traffic flows. The pair
of streets, which maximize Cee′ , are greedily added to S as the RSU
placement (line 10). The corresponding pairs of traffic flows are
removed from F 2 (line 11). We reset Cee′ = 0 for the next iteration
(line 12). Finally, S is returned when the iteration terminates (line
13).

An example is shown in Fig. 3 to illustrate Algorithm 1. Each
traffic flow pair can be covered and distinguished by placing RSUs
on the following pairs of streets:
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Fig. 3. An example to illustrate Algorithms 1, 2, and 3.

f and f ′ Pairs of streets that can cover and distinguish f and f ′

f1 and f2
{e1, e2} {e1, e3} {e1, e4} {e2, e4}
{e2, e6} {e3, e4} {e3, e6} {e4, e6}

f1 and f3
{e1, e2} {e1, e5} {e1, e6} {e1, e7} {e2, e3} {e2, e5}
{e2, e7} {e3, e5} {e3, e6} {e3, e7} {e5, e6} {e6, e7}

f2 and f3
{e1, e2} {e1, e5} {e1, e6} {e1, e7} {e2, e4} {e2, e6}
{e4, e5} {e4, e6} {e4, e7} {e5, e6} {e6, e7}

Algorithm 1 initializes F 2 to include three traffic flow pairs. In the
first iteration (lines 5 to 12), we have maxee′Cee′ = 3 for e1 and
e2, since they can cover and distinguish three traffic flow pairs
(f1 and f2, f1 and f3, f2 and f3). Hence, e1 and e2 are added to S,
and the corresponding three traffic flow pairs are removed from
F 2. After the first iteration, F 2 becomes empty and the iteration
terminates. Algorithm 1 returns S = {e1, e2}, which is the optimal
RSU placement for this example. To satisfy the coverage and distin-
guishability requirements, we have S(f1) = {e1, e2}, S(f2) = {e1},
and S(f3) = {e2}. For each f , S(f ) is non-empty and unique.

The time complexity of Algorithm 1 is O(n2
|E|

3), resulting from
O(|E|) iterations. This is because Algorithm 1 adds at least one new
street to S in each iteration,whilewe have atmost |E| streets. Then,
each iteration takes O(n2

|E|
2) to go through each pair of traffic

flows to compute Cee′ for each pair of streets. In total, we haveO(n2)
pairs of traffic flows and O(|E|

2) pairs of streets. Algorithm 1 has
a high time complexity, because it computes Cee′ for each pair of
streets. We claim that Algorithm 1 is bounded:

Theorem 6. Algorithm 1 achieves a ratio of n ln n(n−1)
2 to the optimal

algorithm for the number of placed RSUs.

The proof of Theorem 6 is described in the Appendix. n ln n(n−1)
2

belongs to Θ(n ln n). The next subsection will present another
greedy algorithm, which has a similar bound but a lower time
complexity than Algorithm 1.

5.2. Subset-based greedy

This subsection describes another greedy algorithm. Theorem 4
states that, to cover and distinguish f and f ′, two RSUs are placed
on streets from two different subsets of f \ f ′, f ′

\ f , and f ∩ f ′.
As a relaxation, our idea is to place an RSU on a street from each of
f \ f ′, f ′

\ f , and f ∩ f ′. In other words, three RSUs are placed for each
pair of traffic flows. Such a relaxation converts our problem to be
submodular by using redundant placements. Hence, it is bounded.

Algorithm 2 is proposed. After the initialization (line 1), it
decomposes each pair of traffic flows into three subsets (lines 2
and 3). These subsets are added to F †. A counter is maintained for
each street (lines 4 and 5). Then, Algorithm 2 iteratively updates
an RSU to the current S though a greedy placement (lines 6 to 12).
The iteration terminates, when all pairs of given traffic flows are
covered and distinguishable (F †

̸= ∅ in line 6). In each iteration,
Algorithm 1 calculates Ce for each street (lines 7 to 9). Ce represents
the number of included subsets in F †, if an RSU is placed on the
street of e. An RSU is placed on a street from each of the three
subsets of each traffic flow pair. However, a street, e, may include

Algorithm 2 Subset-Based Greedy (SBG)
Input: A graph, G, and a set of traffic flows, F .
Output: A RSU placement strategy, S.
1: Initialize S = ∅ and F †

= ∅.
2: for each pair of traffic flows, f and f ′ do
3: Add three subsets of f \f ′, f ′

\f , and f ∩ f ′ to F †.
4: for each street, e ∈ E do
5: Initialize a counter of Ce = 0.
6: while F †

̸= ∅ do
7: for each subset, f †

∈ F † do
8: for e ∈ f † and e ∈ E\S do
9: Update Ce = Ce + 1.

10: Update S = S ∪ {argmaxe Ce}.
11: Remove f † for argmaxe Ce from F †.
12: Reset Ce = 0 for each street, e.
13: return S as the RSU placement strategy.

multiple subsets from different traffic flow pairs. The street, which
maximize Ce, is greedily added to S (line 10). The corresponding
subsets in F † are removed (line 11). Algorithm 2 resets Ce = 0 for
the next iteration (line 12). Finally, S is returned (line 13).

The same example in Fig. 3 is used to illustrate Algorithm 2.
The subsets corresponding to each traffic flow pair are shown as
follows (nine subsets for three traffic flow pairs):

f and f ′ f \ f ′ f ′
\ f f ∩ f ′

f1 and f2 {e2, e3} {e4} {e1, e6}

f1 and f3 {e1, e3} {e5, e7} {e2, e6}

f2 and f3 {e1, e4} {e2, e5, e7} {e6}

These subsets are added to F † by Algorithm 2 (lines 1 to 3). In the
first iteration (lines 6 to 12), we have maxeCe = 3 for e6, since
e6 appears in three subsets of {e1, e6}, {e2, e6}, and {e6}. Hence, e6
is added to S, and the corresponding three subsets are removed
from F †. In the following iterations, e3, e4, and e5 are added to S
according to the same principle. A random street can be selected
in a tie. The iteration terminates when F †

= ∅. Algorithm 2 returns
S = {e3, e4, e5, e6}, where S(f1) = {e3, e6}, S(f2) = {e4, e6}, and
S(f3) = {e5, e6}. The coverage and distinguishability requirements
are satisfied, since S(f ) is non-empty and unique.

The time complexity of Algorithm 2 is O(n2
|E|

2), since it has
O(|E|) iterations, while each iteration takes O(n2

|E|). Each iteration
of Algorithm 2 scans each pair of traffic flows to compute Ce.
Algorithm 2 has a lower time complexity than Algorithm 1, since it
scans streets rather than pairs of streets (computes Ce rather than
Cee′ ). The insight is that Algorithm 2 uses redundant placements to
reduce the problem complexity. As a trade-off, Algorithm 2 has a
bound that is slightly worse than Algorithm 1:

Theorem 7. Algorithm 2 achieves a ratio of n+1
2 ln 3n(n−1)

2 to the
optimal algorithm for the number of placed RSUs.

The proof of Theorem 7 is shown in the Appendix.

5.3. Improved subset-based greedy

This subsection improves the ratio of Algorithm 2 through a
subtle change. Algorithm 2 is based on Theorem 4, which places
two RSUs on streets from two different subsets of f \ f ′, f ′

\ f , and
f ∩ f ′. Let f △ f ′

= (f \ f ′)∪ (f ′
\ f ), we find that Theorem 4 can be

rephrased as follows:
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Algorithm 3 Improved Subset-Based Greedy (ISBG)
Input: A graph, G, and a set of traffic flows, F .
Output: A RSU placement strategy, S.
1: Same as Algorithm 2, except the subtle change in line 3: Add

three subsets of f , f ′, and f △ f ′ to F †.

Theorem 8. To cover and distinguish an arbitrary pair of traffic flows
(f and f ′), f , f ′, and f △ f ′ should all include a street with a placed RSU.

Proof. Theorem 8 is not obvious, but can be easily proven by
checking all the combinational possibilities. We have three cases
in total, based on Theorem 4. In the first case, two RSUs are placed
on two streets from f \ f ′ and f ′

\ f , respectively. Then, Theorem 8
validates, since f \ f ′

⊆ f , f ′
\ f ⊆ f ′, and f \ f ′

⊆ f △ f ′. In the
second case, twoRSUs are placed on two streets from f \f ′ and f ∩f ′,
respectively. Theorem 8 also validates, since f \ f ′

⊆ f , f ∩ f ′
⊆ f ′,

and f \ f ′
⊆ f △ f ′. In the third case, two RSUs are placed on two

streets from f ′
\ f and f ∩ f ′, respectively. Theorem 8 remains valid,

since f ∩ f ′
⊆ f , f \ f ′

⊆ f ′, and f \ f ′
⊆ f △ f ′. By checking all the

possibilities, the proof completes. ■

The insight of Theorem 8 is that f (also f ′) should include a
street with a placed RSU for the coverage requirement, while f △ f ′

should include a street with a placed RSU for the distinguishability
requirement. Note that f = (f \ f ′)∪ (f ∩ f ′), f ′

= (f ′
\ f )∪ (f ∩ f ′),

and f △ f ′
= (f \ f ′)∪ (f ′

\ f ). Each of f , f ′, and f △ f ′ is an union of
two different subsets of f \ f ′, f ′

\ f , and f ∩ f ′. Therefore, Theorem 8
validates according to the pigeonhole principle. If we go back to the
example in Fig. 2, we have the following subsets for Theorem 8:

Subsets f1 f2 f1 △ f2
Streets (edges) e1, e2, e5, e6 e2, e3, e4, e6, e7 e1, e3, e4, e5, e7

To satisfy Theorem 8, we have S = {e1, e3}, S = {e2, e4}, or
S = {e5, e6}. In contrast, we cannot have S = {e1, e5}, S = {e3, e4},
or S = {e2, e6}. It can be seen that, the result for Theorem 8 is the
same as the result for Theorem 4.

Algorithm 3 is proposed as a simple but subtle variation of
Algorithm2. The only difference is that Algorithm3 uses f \f ′, f ′

\f ,
and f ∩ f ′ rather than f \ f ′, f ′

\ f , and f ∩ f ′. The same example
in Fig. 3 is used to illustrate Algorithm 3. Algorithm 3 includes six
subsets in F † as follows:

Subsets f1 f2 f3
Streets e1, e2, e3, e6 e1, e4, e6 e2, e5, e6, e7
Subsets f1 △ f2 f1 △ f3 f2 △ f3
Streets e2, e3, e4 e1, e3, e5, e7 e1, e2, e4, e5, e7

Algorithm 3 iteratively selects the street that is included in the
most subsets. In the first round, we have Ce = 4 for e1 and e2,
which appear in the most subsets. Suppose that the first iteration
adds e1 into S, and then, the corresponding subsets are removed
(f1, f2, f1 △ f3, and f2 △ f3 are removed). The second iteration adds
e2 into S, since it appears in all remaining subsets of f3 and f1 △ f2.
The iteration terminates, since F †

= ∅. Algorithm 3 returns S =

{e1, e2}, which is also the optimal RSU placement strategy for this
example. We have S(f1) = {e1, e2}, S(f2) = {e1}, and S(f3) = {e2},
i.e., S(f ) is non-empty and unique.

The time complexities of Algorithms 2 and 3 are the same,
i.e.,O(n2

|E|
2). This is because their only difference is the definitions

for the subsets. Algorithms 2 and 3 have lower time complexi-
ties than Algorithm 1, since they scan streets rather than pairs
of streets. Algorithm 2 uses redundant placements to reduce the
problem complexity. It has a bound that is similar to Algorithm 1.
In contrast, Algorithm 3 does not use redundant placements, and
thus, has the best approximation ratio:

Fig. 4. Credential propagations through V2V communications.

Theorem 9. Algorithm 3 achieves a ratio of ln n(n+1)
2 to the optimal

algorithm for the number of placed RSUs.

The proof of Theorem 9 is shown in the Appendix.

6. Problem extensions with priority levels and vehicle-to-
vehicle communications

In practice, traffic flows have different importances, and thus,
many TFMSs do not need to monitor all traffic flows in the most
secure way. Representative scenarios include location proofs for
vehicular trajectories, traffic congestion management, and vehicle
theft prevention, where busy or highly sensitive streets always get
primary monitoring. As a result, this section extends our problem
using priority levels and Vehicle-To-Vehicle (V2V) communica-
tions [31].

6.1. Priority levels and V2V Communications

In order to further reduce the number of deployed RSUs while
maintaining the coverage and distinguishability for given traffic
flows, we define a new concept, priority level, with respect to traffic
flows. The priority level of a traffic flow indicates its importance.
We cut off someRSUs thatmainlymonitor lowpriority traffic flows
by exploring V2V communications. V2V communications enable
the location proofs generated by the RSUs to propagate to other
nearby traffic flows. The key idea is that this credential propagation
mechanism can increase the coverage of an RSU.

Without loss of generality, let li denote the priority level of the
traffic flow fi, where li is an integer ranging from 0 to δ. The lower
the value of li is, the higher priority the traffic flow has. The priority
level controls the maximum hops that V2V communications could
contribute to the corresponding traffic flow’s secure distinguisha-
bility. From the consideration of system management costs, the
credential’s losing probability, and the computing complexity, we
generally set δ as a small integer constant, such as 1 or 2.

We add a new dimension, propagation hop, to the received RSU
tags. For the ease of description, we use eki to represent a k-hop
propagated credential from the RSU on edge ei. For a vehicle that
directly passes an RSU on street ei, it will possess a tag (e0i ) from the
RSU.Whenever a vehicle received a tag eki , the vehicle immediately
creates a new message, which contains a new tag ek+1

i , and keeps
broadcasting the message to all passing vehicles. We assume that
the tag propagation process is secure and probabilistic. The propa-
gation terminates when the hop counter reaches δ. For instance, if
an RSU is placed at street e9 of Fig. 4 and δ = 1, vehicles in flow f1
will obtain e09 directly from the RSU and e19 from other vehicles in
the same flow. Since f1 and f2 share a common street (e1), vehicles
in f2 will also get e19 from the vehicles in f1 when they pass each
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other on e1. However, flows f3 to f5 will not have any tags related
to e9 since the maximum propagation hop is δ = 1.

The V2V-based RSU tags can provide secure distinguishability
among the given traffic flows. An example is shown in Fig. 4.
According to the coverage and distinguishability requirements in
the previous section, at least 4 RSUs are needed. One possible
RSU placement strategy is S = {e1, e3, e4, e6}. However, if V2V
communication is allowed with l1 = l3 = l5 = 0, l2 = l4 = 1, and
δ = 1, placing only 3 RSUs is sufficient, where S ′

= {e8, e9, e10}.
Under strategy S ′, the received tag sets of flows f1 to f5 are {e09, e

1
9},

{e18, e
1
9}, {e

0
8, e

1
8}, {e

1
8, e

1
10}, and {e010, e

1
10}, respectively. Based on the

tags, flows can be securely distinguished from each other through
propagated RSU tags.

Our approach further establishes a priority level-based require-
ment. The coverage and distinguishability among traffic flowswith
priority level li must be provided by the RSU tags within li hops. In
Fig. 4, the secure distinguishability among flows f1, f3, and f5 can be
achieved by purely using the tags directly from the RSUs, i.e., only
using the tags {e0}. In contrast, the distinguishability of flows f1 to
f5 can be achieved by using the tags {e0} and {e1}. The main idea
is that the distinguishability between flows with a higher priority
should be provided by more direct, reliable, and credible evidence
(i.e. RSU tags).

6.2. Extended problem formulation

Realistically, a credential (i.e. eki ) from a nearby RSU may not
be always available since the tag could be lost or there were
not enough V2V communications among encountered vehicles in
different traffic flows. Since V2V communications are probabilistic,
let p(fi, ek) be the probability that fi receives k-hop propagated tags
from the RSU on street e. If e ∈ fi, then p(fi, ek) = 1. Let P{·} denote
the probability of an event. Let Tij ∈ [0, 1] denote a predefined
threshold to distinguish any two flows with priority levels li and lj.
Tij is symmetric and non-increasing: (i) Tij = Tji and (ii) Tij ≥ Tij′
for ∀j < j′. The distinguishing threshold of a higher priority flow is
no less than that of a lower one.

The extended objective is to deploy a minimum number of
RSUs such that the probability for securely distinguishing any
pair of flows is no less than a predefined threshold, which is in
turn determined by the flows’ priority levels. The RSU placement
problem with the help of V2V communications is formulated as
follows:

minimize |S|
subject to S(fi) ̸= ∅ for ∀fi ∈ F

P{S l(fi) ̸= S l(fj)} ≥ Tij
for ∀fi, fj ∈ F and l = max(li, lj) (3)

Here, S l(f ) denotes a set of received tags that vehicles in flow f can
obtain within an l-hop V2V credential propagation under a given
RSU placement strategy S. When RSUs are placed on {e8, e9, e10} of
Fig. 4, we have S0(f1) = {e09}, S

0(f2) = ∅, S0(f3) = {e08}, S
0(f4) = ∅,

and S0(f5) = {e010}. We also have S1(f1) = {e09, e
1
9}, S

1(f2) = {e18, e
1
9},

S1(f3) = {e08, e
1
8}, S

1(f4) = {e18, e
1
10}, and S1(f5) = {e010, e

1
10}. The

priority levels are l1 = l3 = l5 = 0 and l2 = l4 = 1.
The extended problem formulation in Eq. (3) is similar to the

original problem formulation in Eq. (1). The coverage requirement
remains the same. The distinguishability requirement is extended
to use propagated RSU tags within priority levels. Note that the
distinguishability requirement is a probabilistic one, since prop-
agations of RSU tags among vehicles in different traffic flows are
probabilistic. Clearly, the original problem formulation belongs to
a special case of the extended one, in which Tij = 1 and li = lj = 0
for ∀fi, fj ∈ F . Note that the extended problem formulation is prac-
tical. For example, most traffic surveillance cameras are placed on

main roads or accident-prone sections. When an accident occurs,
related information is directly captured by these cameras, while
on less-busy road stretches, such information is usually obtained
by witness testimony.

6.3. Extended problem analysis

Using V2V communication essentially increases the coverage of
anRSU such that traffic flows aremore distinguishable. For analysis
simplicity, we temporarily ignore the fact that V2V communica-
tions are probabilistic, and assume that V2V communications are
always successful. We have:

Theorem 10. If fi and fj could be securely distinguished by S l(fi) ̸=

S l(fj) with l = max(li, lj), then this distinguishability is preserved
when using RSU tags from more than l hop, i.e., S l

′

(fi) ̸= S l
′

(fj) for
∀l′ > l.

Proof. By definition, for ∀l′ > l, we have S l(fi) ⊆ S l
′

(fi) and
S l(fj) ⊆ S l

′

(fj). In addition, any tags in S l(fj) will not belong to
S l

′

(fi) \ S l(fi). This is because S l(fj) only includes RSU tags within l
hops, while S l

′

(fi) \ S l(fi) only includes RSU tags that are not within
l hops. Let e be the RSU tag that leads to S l(fi) ̸= S l(fj). Without loss
of generality, we assume that e ∈ S l(fj) and e ̸∈ S l(fi). Since any tags
in S l(fj) will not belong to S l

′

(fi) \ S l(fi), we have e ̸∈ S l
′

(fi) \ S l(fi).
Since e ̸∈ S l(fi) and e ̸∈ S l

′

(fi) \ S l(fi), we can conclude e ̸∈ S l
′

(fi).
Since e ∈ S l(fj) ⊆ S l

′

(fj), we have S l
′

(fi) ̸= S l
′

(fj) and the proof
completes. ■

The idea of Theorem 10 is that, if two traffic flows are dis-
tinguishable via l-hop V2V communications, then they remain
distinguishable via l′-hop V2V communications for ∀l′ > l. This
is because the RSU tags, which are not within l hops, do not change
the distinguishability within l hops. Theorem 10 indicates that the
RSU placement can consider traffic flows separately in terms of
different priority levels, since RSU tag propagations do not have
a negative impact.

6.4. Priority level-based RSU placement

This subsection will solve the extended RSU placement prob-
lem. Theorem 10 already indicates that RSUs can be placed sepa-
rately for traffic flowswith different priority levels. Intuitively, one
may start with the traffic flows which are in the highest priority
level (i.e. li = 0), and then, gradually include more traffic flows
according to the decreasing order of their levels. However, this
strategy may perform poorly, since the number of high priority
traffic flows is generally much smaller than that of low priority
traffic flows in practical. Since high priority traffic flows are few,
RSUs placed for high priority traffic flows are also few, and thus,
are not likely to provide distinguishability for low priority traffic
flows. Consequently, we start with low priority traffic flows and
gradually consider high priority traffic flows.

The details are presented in Algorithms 4 and 5. Algorithm 4
is a wrapper function. In line 1 of Algorithm 4, S is initialized to
be ∅. Lines 2 and 3 are greedy iterations for traffic flows from
the lowest priority levels (i.e., δ) to the highest priority levels
(i.e., 0). In each greedy iteration, Algorithm 4 calls Algorithm 5
(i.e., RPLK) to place RSUs that are able to distinguish all traffic flows
of the current priority level. Line 3 adds these RSUs to S. After
the greedy iteration l, traffic flows with priority levels from δ to l
are distinguishable (but not necessarily covered). After the greedy
iterations in lines 2 and 3, all traffic flows are distinguishable. To
satisfy the coverage constraint, line 4 iteratively places an RSU on
the street that covers the maximum number of uncovered traffic
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Algorithm 4 Priority Level-based RSU Placement (PLRP)
Input: A graph, G, and a set of traffic flows, F .
Output: A RSU placement strategy, S.
1: Initialize S = ∅.
2: for each priority level l = δ, . . . , 1, 0 do
3: Update S = S ∪ RPLK(G, F , l, S).
4: Update S by iteratively placing an RSU on the street that covers

a maximum number of uncovered traffic flows, until all traffic
flows are covered.

5: return S as the RSU placement strategy.

Algorithm 5 RSU Placement within Level (RPL)
Input: A graph, G, a set of traffic flows, F ,

priority level, l, and RSU placement strategy, S.
Output: A RSU placement strategy, S ′.
1: Initialize traffic flow set as F ′

= {fi | fi ∈ f , li ≤ l}.
2: Initialize distinguish set as D = ∅.
3: for each ordered pair of traffic flows fi, fj ∈ F ′ do
4: if P{S l(fi)\S l(fj) ̸= ∅} < Tij under S then
5: Initialize dij = ∅.
6: for each ek ∈ S l

∗
(fi)\S l∗(fj) do

7: w = 1 − P{S l(fi)\S l(fj) = ∅} · (1 − p(fi, ek)).
8: Update dij = dij ∪ {(ek, w)}.
9: Update D = D ∪ {dij}.

10: Pruning D by removing all supersets within D: remove d′

ij for
any dij, d′

ij ∈ D and dij ⊂ d′

ij. Initialize S ′
= ∅.

11: for each street, e ∈ E\S do
12: Initialize a counter of Ce = 0.
13: while D ̸= ∅ do
14: for each subset, dij ∈ D do
15: for each e ∈ E\S and e /∈ S ′ do
16: if ∃(ek, w) ∈ dij then
17: Update Ce = Ce + w.
18: Update S ′

= S ′
∪ {argmaxe Ce}.

19: Update D for argmaxe Ce.
20: Reset Ce = 0 for each street, e.
21: return S ′ as the RSU placement strategy.

flows, until all traffic flows are covered. When both coverage and
distinguishability constraints are satisfied, Algorithm 4 returns S
as the RSU placement strategy in line 5.

Algorithm 5 places RSUs by using a V2V-based credential prop-
agation. It involves a new notation, S l

∗
(fi). Here, S l∗(fi) denotes a set

of RSU tags, which could be received by the vehicles in the traffic
flow fi through at most l-hop V2V communications, if RSUs were
placed on all edges (i.e., S = E). S l

∗
(fi) indicates the maximum

possible set of RSU tags received by fi. Let us take f3 in Fig. 4 as an
example. We have S0

∗
(f3) = {e03, e

0
6, e

0
8}. This is because the vehicles

in f3 can only receive tags directly from the RSUs on edges e3, e6,
and e8 through 0-hop V2V communications. Similarly, we have
S1
∗
(f3) = {e03, e

0
6, e

0
8, e

1
1, e

1
2, e

1
3, e

1
6, e

1
8}, since a vehicle in f3 is able

to receive additional tags from other vehicles in f2 and f3 through
1-hop V2V communications.

Algorithm 5 only solves the distinguishability constraint. It first
constructs a set of traffic flows within priority level l in line 1,
i.e., F ′

= {fi | fi ∈ f , li ≤ l}. The distinguish set, D, is initialized
in line 2, and is computed from lines 3 to 9. D is a collection of
subsets of streets. The subset dij includes streets, in which an RSU
deployment can distinguish fi from fj, but may not distinguish fj
from fi. Line 3 is a loop through each ordered pair of traffic flows
fi, fj ∈ F ′. If the probability to distinguish fi from fj under the current

Fig. 5. The map and vehicle trace for Dublin’s central area.

RSU placement strategy S does not meet the threshold, dij must
be computed (line 4). Line 5 initializes dij = ∅ and lines 6 to 8
computes dij through each ek ∈ S l

∗
(fi) \ S l∗(fj). Note that S

l
∗
(fi) \ S l∗(fj)

is the set of all streets that candistinguish fi from fj. Line 7 computes
the corresponding probability if an RSU is placed. Line 8 records the
probability in dij, and line 9 records dij in D. Line 10 is a pruning
procedure to remove redundancies in D. Line 10 also initializes
S ′

= ∅. From line 11 to line 20, Algorithm 5 greedily selects
the street with the largest weight, in terms of distinguishability
recorded in D. In lines 11 and 12, Algorithm 5 initializes a counter
for each street e ∈ E \ S. Lines 13 to 20 include a loop to iteratively
select streets for the RSU placement. This loop terminates until D
becomes an empty set. In lines 14 to 17, the totalweights of a street
e inD are aggregated and recorded in its counterCe. Line 18 greedily
places an RSU to the street withmaximumweight. Line 19 updates
D after the RSU placement, and line 20 resets the counter for the
next iteration. Finally, S ′ is returned in line 21.

The time complexity of Algorithm 5 is O(δn2
|E|

3). It takes
O(δn2

|E|) to compute the distinguish set, since we need to go
through each ordered pair of traffic flows with each edge and
each priority level in lines 1 to 9. Meanwhile, the cardinality of
the distinguish set is also O(δn2

|E|). The greedy iterations in lines
11 to 20 take O(δn2

|E|
3). This is because it has at most O(|E|)

iterations, each of which goes through each street for each dij in
the distinguish set.

7. Experiments

7.1. Real trace-driven datasets

This section conducts experiments based on two real traces, the
Dublin vehicle trace [35] and the Seattle bus trace [14]. For the
Dublin vehicle trace, we focus on the part within Dublin’s central
area, which is an 80,000 × 80,000 square foot area, as shown in
Fig. 5. The Dublin vehicle trace includes longitude, latitude, and
vehicle journey ID. The vehicle journey is a given run on a journey
pattern, which corresponds to our concept of the given traffic flow.
The Dublin vehicle trace includes 628 given traffic flows on 3657
streets. For the Seattle bus trace, we also focus on the part within
Seattle’s central area, which is a 10,000 × 10,000 square foot area,
as shown in Fig. 6. The Seattle bus trace includes the x-coordinate,
y-coordinate, and bus route ID. Each bus route is a given traffic
flow. The Seattle bus trace includes 135 given traffic flows on 2283
streets.

The distributions of the Dublin vehicle trace and the Seattle bus
trace are analyzed. Fig. 7 shows the distribution of the number of
passing streets for a traffic flow. In both traces, a traffic flow can go
through as many as about 300 streets. In the Dublin vehicle trace,
most traffic flows go through less than 40 streets. In contrast, in
the Seattle bus trace, most traffic flows go through 40 to 80 streets.
Traffic flows in the Seattle bus trace, on average, go through more
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Fig. 6. The map and bus trace for Seattle’s central area.

Fig. 7. The distribution of the number of passing streets for a traffic flow.

Fig. 8. The distribution of the number of passing traffic flows for a street.

streets than those in the Dublin vehicle trace. On the other hand,
Fig. 8 shows the distribution of the number of passing traffic flows
for a street. A street in the Dublin vehicle trace can have up to 240
passing traffic flows, while a street in the Seattle bus trace has no
more than 50 passing traffic flows. In other words, traffic flows are
more dense on a street in the Dublin vehicle trace.

Practical TFMS applications in the Dublin vehicle trace include
the traffic congestion solution by managing the traffic flows cap-
tured by the TFMS. Since our RSU placement can cover and dis-
tinguish all given traffic flows, the rate of each traffic flow can
be collected by the TFMS for vehicle redirections. Practical TFMS
applications in the Seattle bus trace can include the dynamic bus
arrival time estimation through TFMS’s trajectory predictions, un-
der the assumption of a fixed bus speed. They are applicable in
smart cities.

7.2. Evaluations for original problem

This subsection describes experiments for the original problem
in Eq. (1).

7.2.1. Experimental settings
Our experiments mainly focus on the relationship between the

number of placed RSUs and the percentage of traffic flows, under

nine different scenarios that are defined by three different flow
locations and three different flow lengths. Streets are classified into
downtown and suburb, depending on the number of passing traffic
flows. If a traffic flow goes through more downtown streets than
suburb streets, then it is in downtown. Otherwise, it is in suburb.
We have three different flow locations of downtown, suburb, and
both of them (i.e., all locations). After determining the flow loca-
tion, we filter traffic flows by their lengths. The length of a traffic
flow is defined as the number of its passing streets. We have three
different flow lengths of the top half, bottomhalf, and both of them
(i.e., all lengths). Once the scenario is decided, a given percentage of
traffic flows are uniform-randomly selected for the RSUplacement.
The results are averaged over 1000 times for smoothness.

7.2.2. Comparison algorithms
Algorithms 1 to 3 are evaluated in the experiments. They are

denoted as PBG, SBG, and ISBG, respectively. In addition to the
proposed algorithms, four baseline algorithms are used according
to different ideas:

• Coverage-OrientedGreedy (COG). It just iteratively places an
RSU on the street that covers maximum uncovered traffic
flows. The iteration terminates when both the coverage and
distinguishability are satisfied.

• Distinguishability-Oriented Greedy (DOG). For each pair of
f and f ′, it iteratively places an RSU on the street that covers
the maximum number of subsets created by f △ f ′. The
iteration terminates when both the coverage and distin-
guishability are satisfied.

• Select Unique Coverage (SUC). It iteratively places an RSU
on a street that uniquely covers a traffic flow. If such a street
is not found, it performs an exhaustive search to optimally
place remaining RSUs.

• Two Stage Placement (TSP). It has two stages. In the first
stage, it greedily places RSUs to cover all traffic flows. In the
second stage, it greedily places RSUs to distinguish all traffic
flows.

7.2.3. Evaluation results in Dublin vehicle trace
The evaluation results of the Dublin vehicle trace are shown

in Fig. 9, which has three rows and three columns of subfigures.
Rows are scenarioswith different flow locations of downtown (first
row), suburb (second row), and all locations (third row). Columns
are scenarios with different flow lengths of top half (first column),
bottom half (second column), and all lengths (third column). Ex-
periments focus on the performances with respect to different
percentages of randomly-selected traffic flows in nine scenarios. A
smaller number of placed RSUs means a better performance. Note
that, because of the monotonicity, more RSUs are needed to cover
and distinguish more traffic flows.

Fig. 9 shows that, in all scenarios, a larger percentage of given
traffic flows always brings a larger number of placed RSUs. ISBG
significantly outperforms all the others among all nine scenarios.
This is because ISBG avoids redundant RSU placements, based on
Theorem 8. TSP and PBG have the second-best performances. TSP
fails to jointly consider the coverage anddistinguishability require-
ments. PBG has redundant RSUs due to its pairwise placement.
PBG is better and worse than TSP for downtown and suburb traffic
flows, respectively. This is because PBG has redundant RSUs when
traffic flows are densely overlapped on streets (i.e., downtown
traffic flows). COG, DOG, and SUC do not have good performances,
since (i) COG ignores the distinguishability requirement, (ii) DOG
ignores the coverage requirement, and (iii) SUC does not utilize
traffic flow overlaps to minimize the number of placed RSUs. SBG
also performs poorly, especially for suburb traffic flows. This is
because it may place more redundant RSUs for each traffic flow
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Fig. 9. Results in the Dublin vehicle trace (nine different scenarios defined by three different flow locations and three different flow lengths).

pair. Another notable point is that different flow locations and
different flow lengths have some impacts on the number of placed
RSUs. For ISBG, slightly more RSUs should be placed for downtown
short-length traffic flows in Fig. 9(b) than suburb long-length traf-
fic flows in Fig. 9(d). COG andDOGhave theworst performances for
downtown traffic flows in Fig. 9(a) and (b), while SBG has theworst
performance for suburb traffic flows in Fig. 9(d) and (e). This is
because SBGhasmany redundant placements that are unnecessary
for sparse traffic flows in suburb.

7.2.4. Evaluation results in Seattle bus trace
The evaluation results of the Seattle bus trace are shown in

Fig. 10, which has the same settings as Fig. 9. The Seattle bus
trace has fewer and sparser traffic flows than the Dublin bus trace.
While ISBG keeps to have the best performance, SBG has the worst
performance, except for SUC in Fig. 10(a). Such a performance gap
results from Theorem 8, which can avoid redundant RSU place-
ments. Note that COG and DOG outperform TSP and PBG, since the
traffic flows in the Seattle bus trace have longer lengths. This differs
from the result in the Dublin bus trace. We also find that more
RSUs should be placed for downtown short-length traffic flows in
Fig. 10(b) than suburb long-length traffic flows in Fig. 10(d). Areas
with denser traffic flows need more RSUs to satisfy the coverage
and distinguishability.

7.2.5. Evaluation results for RSU distribution
To further understand the behavior of the RSU placement, this

subsection studies the location of placed RSUs in the Dublin trace.
The intersections are evenly divided into high-traffic intersections
and low-traffic intersections, according to the number of passing
vehicles. For each algorithm, we compute the percentage of high-
traffic intersections and low-traffic intersections for placed RSUs.
The evaluation results are shown in Table 2. Note that COG places
83% RSUs on high-traffic intersections, since it iteratively places an
RSU on the street that covers maximum uncovered traffic flows.
Although high-traffic intersections can cover traffic flows, they
cannot distinguish these traffic flows. Therefore, COG has a bad
performance. TSP has the same problem as COG for the same
reason. In contrast, DOG and SUC prefers low-traffic intersections
to distinguish traffic flows. Meanwhile, our algorithms (especially
for ISBG) significantly favor low-traffic intersections during the
RSU placement, since our algorithms prioritize distinguishability.
Once flows are distinguishable, they are likely to be covered. As a
result, we can conclude that distinguishability favors to place RSUs
on low-traffic intersections.

7.3. Evaluations for extended problem

This subsection describes experiments for the extended prob-
lem in Eq. (3).
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Fig. 10. Results in the Seattle bus trace (nine different scenarios defined by three different flow locations and three different flow lengths).

Table 2
RSU distribution in the Dublin trace.

Algorithm High-traffic intersection Low-traffic intersection

COG 83% 17%
DOG 68% 32%
SUC 61% 39%
TSP 74% 26%
PBG 73% 27%
SBG 57% 43%
ISBG 49% 51%

7.3.1. Experimental settings and comparison algorithms
Our experiments continue to study the relationship between

the number of deployed RSUs and the percentage of traffic flows,
under different scenarios defined in the previous subsection. In ad-
dition, the probability for successful V2V communications between
vehicles in the same street is set to be 0.5. Note that vehicles in the
same street can come from different traffic flows. The predefined
threshold, Tij, is uniform-randomly selected from 0 to 1. The prior-
ity level of each traffic flow is set to be 1.

Algorithms 2 (SBG) and 4 (PLRP) are evaluated in our experi-
ments. PLRP are further divided into two kinds, RPLK0 and RPLK1,
based on the flow priority levels. RPLK0 and RPLK1 assume that
the priority level of each traffic flow is 0 or 1, respectively. RPLK1
is expected to use fewer RSUs than RPLK0, since RPLK1 is less
restricted by the priority level. SBG is used as a baseline rather

than ISBG, since PLRP is essentially a probabilistic variation of
SBG. SUC and TSP in the previous subsection are also used for
comparisons with some modifications: early termination is used
if the probabilistic distinguishability requirement is satisfied.

7.3.2. Evaluation results
The evaluation results of theDublin vehicle trace and the Seattle

bus trace are shown in Figs. 11 and 12, respectively. Similar to
the previous subsection, the results are composed of two rows
(different flow locations of the downtown and suburb) and three
columns (different flow lengths of the top half, bottom half, and all
lengths) of subfigures. A smaller number of placed RSUs means a
better performance.

We have several interesting observations. The curves in Figs. 11
and 12 are no longer as smooth as Figs. 9 and 10. This is because
V2V communications are probabilistic, leading to more fluctua-
tions on the number of RSUs. RPLK1 uses fewer RSUs than RPLK0,
since RPLKhas less restrictions on the priority levels of traffic flows.
By leveraging the priority levels of traffic flows, RPLK1 uses the
smallest number of RSUs to cover and distinguish all traffic flows.
We find that the number of RSUs needed in the extended problem
is less than that in the original problem, since V2V communications
can essentially enlarge the propagation of RSU tags. Flow locations
and flow lengths have very limited impacts on the number of
RSUs for the extended problem. This is also because the credential
propagation mechanism increases the coverage of an RSU, such
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Fig. 11. Results in the Dublin vehicle trace for the extended problem.

Fig. 12. Results in the Seattle bus trace for the extended problem.



236 H. Zheng, W. Chang and J. Wu / Journal of Parallel and Distributed Computing 127 (2019) 224–237

that the differences among flow locations and flow lengths are
relatively ignorable. Finally, the number of deployed RSUs in the
Seattle bus trace is smaller than that in the Dublin vehicle trace,
since the Seattle bus trace is smaller and denser.

8. Conclusion

This paper studies an RSU placement problem for the TFMS.
Given some traffic flows on streets, the objective is to place a
minimumnumber of RSUs to cover and distinguish all traffic flows.
The coverage and distinguishability requirements are that, for each
traffic flow, the set of its passing RSUs should be non-empty and
unique. Our problem is NP-hard, monotonic, and non-submodular.
Three approximation algorithms are proposed to place RSUs with
different insights. Extensive real data-driven experiments demon-
strate the efficiency and effectiveness of the proposed algorithms.
Our future work will further analyze spatio-temporal nature of
vehicle flows (since this paper uses the averaged one over time).
The role of time will be identified with respect to the coverage and
distinguishability. The state-space graph with more parameters
(such as time, location, weather) can be used to model vehicle
traffic flows.
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