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Abstract—Indoor localization is of great significance to a wide
range of applications in the era of mobile computing. The matu-
rity of the computer vision techniques and the ubiquity of
embedded sensors in commercial off-the-shelf (COTS) smart-
phones shed the light on the submeter localization services
for indoor environment. The state-of-the-art indoor localiza-
tion works suffer from high-cost deployment and inaccurate
results due to the coarse readings from internal measurement
units (IMUs) sensors in the smartphones. In this article, we
mainly innovate in introducing the WiFi-sensing technology
to extract the distance information in a low-cost and device-
free manner. Along with the computer vision technology, we
model and implement an accurate and easy-to-deploy system
for indoor localization. This system enhances indoor localization
with multimodal sensing via two images, IMU sensors read-
ing and CSI of WiFi signal. Specifically, we first model and
design camera-based, sensor and WiFi-assisted indoor localiza-
tion and propose several algorithms in this model. We then
implement a prototype with smartphones and commercial WiFi
devices and evaluate it in several distinct indoor environments.
The experimental results show that 92-percentile error is within
0.2 m for indoor targets which sheds light on submeter indoor
localization.

Index Terms—Indoor localization, multimodal sensing,
smartphone.

I. INTRODUCTION

A. Motivation

INDOOR localization has served as an indispensable part
for a wide range of applications and services, such as

customer navigation in shopping malls [1], object localiza-
tion and tracking in airports [2], and routing robots in an
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automated factory [3]. The essence of these applications
lies in the measurements of distance and angle for indoor
localization. However, most state-of-the-art multimodal-based
localization schemes, such as Argus [4] and ClickLoc [5],
are mainly flawed in measurement accuracy or cost, although
with tremendous related attempts, accurate and robust indoor
localization remains unsolved. Meanwhile, recent progress in
the hardware ability of mobile smartphones has shed light
on and the need for vision-based indoor localization. As
the camera is essentially a more powerful sensor capable of
harvesting the environment information in high dimensions,
the vision-based method [5]–[8] is a promising direction to
improve the indoor localization to a new level. However,
the cameras, especially the smartphone equipped ones, are
unstable and noisy, thus also pose great challenges to effi-
cient and accurate localization. As the most camera-taken
images are lacking the depth information of the objects, it
is essential to propose a multimodal mechanism fully utiliz-
ing the IMU and other possible means to help the smartphone
cameras accurately extracting the distance information in the
images.

B. Proposed Approach

In this article, we propose a nonintrusive and high-accurate
solution for vision-based indoor localization. We mainly inno-
vate in introducing the multimodal data from commercial
off-the-shelf (COTS) WiFi devices, internal measurement units
(IMUs) sensors, and the monocular camera of smartphones
together to derive the distance and direction. The basic idea is
as follows. We match similar scenes from two photographs
collected by the monocular camera and identify the target
objects in the images for further distance extraction. Based
on the detection results, we further extract the geometric
information of the image space, where the inertial sensors data
and channel state information (CSI) values are continuously
collected during the user’s movements, with which we manage
to extract the moving distance and direction. Then, we fuse
this information with the map and get a geometric relationship
of the image space to the inertial space, supplying the actual
distance and orientation in the physical space to achieve the
users’ localization.
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C. Challenges and Solutions

To implement our multimodal localization as a practical
system, three technical challenges need to be addressed. The
first challenge is how to extract accurate distances and direc-
tions between different photographs. The indoor localization
results in this article can be severely affected by the dis-
tance and angle measured by inertial sensors. Owing to the
subtle changes of the user’s gesture during localization, the
collected data of inertial sensors may be inconsistent with
the previous measurements and result in attitude drifts. The
distance and orientation obtained from IMU sensors could
also be erroneous. Hence, it is necessary to eliminate the
influences of attitude drifts and ensure the reliability of sen-
sor data. As a solution, we basically introduce the fusion
data from both the IMU sensors and the WiFi passive sens-
ing technology and get the improved results of distance and
orientations.

The second challenge is how to obtain the geometric rela-
tionship between two images and map it to inertial space.
Images collected by the user provide scene information,
visual clues, and geometric relationships for the point of
interests (PoIs). Therefore, effective methods to extract suf-
ficient information of the indoor scenario are essential. On
the one hand, we consider sensor data to divide regions for
feature matching of objects in images, which reduces the com-
plexity of matching. On the other hand, we adopt a multitarget
detection framework to detect objects in two images, and out-
put the coordinate information of each target. We can further
obtain detailed geometric relationships through calculations
of coordinate data, acquiring the positions of target objects
in images. Moreover, considering the obtained distance and
direction, we can complete coordinate mapping by utilizing the
correspondence of the same measurement in different spaces.

The third challenge is how to fuse the multimodal sensing
information, especially the vision and the WiFi sensing, for
better measurement performance. For visual clues collected
by the monocular camera, the related module outputs coordi-
nate data for the proposed localization model and the distance
ratio of the target object to the camera’s visual boundary in the
image space. For the user’s movement and distance measure-
ment in the inertial space, we take into account both the IMU
sensors and WiFi CSI, and conquer the drawbacks of attitude
drift, error accumulations of IMU sensors, and multipath effect
on CSI values. Finally, we manage to design an approach tak-
ing advantage of both methods. Basically, it first obtains time
constant from first-order system equations. Then, both distance
estimation from WiFi Fresnel Zone model and the orientation
from IMU sensors are combined and output accurate distance
estimations.

The fourth challenge is how to apply our system into
a multiple person environment. Although WiFi CSI-based
moving distance measuring is much more accurate than the
IMU sensors, it could be easily compromised by the distur-
bance from the other moving persons in the environment.
We manage to do this by introducing the virtual samples
mechanism and extract the distance information with the other
movement interference in such environment.

D. Contributions

We make four contributions in this article that can be
summarized as follows.

1) We demonstrate the feasibility of enhancing indoor
localization based on multimodal sensing via camera and
sensors of smartphones and design the system that can
be used to assist the reconstruction of building interior
view and indoor navigation further.

2) We propose an innovative algorithm for multimodal dis-
tance and orientation estimation in indoor environments,
making full use of scene information from images and
extracting the user’s motion information effectively.

3) We propose a framework to enable the WiFi-based
device-free moving distance derivation to be performed
in multiple person scenarios, so that our localization
algorithm could be applied in real environment settings.

4) We implement a proof-of-concept localization prototype
and evaluate it in various indoor environments. The
experimental results show that the 92-percentile error is
within 0.2 m for indoor targets which makes our solution
achieving submeter accuracy overall.

II. RELATED WORK

The rich inertial sensors in smartphones and the widespread
use of the CV technology have attracted extensive research
focusing on using one or multiple sensing modalities to
determine the indoor location, including heading direction,
movement distance, and walking trajectory of the pedestrian.
Many approaches have been proposed in the localization system,
including utilizing wireless signal [9], [10], multiple sen-
sors [11], [12], and images [8], [13]. The closely related work
can be roughly divided into the following three categories.

1) WiFi-Based Indoor Localization: Wu et al. [14] proposed
a mechanism analyzing WiFi signal features through
2-D Fresnel model to determine the walking dis-
tance and direction of users indoor, which detects both
centimeter-scale and decimeter activities with high accu-
racy. Yu et al. [15] built a method that uses CSI
values provided by COTS WiFi devices to measure
the movement distance and heading direction of human
hands. Vasisht et al. [16] utilized a novel algorithm that
computes distances between antennas and the client with
a MIMO access point through multiplying the time-of-
flight with the speed of light to achieve decimeter-level
localization accuracy. Recent work [17] even tried to use
the learning-based method to enhance the outdoor local-
ization. In summary, WiFi-based methods perform well
in terms of accuracy but they are greatly affected due to
multipath interference in the complex indoor environ-
ments. In this article, multimodal sensing indoors can
help weaken the measurement error caused by multipath
effect.

2) Image-Based Indoor Localization: Gao et al. [18] uti-
lized CV and crowdsourcing to reconstruct a floor
plan by extracting direction and position information
from images, and acquiring the spatial relation from
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Fig. 1. Target localization model based on two images.

embedded sensors. Chen et al. [19] proposed a
mechanism that jointly leverages images taken with
smartphones and sensor data to reconstruct indoor skele-
ton. Zheng et al. [20] proposed a vision-based navigation
system Travi-Navi that collects high-quality images on
the trajectory of pedestrian, which packs visual clues
and sensor data for accurate position measurements.
Most image-based localization methods require mas-
sive images to construct the back-end database. In
this article, our aims include reducing the overhead of
image database construction, and not relying on the
construction of building structures. The authors in [6],
[7], and [21] used the positioning method of image
database with image descriptors and efficient index-
ing. Meanwhile, Vedadi and Valaee [22] automatically
constructed the image database capable of synthesis
with any indoor image-based localization method. Then,
Werner et al. [23] proposed three mode positioning
with the first mode based on an image similar to
[6], [7], and [21] and the other two based on the same
video streaming as in [24]. Recent papers such as [25],
and [26] further improved in the form of a single image
and 2-D floor map localization.

3) Multimodal Indoor Localization: Xu et al. [4] proposed
an enhanced WiFi-based localization approach by
extracting geometric constraints from crowdsourced
images collected by the back camera of smartphones and
reduced fingerprint ambiguity by mapping constraints
against fingerprint spaces. Xu et al. [5] proposed a
method that is rooted in extracting semantic information
from a few images and combining it with sensor data
after optimization. Dong et al. [27] leveraged WiFi fin-
gerprints to select partitions for building 3-D models
from the crowdsourced 2-D photographs collected by
smartphones, which meshes the paths recognized from
the user motion and compiles a trajectory navigation
for the pedestrian. Fusion algorithms commonly achieve
higher indoor localization accuracy but with high cost of
calculation and more complex deployments generally.

III. PRELIMINARY

In theory, localization can be performed given as few as
two images shooting at different positions. The localization
principle is shown in Figs. 1 and 2. Two photographs I1 and
I2 of a PoI (we use target and PoI interchangeably hereafter)
O are taken at two positions P1 and P2. Let O1 and O2 denote

Fig. 2. Multimodal indoor localization model.

the corresponding projections. We have
⎧
⎨

⎩

sin(γ−α)
sin α

= d2
d1

sin α′
sin(γ−α′) = d′

2
d′

1

(1)

where γ is the maximum shooting angle for the
camera, α = ∠OO1C, α′ = ∠OO2B, d2/d1, d′

2/d′
1, respec-

tively, represent the distance ratio of the target to the
boundaries in the two images. Thus, the orientation and
distance of the camera from the target in the image can be
calculated as follows:
⎧
⎪⎪⎨

⎪⎪⎩

∠OO1O2 = α + β − θ2
∠OO2O1 = α′ + β − θ1 + θ2
OO1 = sin

(
α′ + β − θ1 + θ2

) ∗ d/ sin ∠O1OO2

OO2 = sin(α + β − θ2) ∗ OO1/ sin
(
α′ + β − θ1 + θ2

)

(2)

where θ1 and θ2, respectively, represent the rotation angle
of the smartphone, d is the camera moving distance
from P1 to P2, and β = (1/2)(180◦ − γ ).

In this way, if projections O1 and O2 are detected in the
two images, and the rotation angles θ1, θ2 and the distance d
are known, we can derive the position of the camera via (2).
In the following section, we will describe how to obtain the
required information for localization.

IV. MULTIMODAL LOCALIZATION

A. System Overview

As explained in the last section, we require two photographs
taken in two shooting positions and we need to detect the PoIs
in the two photographs, obtain the rotation angels θ1, θ2 of the
smartphone, and calculate the distance d between two shoot-
ing positions. Therefore, we divide the proposed multimodal
indoor localization system into four components as shown in
Fig. 3.

1) Multimodal Data Collection: As depicted in Fig. 4, the
data collection phase begins with taking one photograph
of the PoIs in an indoor environment. Then, the user
pushes the smartphone to take the second photograph of
the same PoIs. During the movement, the smartphone
continuously collects the IMU data and the WiFi CSI
signal data.
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Fig. 3. System architecture.

Fig. 4. Illustration of PoIs photography taking.

2) Scene Information Extraction: This module is used to
obtain the geometrical relationship between the two pho-
tographs in the image space, i.e., d1/d2 and d′

1/d′
2 as

shown in (1). Different from the traditional computer
vision technique which calculates the correspondence
between two photographs at the pixel level, we directly
utilize a target (PoI), such as a keyboard or a laptop
as shown in Fig. 5 to calculate the correspondence.
Moreover, in order to avoid useless PoI detection based
on low-quality images, we first assess the image quality.
In particular, we first integrate the collected IMU data to
roughly estimate the moving distance between the two
images, determining the detection range accordingly, and
perform feature matching in the detection area. Then,
the scale-invariant feature transform (SIFT) [28] algo-
rithm is utilized to match the feature points in two
images to confirm whether the quality of the two pho-
tographs is sufficient. If the correspondence degree of
the two photographs is relatively low (the number of
correspondences is lower than a threshold a = 300), the

Fig. 5. Target detection in images.

proposed system will guide the user to retake another
two photographs.
Consequently, we adopt a multiobject detection frame-
work based on YOLO V2 [29] to perform target detec-
tion, which mainly uses a joint training method for target
classification that ensures the detection accuracy in real
time. YOLO V2 identifies the targets in two images
and outputs their coordinates in the image space. The
detection results in two images are shown in Fig. 5.
The working procedure is described in Algorithm 1.
As a result, we can calculate the geometric relationship
between the images.

3) Multimodal Sensing Information Extraction: We inte-
grate the IMU data and CSI data to accurately measure
the rotation angles θ1 and θ2 and the accurate moving
distance d of the smartphone. As the orientation mea-
surement of IMU has sufficient accuracy, we directly
use it to obtain the smartphone orientation, i.e., θ1 and
θ2 in (2). The accelerometer built in the smartphone
can be used to estimate its movement distance, which
however often has a large error from the ground truth.
Fortunately, multisensor data fusion combining the IMU
sensor and WiFi signal can effectively improve the accu-
racy. Based on the accelerometer sensor measurement as
the raw data, the gyroscope is used to measure the angu-
lar velocity of the smartphone, and the rotation vector
sensor is used to convert the acceleration value from

Authorized licensed use limited to: Temple University. Downloaded on March 11,2020 at 14:47:53 UTC from IEEE Xplore.  Restrictions apply. 



1028 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

Algorithm 1 Target Detection
Input:

Image set I={I1, I2}; Movement distance between two
images d collected by IMU; A preset correspondence
degree threshold a.

Output:
Distance ratios d2/d1 and d′

2/d′
1 used in Eq. (1).

1: Divide the two images into multiple regions for feature
matching according to d;

2: Calculate the correspondence degree α of the two images
by SIFT;

3: while α < a then
4: Take another photos;
5: Detect target objects utilizing YOLO V2;
6: for each detected target do
7: Record the distance ratios d2/d1 and d′

2/d′
1 from visual

boundaries.
8: return the average d2/d1 and d′

2/d′
1

Algorithm 2 Localization by Multimodal Data
Input:

IMU data; two images; WiFi CSI data;
Output:

Global position of the smartphone (the user);
1: Geometric Relations Acquisition:
2: Utilize the IMU data to determine the detection ranges in

two images;
3: Identify multiple targets in two images;
4: Get the coordinates of the targets in the image space;
5: Obtain the distance ratios;
6: Moving Distance and Rotation Angle Estimation:
7: Process multisensor data for primary distance measure-

ment according to Eq. (3);
8: Obtain the rotation angle from the rotary vector sensor;
9: Calculate the distance via CSI signal for complementary

measurement;
10: Fuse both distance measurements according to Eq. (4) to

obtain a final distance value d;
11: Localization:
12: Performing localization according to Eq. (2);

the smartphone coordinate system to the inertial coor-
dinate system. As for the WiFi signal, when the user
pushes the smartphone, the phase of the dynamic com-
ponent of CSI will change accordingly, leading to the
fluctuation of waveform. Hence, the moving distance
can be estimated based on the Fresnel zone model [30].
When the smartphone moves between adjacent ellipses
in the Fresnel zone, the reflection path changes by half
of the wavelength. We can infer the moving distance
by calculating the number of ellipses the smartphone
passes through. Then, we further combine the measure-
ments of wireless CSI signal to complete the distance
calculation.

4) Indoor Localization via Multimodal Sensing: Based on
the obtained geometrical relationship between the two

Fig. 6. Original acceleration data.

photographs, distance, and orientation of the smart-
phone, localization is finally realized via (2). The work-
ing procedure is summarized in Algorithm 2. In the
following, in detail, we illustrate how we could infer
accurate d based on the IMU data and WiFi signal.

B. Accurate Distance Inference Based on IMU
and WiFi Data

1) Rough Estimation via IMU Sensors: In indoor environ-
ments, the data of sensors and wireless channel are affected by
activities people perform indoors. As aforementioned, we first
perform primary moving distance and rotation angle estima-
tion via multisensor data. As shown in Fig. 6, during the user’s
movement, accelerometers are susceptible to external distur-
bances, incurring large fluctuations and many high frequency
components in data. Hence, the Butterworth low-pass filter
is a natural choice which removes high-frequency noises. In
order to eliminate the influence of static gravitational accel-
eration, the original data need to be dehomogenized. The
waveform after gravity effect elimination and Butterworth fil-
ter is shown in Fig. 7. Due to drifts caused by movement,
the data acquired by the accelerometer are not continuous
with the previous moment, which leads to angle deviations.
Therefore, the quaternion space coordinate conversion algo-
rithm is considered to map the collected accelerometer data
from the smartphones coordinate system to the actual iner-
tial coordinate system in order to reduce the effects of
drifts. The formula for coordinate conversion is expressed
as follows:

⎡

⎣
x′
y′
z′

⎤

⎦ = [
ABC

]×
⎡

⎣
x
y
z

⎤

⎦ (3)

A =
⎡

⎣
m2

1 + m2
2 − m2

3 − m2
4

2(m2m3 − m1m4)

2(m2m4 + m1m3)

⎤

⎦ (4)

B =
⎡

⎣
2(m2m3 + m1m4)

m2
1 + m2

3 − m2
2 − m2

4
2(m3m4 − m1m2)

⎤

⎦ (5)

C =
⎡

⎣
2(m2m4 − m1m3)

2(m2m3 + m1m4)

m2
1 + m2

4 − m2
2 − m2

3

⎤

⎦ (6)
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Fig. 7. Acceleration data processed with Butterworth filter.

Fig. 8. Acceleration after conversion.

where [x, y, z]T represents the smartphone coordinate,
[x′, y′, z′]T represents the inertial coordinate, m1 represents the
numeric part of rotation vectors, m2 represents the rotation
vectors along the x-axis, so as m3 for y-axis, and m4 for z-axis.

Fig. 8 shows the accelerometer data distribution after the
coordinate conversion and Butterworth filter. Moreover, the
gyroscope provides angular velocity information for the cal-
culation of moving distance. Then, we combine the angular
velocity and acceleration information to obtain the moving
distance as follows:

s =
∫ t

0

[
a′ cos(ωt) + υ0

]
dt (7)

where ω is the angular velocity, υ0 is the initial speed, a′ is
the accelerometer measurement, and s is the moving distance.

2) Calibration via CSI of WiFi: We further calibrate the
distance measurement based on the WiFi CSI signals integrat-
ing with the Fresnel model. As described in Section IV-A,
after the first photograph was taken, the user is required to
push the smartphone to take the second photograph. When
the smartphone moves in the Fresnel zones, the radio signal
travels from the transmitter to the receiver through the direct
path and reflected path. The Fresnel zone demonstrates the
relationship of reflector’s location and continuously marks the
positions in which channel frequency response (CFR) power is
enhanced or degraded [30]. As shown in Fig. 9, when a smart-
phone’s location (C1) is at the first Fresnel zone boundary, the
reflected path is λ/2 longer than the direct path, where λ is
the wavelength. This adds the phase shift by π because the
two signals are in the same phase and result in constructive
interference. Similarly, the smartphone (C2) located at the sec-
ond Fresnel zone boundary leads to destructive interference.

Fig. 9. Fresnel zone model.

Fig. 10. Indoor multipath environment.

In order to characterize the case of CSI signal in the presence
of moving objects indoors, we have studied the typical setup
of WiFi devices indoor shown in Fig. 10, where the signal
is transmitted indoors through multiple paths to the receiving
end. These paths can be divided into static and dynamic paths.
The received signal H(f , t) can be expressed by the following
equation:

H(f , t) = Hs(f ) + Hd(f , t) = Hs(f ) + a(f , t)e− j2πd(t)
λ (8)

where Hs(f ) is the static vector representing the sum of the
signals from the static path; Hd(f , t) is the dynamic vector,
introduced by the moving object; a(f , t) is the amplitude of the
dynamic path; e−(j2πd(t)/λ) is a complex value representation
of the initial phase offset; and d(t) is the dynamic path length.
It can be seen from the formula that when the length of the
reflected signal changes by λ, its phase shift is 2π . Therefore,
the received signal H(f , t) has a time-varying amplitude in the
complex plane

|H(f , θ)|2 = |Hs(f )|2 + |Hd(f )|2 + 2|Hs(f )||Hd(f )| cos θ (9)

where θ is the phase difference between the static vector and
the dynamic vector. This model is essential for extracting the
movement and gesture information from WiFi CSI data [31].
The static vector is the combined direct signal and the reflect
signal from static object, while the dynamic vector is the one
from moving objects. Basically, the dynamic vector could be
obtained by subtracting the current signal from the signal in
the static environment. In our system, we only need the phase
difference between two dynamic vectors by subtracting them,
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Fig. 11. Original CSI data.

Fig. 12. CSI data processed with Butterworth filter.

as the static vectors stay the same. Therefore, when a smart-
phone in the room passes through several WiFi Fresnel areas,
the amplitude of the CSI varies with the peak and trough. We
can infer the time of the smartphone crossing the boundaries
of the Fresnel zone by observing signal fluctuations to measure
moving distance.

As shown in Fig. 11, the original CSI data contain many
redundant information incurred by carrier frequency offset
(CFO). Since the frequency of common human activities is
often within 200 Hz, we adopt the Butterworth low-pass filter
with a cutoff frequency of 200 Hz. As depicted in Fig. 12,
it is obvious to find that high-frequency noises are removed
the after Butterworth filter. However, the noise between 1 and
200 Hz cannot be estimated. As shown in Fig. 13, we use prin-
cipal component analysis (PCA) to reduce the full-frequency
noise further. As discussed above, we can acquire distance
information by counting the regions the smartphone passes
through. In detail, each subcarrier corresponds to a Fresnel
zone since the wavelength of that is different. We filter each
subcarrier to smooth out the signal and count the number of
fluctuation periods in frequency domain to obtain the moving
distance in the Fresnel zone. Note that there will exist multiple
WiFi signals in the environment, thus, the unintended WiFi
signal also has impact on our Fresnel zone. Mostly, the unin-
tended signal will be harmful to our system, especially for
those having strong signal strength. However, as our system
only relies on detection of the peak of the signal to build the
Fresnel zone model, our system is robust to small interference.

3) Data Fusion for Moving Distance: Considering the accu-
mulative error of IMU data and the instantaneous error in the
periodic characteristics of the CSI signal, we combine both

Fig. 13. PCA-based denoising.

measurements to obtain a final distance measurement. Let d1
denote the distance measurement by IMU and d2 by CSI sig-
nals. To compensate for the drift and dynamic error caused
by IMU, we consider that wireless CSI data are more reli-
able in a short time. Hence, d1 has a small weight coefficient
to weaken the influence of the abnormal data while d2 has
a larger weight to suppress the impact of frequency offsets.
We can calculate the associated weight coefficients through
determining the time constant, which is an important descrip-
tive measurement of dynamic performance in the first-order
systems. The differential equation and transfer function of the
first-order system are expressed as follows:

dX(t)

dt
+ cX(t) = u(t) (10)

R(s) = X(s)

u(s)
= 1

s + c
(11)

where X(t) is the system output, u(t) is the system input, R(s)
is the transfer function, and c is a constant. If the substituting
unit step input u(t) into solution, u(t) can be given by the
following equation:

u(t) =
{

1 τ ≥ 0
0 τ < 0.

Then, the system output is represented by

X(τ ) = 1 − e−cτ . (12)

The time constant τ is defined as 1/c, and its response X(1/c)=
0.632. So, we can obtain weight coefficient from the following
equation:

η = τ/(τ + t). (13)

Therefore, the accurate moving distance d can be finally
calculated by

d = τ

τ + t
× d1 +

(

1 − τ

τ + t

)

× d2. (14)

With the distance to multiple PoIs and the position of these
PoIs, we can easily use this distance to localize the photograph
shooter’s location.

V. LOCALIZATION IN MULTIPLE USER ENVIRONMENT

In this section, we further extend the proposed multimodal
localization to the scenarios with multiple users.
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Fig. 14. Procedure of multiperson indoor localization.

A. Basic Idea

As mentioned in Section IV-B, we rely on CSI signal to
obtain a precise distance measurement. Although with very
high precision, the CSI-based distance could be easily com-
promised with multiple moving objects nearby. Specifically,
multiple (mobile) users performing various actions (including
sitting down, walking, and so on) will cause big inference in
the CSI signal, which will bring a big challenge in extracting
the moving distance of the target user.

To address this challenge, we first assume that, during a
short time period, only a single target user (who wants to
localize him/herself) performs the push action to measure the
distance with the CSI signal. Then, we need to identify the
push action from the mixing CSI signal influenced by multiple
actions. Basically, we introduce the virtual action sample to
resolve this problem. Here, the virtual action samples refer
to a possible CSI signal incurred by different action combi-
nations. With these virtual action samples, we could try to
extract the push action from the other overlapping CSI signals
by subtracting the real received signal to the generated vir-
tual samples. Moreover, the virtual sample is advantageous
in reducing the training cost. We do not require multiple users
to provide training samples for all possible combinations of
predetermined actions. Instead, we utilize the real sample of
each action to generate a virtual sample for any desired com-
bination of actions. In this way, only a single user is required
to provide training samples for each action.

The workflow of the localization in multiperson scenario is
as follows: 1) we detect whether there are multiple users per-
forming actions simultaneously indoors; 2) we determine the
number of simultaneous actions performed in the detected CSI
signal; 3) we identify the time range where multiple actions
are performed and we further separate the start and end time
of each action; 4) we filter out reasonable action combinations
and generate a virtual user action sample; 5) we compare the
detected action sample with the generated virtual samples to
identify the types of action combinations; and 6) we deter-
mine the sequence of actions that contain the target action
and feature model, from which we calculate the orientation
and distance. In summary, as shown in Fig. 14, the solution is
divided into three main modules: 1) data acquisition and pro-
cessing; 2) frequency extraction; and 3) action recognition and
indoor localization. The detailed design of each component is
presented as follows.

B. Data Acquisition and Processing

This module collects the CSI data from commercial wire-
less devices. As described above, the transmitter has two
antennas and the receiver has three antennas. Thus, it takes
2 × 3 × 30 = 180 CSI streams as the input and converts each
CFR value in each stream to CFR power through multiplying
by its complex conjugate. Specifically, (8) is transformed into

H(f , t) = e−j2π�ft

⎛

⎜
⎝Hs(f ) +

∑

∀k∈∪nu
i=1

ak(f , t)e− j2πdk(t)
λ

⎞

⎟
⎠ (15)

where nu is the number of actions performed simultaneously
and k is the number of dynamic paths. The CFR power can
be further calculated by the following formula:

|H(f , t)|2 = |Hs(f )|2 +
∑

∀k∈∪nu
i=1ϕi

|ak(f , t)|2

+
∑

∀k,p∈∪nu
i=1ϕi;k 
=p

2|ak(f , t)ap(f , t)|

cos

(
2π
(
υk − υp

)
t

λ
+ 2π

(
dk(0) − dp(0)

)

λ
+ φkp

)

+
∑

∀k∈∪nu
i=1ϕi

2|Hs(f )ak(f , t)|

cos

(
2πυkt

λ
+ 2πdk(0)

λ
+ φsk

)

(16)

where [(2π(dk(0)− dp(0)))/λ] +φkp and [(2πdk(0))/λ] +φsk

represent the initial constants of different indoor paths.
Next, similarly, we use the wireless CSI processing method

mentioned above, i.e., the Butterworth low-pass filtering and
PCA processing. Since the principal components after PCA
have correlation, the signals of human actions captured in a
certain principal component can also be acquired in the other
principal components. So the CSI component with the high-
est signal-to-noise ratio among the principal components is
selected as the primary source of data for subsequent modules.

C. Action Frequency Extraction

1) User Action Modeling: We establish the feature model
Vt

n,k for each action which includes four types of character-
istics: time, moving distance, orientation, and speed of the
movement. Let Vt

n,k represent the feature vector generated
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from the kth training sample of the nth predefined action, and
the feature vector is defined as

Vt
n,k =

{

time, distance, orientation,
distance

time

}

(17)

where time is the action duration; distance is the action span
in the Fresnel region, characterized by the number of fluctu-
ation periods in the frequency domain; and orientation is the
direction of the action, which can be expressed by the distance
ratio on the two coordinate axes in the 2-D Fresnel region men-
tioned above. It can be characterized using the discrete wavelet
transform (DWT) to calculate the phase delay between differ-
ent subcarriers; distance/time is the speed of the movement.
Since the duration of different training samples will be differ-
ent, the feature model needs to be normalized by the number
of window steps of the frequency to quantify the frequency
introduced by actions in the CFR power. The normalization is
as follows:

Vt
n,k = Vt

n,k

(time − w)/mn
(18)

where w is the width of the sliding window and m is the
number of training samples for the nth predefined action.

2) Primary Frequency Extraction: We take the denoised
flow of the training samples for any given action (obtained
from the output of the data acquisition and processing mod-
ule) as input and slide it over a short time width window in
a certain step size. First, we collect the CSI data under the
static background (that is, no active users) in the indoor envi-
ronment. Then, we obtain the mean variance of the collected
wireless CSI data after PCA and DWT processing, and the
value is set to a threshold T for judging whether the indoor
user is in an active state. In the active state, it is necessary to
further determine the number of total frequencies of the CSI
due to users’ activities. All paths of CSI in the indoor envi-
ronment include the static paths and the dynamic paths. The
number of total paths is represented by N, which can be mea-
sured by the number of peaks greater than threshold T of all
frequencies. When the user performs activities indoors, if the
number of paths whose path length changes at different rates is
s, that is, the number of primary frequencies which are intro-
duced by human actions is s, and the number of secondary

frequencies is

(
s
2

)

, where N = s +
(

s
2

)

. Specifically, we

consider the binary search method to determine the number of
primary and secondary frequencies and then distinguish which
frequencies are the primary frequencies. We calculate the pair-
wise difference between the s frequency values and figure out

the distance between the vectors for the

(
s
2

)

difference value

and the remaining

(
s
2

)

frequencies. Finally, we select the set

of vectors with the shortest vector distance as the primary and
secondary frequencies, respectively. Since the module needs
to search for the primary and secondary frequencies in turn,
the calculation cost is relatively high compared with the other
modules. But this module is only performed once during the
training phase, which does not have a great impact on the
running speed during localization.

Fig. 15. Segmentation of combination and action.

D. Action Recognition and User Localization

1) Action Segmentation: We take the wireless CSI stream
after denoising of samples as input and continuously slide a
window of short duration on it. For the case where multiple
users simultaneously perform actions, it can be observed that
when the variance of the wireless CSI data in the continu-
ous window is greater than the static threshold T , it can be
determined that one or a group of actions is performed by the
users; otherwise, it can be determined that one or a group of
actions is terminated by indoor users.

When multiple users perform actions simultaneously, the
segmentation method of action combination is inconspicuous
for each action division. For the beginning and end of each
action in a combination, we consider making a judgment by
processing the frequency vector of samples in each window
step. In the first window step, the number of frequency vectors
Nf 0 is only introduced by the first action. Then, we com-
pare the number of frequency vectors Nf τ with the exponential
weighted average μf (τ−1) of frequency vectors, where

μf (τ−1) = μ(τ−2) + Nf (τ−1)

2
μf 0 = Nf 0. (19)

If Nf τ − μf (τ−1) > αiNf 0, it means that the number of
frequency vectors increases rapidly at time τ , which indi-
cates that another actions are performed by the other users,
where i is the number of actions, and α is a constant.
Correspondingly, Nf τ − μf (τ−1) < αiNf 0 represents that the
number of frequencies is rapidly reduced, which means that
an action is terminated at this time. Considering that when
a user introduces a new action in wireless environment, the
existing action is being executed by other users, so α must be
less than 1, and we take 0.9 as its initial value in the algorithm
design. When the system detects that the number of actions
in the beginning is greater than that in the end, the value of α

increases by a step of 0.02. Otherwise, α decreases by a step
of 0.02. When a new action is detected, the feature model
Vt1

n,k is established for the action; when an action is ended,
we establish the feature model Vt2

n,k. Then, we pair Vt1
n,k with

Vt2
n,k, and return a set of time series (t1, t2). As illustrated in

Fig. 15, with the highest matching degree of feature model,
so as to match the start and end of an action in combinations.
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2) Action Combination Selection: With nA as the number of
predefined actions and nu as the number of simultaneously
performed actions, we have nu

nA action combinations. The
number of candidates is large, which makes the action recogni-
tion too complicated. Therefore, we need to reduce the number
of candidate actions and filter out reasonable action combina-
tion. The specific method is: 1) since the frequency length
caused by human actions does not exceed 300 Hz, we remove
the candidate actions whose amplitude difference between any
frequencies is greater than

√
300 and 2) we do not consider

the combination of predefined action samples that match the
detected feature model by less than 50%. Based on the start
and end time of each action, we filter the possible action
combinations and their execution time pairs. The action com-
bination and time pair are used as the input of the virtual
action sample generation module.

3) Virtual Sample Generation: Based on the action com-
bination, we generate the virtual samples in the form of a
binary matrix. Before generating virtual samples for any given
action combination, we need to determine whether the duration
between randomly selected training samples matches the fil-
tered ones. Basically, if the duration Tcombine of filtered action
combinations is greater than the duration Ttrain of the train-
ing samples, the (Tcombine − Ttrain)/Ttrain primary frequency
sets are supplemented and renumbered in chronological order;
if the duration Tcombine of filtered action combinations is
less than the duration Ttrain of the training samples, the
(Ttrain − Tcombine)/Ttrain primary frequency sets are truncated
and renumbered in chronological order.

Specifically, first, we retrieve the sets of indoor user activ-
ity frequencies in the action training samples associated
with the time series pair (t1, t2); then, the entries in the
matrix corresponding to primary frequencies are set to 1,
which is equivalent to inserting the characteristics of pri-
mary frequencies in virtual samples; moreover, we insert the
characteristics of secondary frequencies into virtual samples,
and calculate the pairwise difference between primary and
secondary frequencies. We set the entries in the matrix that
correspond to the calculated values of primary and secondary
frequency differences to 1, and insert the characteristics of
secondary frequencies into virtual samples; finally, we com-
plete the generation of virtual samples by supplementing the
features of the primary and secondary frequencies.

4) Localization of Multiple Users: The action recognition
of multiple users in an indoor environment is essentially com-
paring the similarity between the binary matrix Mj of detected
samples and the binary matrix Mv of virtual samples. We
take virtual samples, and denoised wireless CSI stream from
the start of first detected action to the end of the last action
as input. We first use frequency vectors obtained from the
above work as detected sample matrices. When the frequency
is greater than the static threshold, the user is not stationary,
and the action is performed. So we set the corresponding entry
in the matrix to 1; otherwise, we set it to 0. Thus, the detec-
tion sample matrix Mj is generated. Furthermore, we confirm
the similarity between the detected samples and virtual sam-
ples by calculating the Jaccard coefficients of Mj and Mv, and
identify a plurality of actions performed by indoor users.

Fig. 16. Experimental settings in different environments.

In the end, the moving distance of the smartphone is finally
calculated. We can infer the localization result based on (2) in
the same way as in Section IV.

VI. PERFORMANCE EVALUATION

In this section, we will introduce the experimental settings
and evaluation setup of the system, then we will evaluate the
performance of the proposed method in terms of accuracy and
efficiency.

A. Experimental Implementation and Setup

1) Prototype Implementation: The prototype consists of a
Google Nexus 5X as the monocular camera and IMU sensor
data acquisition device, an Intel NUC D54250WYKH com-
puter with an Intel 5300 NIC as the WiFi signal receiver,
and a mini R1C wireless router as the transmitter. The imple-
mentation is conducted in the 5-GHz frequency band with
20-MHz band with channels. In addition, the transmitter has
two antennas and the receiver has three antennas. We sample
the IMU data at a rate of 50 samples/s and CSI singles at
2500 samples/s. In each scenario in indoor environments, we
choose 10 PoIs and take two photographs for each PoI from
different angles. In total, we have collected 1200 samples from
eight volunteers.

2) Experiments in Single User Environment: We first
design several experimental settings when the user varies in
arm movement and the movement of arm and body during the
process of taking photographs. Then, the effect on localization
accuracy caused by different smartphone movement patterns
is explored. In this experiment, we use the real distance value
as the baseline. Furthermore, we compare the effect of the
acquired image number on the results. On the other hand, we
compare the existing indoor localization system Argus [4],
ClickLoc [5] to our solution on the same dataset. The exten-
sive experiments are conducted in the following environments:
an empty room, a laboratory with scattered tables and chairs,
and the same laboratory with more tables and chairs and also
a metal plate is placed between the user and the receiver, as
illustrated in Fig. 16.

3) Experiments in Multiple Users Environment: For the
multiperson environments, we also consider three indoor sce-
narios as shown in Fig. 16. The data collection process is as
follows. Basically, we collect training samples of five actions
from eight volunteers, including walking (w), pushing (p), sit-
ting down (s), falling down (f), and running (r). We first ask
each volunteer to provide 20 samples for each action in a
random indoor scenario, and then take 16 sets of action com-
binations consisting of 2, 3, and 5 actions each. In total, we
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TABLE I
ACTION COMBINATION IN THE EXPERIMENTAL DATA SET

Fig. 17. Overall distance measurement performance.

have collected 1760 action samples, including 800 samples of
a single action and 960 samples of action combinations, 60
samples for each action combination. Table I summarizes the
collected samples and the numbering of involved volunteers
with corresponding action IDs.

B. Experiment Results

1) Single-User Environment: We present the performance
evaluation result for our solution in single-user environment.

Overall Performance: First, we evaluate the accuracy of
the prototype using the aforementioned settings. We basically
conduct experiments testing the distance to 10 different PoIs
at the laboratory and the meeting hall. Fig. 17 summarizes the
performance of our solution, where the results are compared
with the “baseline” (ground-truth distance). We can see that
the 92-percentile localization errors are 0.2 m.

Arm Movement Versus Arm and Body Movement: Fig. 18
presents the localization accuracy with the user’s arm
movement and with the user’s arm and body movement during
localization. It shows that the 92-percentile errors of a single
movement and a compound movement are 0.19 and 0.23 m,
respectively. Multiple actions affect the IMU data and wireless
data. However, the movement of the user’s arm and body can

Fig. 18. Impact of activity diversity.

Fig. 19. Impact of different movement pattern.

Fig. 20. Performance with different image numbers.

be distinguished by the analysis of multimodal data. Thus, the
accuracy is not greatly reduced.

Different Movement Pattern: When moving the smartphone
between two shooting positions, we consider, including left
and right translations, forward and backward translations, and
oblique movements that can be decomposed into translation
and rotation. As shown in Fig. 19, the 92-percentile esti-
mated errors of the above postures are 0.18, 0.2, and 0.21 m,
respectively. The reason for this difference is that the first two
movement methods do not need to consider the measurements
of rotation angles, which reduces the localization errors to
some extent.

Two Photographs Versus Three Photographs: Fig. 20 illus-
trates the localization accuracy of taking two photographs and
three photographs in the same scene. As shown in the figure,
collecting three images reduces the estimated error. The rea-
son is that the third image outputs an additional distance and
direction from the user to the target objects in images, which
can help correct the previous localization result.
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Fig. 21. Performance with different environments.

Fig. 22. Performance with different solutions.

Distinct Environments: From Fig. 21, we can see that the 92-
percentile localization error in scene 1 is about 0.17 m, and that
in scenes 2 and 3, the errors are 0.2 and 0.21 m, respectively.
It demonstrates that the localization system performs well in
all three environments.

Comparison of the State-of-the-Art: Then, we compare our
system with the existing methodology. Argus is an indoor
localization system that estimates the user’s distance and direc-
tion via combining WiFi with visual clues, which extracts
geometric constraints in the image space and takes joint meth-
ods to map the constraints to the fingerprint space. ClickLoc is
a system for indoor localization through multimodal measure-
ments on smartphones. It uses the core technology of image-
based semantic information extraction and sensor-based data
fusion. For a fair comparison, we evaluate Argus, ClickLoc,
and our proposed solution. We further provide the same con-
dition of sampling and measurement in the same dataset.
Fig. 22 shows the comparison results. We can observe from
Fig. 22 that our scheme is superior to Argus by about 36%
and ClickLoc by about 19%.

2) Multiple Users Environment: In Figs. 23 and 24, we
evaluate the accuracy of action recognition under the combina-
tions of two to five actions, where multiple users sequentially
execute these action combinations. It can be seen that the
proposed method can achieve an average recognition accuracy
of 92.87% and 94.05% when the actions are simultaneously
and sequentially executed, respectively.

Under the premise that three actions are performed indoors
at the same time, we investigate the influence of the distance
between the users on the localization accuracy. We set the
distance between the users to 65, 80, 95, 110, and 125 cm
to evaluate the system performance. As shown in Fig. 25, as

Fig. 23. Recognition result of the actions performed simultaneously.

Fig. 24. Recognition result of the actions performed in sequence.

Fig. 25. Impact of the distance between the users.

the distance between users increases, the recognition accuracy
of multiperson motion increases. The reason is that when the
users are relatively close, the user’s dynamic signal reflection
is hindered to a certain extent. Furthermore, in this situation,
the user may not be able to perform certain actions completely.

In addition, we evaluate the results of multiperson motion
detection in three scenes. As can be seen from Fig. 26, the
solution proposed in this article performs well in all scenes,
even when the reflection path in the indoor environment
increases and the line-of-sight path is blocked.
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Fig. 26. Impact in different indoor environments.

Fig. 27. Performance in multiperson environment.

Fig. 28. Impact of activity diversity of multiperson.

Furthermore, we evaluate the overall localization
performance of the target user in a multiperson envi-
ronment. As shown in Fig. 27, the experimental results show
that the localization error in multiperson environment is
not much different from that of only one active user. The
distance error of the 92-percentile is 0.22 m. Compared
with the localization for a single user, the measurement
error of multiperson is increased by 0.02 m, indicating
that our localization algorithm is robust to multiperson
interference.

Similarly, we evaluate the performance of localization in
the indoor environment where multiple people perform actions
simultaneously, considering the case in which the user only
performs the arm movement and the simultaneous movement
of the arm body. As shown in Fig. 28, the 92-percentile dis-
tance error under a single-arm movement is 0.22 m, and the
92-percentile distance error of the compound movement is
0.23 m. We verify the performance of indoor localization with
three movement patterns in multiperson environment as well.

Fig. 29. Impact of movement patterns of multiperson.

Fig. 30. Localization performance in different environments.

We consider that users perform actions with left and right
translations, forward and backward translations, and oblique
movements. In Fig. 29, it shows that the 92-percentile esti-
mated errors of above postures are 0.2, 0.21, and 0.23 m.
We further analyze the performance of multiperson indoor
localization in three scenes. As shown in Fig. 30, the 92nd
percentile errors are 0.19, 0.21, and 0.22 m. In general, our
proposed indoor localization solution of multiple people has
been experimentally verified to perform well.

C. Results Summary

By analyzing the experimental results above, we can sum-
marize the following.

1) The localization accuracy of moving the smartphone
with a single action is more accurate than that with com-
pound action. However, the decrease is acceptable by
further actions recognition.

2) The movement pattern of the smartphones while tak-
ing photographs has a small impact on the localization
results, which demonstrates that our system is robust to
different photograph-taking postures.

3) With more images taken for localization, the estimated
errors are decreased.

4) The measurements of distance and orientation have low
dependence on the environments.

5) Our proposed algorithm could accurately extract the
push action of the photograph from multiple user envi-
ronment where all the others are conducting different
actions. All in all, the prototype performs well overall
in different indoor environments.
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VII. CONCLUSION

With the trends toward widespread use of the CV technique,
improved sensor accuracy, and enhanced wireless connectivity,
we envisioned the user-friendly and extensible computation
localization service. In this article, we proposed a multimodal
approach to enhance indoor localization with camera and WiFi
signal. The core techniques are rooted in the mapping model
from image space to physical space, the algorithm of distance,
and orientation measurements. We conducted comprehensive
theoretical studies and the experimental results showed that the
92-percentile error was within 0.2 m for indoor PoIs within
5 m. Our estimation could localize the user with only one
PoI in two pictures taking in the same location. Furthermore,
our method is robust in case of insufficient data, so it can
also be applied to the indoor localization systems with sparse
information.
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