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Abstract—With the advent of cloud computing, it has become increasingly popular for data owners to outsource their data to
public cloud servers while allowing data users to retrieve this data. For privacy concerns, secure searches over encrypted cloud
data has motivated several research works under the single owner model. However, most cloud servers in practice do not just
serve one owner; instead, they support multiple owners to share the benefits brought by cloud computing. In this paper, we
propose schemes to deal with Privacy preserving Ranked Multi-keyword Search in a Multi-owner model (PRMSM). To enable
cloud servers to perform secure search without knowing the actual data of both keywords and trapdoors, we systematically
construct a novel secure search protocol. To rank the search results and preserve the privacy of relevance scores between
keywords and files, we propose a novel Additive Order and Privacy Preserving Function family. To prevent the attackers from
eavesdropping secret keys and pretending to be legal data users submitting searches, we propose a novel dynamic secret key
generation protocol and a new data user authentication protocol. Furthermore, PRMSM supports efficient data user revocation.
Extensive experiments on real-world datasets confirm the efficacy and efficiency of PRMSM.
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1 INTRODUCTION

Cloud computing is a subversive technology that
is changing the way IT hardware and software are
designed and purchased [1]. As a new model of
computing, cloud computing provides abundant ben-
efits including easy access, decreased costs, quick
deployment and flexible resource management, etc.
Enterprises of all sizes can leverage the cloud to
increase innovation and collaboration.

Despite the abundant benefits of cloud comput-
ing, for privacy concerns, individuals and enterprise
users are reluctant to outsource their sensitive data,
including emails, personal health records and govern-
ment confidential files, to the cloud. This is because
once sensitive data are outsourced to a remote cloud,
the corresponding data owners lose direct control of
these data [2]. Cloud service providers (CSPs) would
promise to ensure owners’ data security using mecha-
nisms like virtualization and firewalls. However, these
mechanisms do not protect owners’ data privacy from
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the CSP itself, since the CSP possesses full control of
cloud hardware, software, and owners’ data. Encryp-
tion on sensitive data before outsourcing can preserve
data privacy against CSP. However, data encryption
makes the traditional data utilization service based on
plaintext keyword search a very challenging problem.
A trivial solution to this problem is to download all
the encrypted data and decrypt them locally. Howev-
er, this method is obviously impractical because it will
cause a huge amount of communication overhead.
Therefore, developing a secure search service over
encrypted cloud data is of paramount importance.

Secure search over encrypted data has recently at-
tracted the interest of many researchers. Song et al.
[3] first define and solve the problem of secure search
over encrypted data. They propose the conception of
searchable encryption, which is a cryptographic prim-
itive that enables users to perform a keyword-based
search on an encrypted dataset, just as on a plaintext
dataset. Searchable encryption is further developed
by [4], [5], [6], [7], [8]. However, these schemes are
concerned mostly with single or boolean keyword
search. Extending these techniques for ranked multi-
keyword search will incur heavy computation and
storage costs. Secure search over encrypted cloud data
is first defined by Wang et al. [9] and further devel-
oped by [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22]. These researches not only reduce
the computation and storage cost for secure keyword
search over encrypted cloud data, but also enrich the
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category of search function, including secure ranked
multi-keyword search, fuzzy keyword search, and
similarity search. However, all these schemes are
limited to the single-owner model. As a matter of
fact, most cloud servers in practice do not just serve
one data owner; instead, they often support multiple
data owners to share the benefits brought by cloud
computing. For example, to assist the government
in making a satisfactory policies on health care ser-
vice, or to help medical institutions conduct useful
research, some volunteer patients would agree to
share their health data on the cloud. To preserve their
privacy, they will encrypt their own health data with
their secret keys. In this scenario, only the authorized
organizations can perform a secure search over this
encrypted data contributed by multiple data owners.
Such a Personal Health Record sharing system, where
multiple data owners are involved, can be found at
mymedwall.com.

Compared with the single-owner scheme, devel-
oping a full-fledged multi-owner scheme will have
many new challenging problems. First, in the single-
owner scheme, the data owner has to stay online
to generate trapdoors (encrypted keywords) for data
users. However, when a huge amount of data owners
are involved, asking them to stay online simultane-
ously to generate trapdoors would seriously affect the
flexibility and usability of the search system. Second,
since none of us would be willing to share our secret
keys with others, different data owners would prefer
to use their own secret keys to encrypt their secret
data. Consequently, it is very challenging to perform
a secure, convenient, and efficient search over the
data encrypted with different secret keys. Third, when
multiple data owners are involved, we should ensure
efficient user enrollment and revocation mechanisms,
so that our system enjoys excellent security and scal-
ability.

In this paper, we propose PRMSM, a privacy p-
reserving ranked multi-keyword search protocol in
a multi-owner cloud model. To enable cloud servers
to perform secure search without knowing the actual
value of both keywords and trapdoors, we system-
atically construct a novel secure search protocol. As
a result, different data owners use different keys to
encrypt their files and keywords. Authenticated data
users can issue a query without knowing secret keys
of these different data owners. To rank the search
results and preserve the privacy of relevance scores
between keywords and files, we propose a new ad-
ditive order and privacy preserving function family,
which helps the cloud server return the most relevant
search results to data users without revealing any
sensitive information. To prevent the attackers from
eavesdropping secret keys and pretending to be legal
data users submitting searches, we propose a novel
dynamic secret key generation protocol and a new da-
ta user authentication protocol. As a result, attackers

who steal the secret key and perform illegal searches
would be easily detected. Furthermore, when we want
to revoke a data user, PRMSM ensures efficient data
user revocation. Extensive experiments on real-world
datasets confirm the efficacy and efficiency of our
proposed schemes.

The main contributions of this paper are listed as
follows:

• We define a multi-owner model for privacy p-
reserving keyword search over encrypted cloud
data.

• We propose an efficient data user authentication
protocol, which not only prevents attackers from
eavesdropping secret keys and pretending to be
illegal data users performing searches, but also
enables data user authentication and revocation.

• We systematically construct a novel secure search
protocol, which not only enables the cloud server
to perform secure ranked keyword search with-
out knowing the actual data of both keywords
and trapdoors, but also allows data owners to
encrypt keywords with self-chosen keys and al-
lows authenticated data users to query without
knowing these keys.

• We propose an Additive Order and Privacy Pre-
serving Function family (AOPPF) which allows
data owners to protect the privacy of relevance
scores using different functions according to their
preference, while still permitting the cloud server
to rank the data files accurately.

• We conduct extensive experiments on real-world
datasets to confirm the efficacy and efficiency of
our proposed schemes.

The rest of this paper is organized as follows.
Section 2 formulates the problem. Section 3 presents
the preliminaries. Section 4 demonstrates how to per-
form user authentication. Section 5 introduces our
novel secure search protocol. Section 6 defines AOPPF
and illustrates how to use this technique to perform
privacy-preserving ranked search. Section 7 presents
security analysis. Section 8 demonstrates the efficiency
of our proposed scheme. The related works are re-
viewed in Section 9. In Section 10, we conclude the
paper.

2 PROBLEM FORMULATION

In this section, we present a formal description for the
target problem in this paper. We first define a system
model and a corresponding threat model. Then we
elucidate the design goals of our solution scheme and
a list of notations used in later discussions.

2.1 System Model

In our multi-owner and multi-user cloud comput-
ing model, four entities are involved, as illustrated
in Fig. 1; they are data owners, the cloud server,
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Fig. 1: Architecture of privacy preserving keyword
search in a multi-owner and multi-user cloud model

administration server, and data users. Data owners
have a collection of files F . To enable efficient search
operations on these files which will be encrypted,
data owners first build a secure searchable index I
on the keyword set W extracted from F , then they
submit I to the administration server. Finally, data
owners encrypt their files F and outsource the corre-
sponding encrypted files C to the cloud server. Upon
receiving I, the administration server re-encrypts I
for the authenticated data owners and outsources
the re-encrypted index to the cloud server. Once a
data user wants to search t keywords over these
encrypted files stored on the cloud server, he first
computes the corresponding trapdoors and submits
them to the administration server. Once the data
user is authenticated by the administration server,
the administration server will further re-encrypt the
trapdoors and submit them to the cloud server. Upon
receiving the trapdoor T , the cloud server searches the
encrypted index I of each data owner and returns the
corresponding set of encrypted files. To improve the
file retrieval accuracy and save communication cost,
a data user would tell the cloud server a parameter
k and cloud server would return the top-k relevant
files to the data user. Once the data user receives the
top-k encrypted files from the cloud server, he will
decrypt these returned files. Note that how to achieve
decryption capabilities are out of the scope of this
paper; some excellent work regarding this problem
can be found in [23].

2.2 Threat Model
In our threat model, we assume the administration
server is trusted. The administrative server can be
any trusted third party, e.g., the Certificate Authority
in the Public Key Infrastructure, the aggregation and
distribution layer in [24], and the third party auditor
in [2]. Data owners and data users who passed the
authentication of the administration server are also

trusted. However, the cloud server is not trusted.
Instead, we treat the cloud server as ’curious but
honest’ which is the same as in previous works [9],
[10], [11], [13], [19]. The cloud server follows our pro-
posed protocol, but it is eager to obtain the contents
of encrypted files, keywords, and relevance scores.
Note that preserving the access pattern, i.e., the list
of returned files, is extremely expensive since the
algorithm has to ’touch’ the whole file set [25]. We
do not aim to protect it in this work for efficiency
concerns.

2.3 Design Goals and Security Definitions
To enable privacy preserving ranked multi-keyword
search in the multi-owner and multi-user cloud en-
vironment, our system design should simultaneously
satisfy security and performance goals.

• Ranked Multi-keyword Search over Multi-
owner: The proposed scheme should allow
multi-keyword search over encrypted files which
would be encrypted with different keys for differ-
ent data owners. It also needs to allow the cloud
server to rank the search results among different
data owners and return the top-k results.

• Data owner scalability: The proposed scheme
should allow new data owners to enter this sys-
tem without affecting other data owners or data
users, i.e., the scheme should support data owner
scalability in a plug-and-play model.

• Data user revocation: The proposed scheme
should ensure that only authenticated data users
can perform correct searches. Moreover, once a
data user is revoked, he can no longer perform
correct searches over the encrypted cloud data.

• Security Goals: The proposed scheme should
achieve the following security goals: 1) Keyword
Semantic Security (Definition 1). We will prove
that PRMSM achieves semantic security against
the chosen keyword attack. 2) Keyword secrecy
(Definition 2). Since the adversary A can know
whether an encrypted keyword matches a trap-
door, we use the weaker security goal (i.e., secre-
cy), that is, we should ensure that the probability
for the adversary A to infer the actual value
of a keyword is negligibly more than randomly
guessing. 3) Relevance score secrecy. We should
ensure that the cloud server cannot infer the
actual value of the encoded relevance scores.

Definition 1: Given a probabilistic polynomial time
adversary A, he asks the challenger B for the cipher-
text of his submitted keywords for polynomial times.
Then A sends two keywords w0 and w1, which are not
challenged before, to B. B randomly sets µ ∈ {0, 1},
and returns an encrypted keyword ŵµ to A. A contin-
ues to ask B for the cipher-text of keyword w, the only
restriction is that w is not w0 or w1. Finally, A outputs
its guess µ′ for µ. We define the advantage that A
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breaks PRMSM as AdvA=
∣∣Pr[µ = µ′]− 1

2

∣∣. If AdvA is
negligible, we say that PRMSM is semantically secure
against the chosen-keyword attack.

Definition 2: Given a probabilistic polynomial time
adversary A, he asks the challenger B for the cipher-
text of his queried keywords for t times. Then B
randomly chooses a keyword w∗, encrypts it to ŵ∗,
and sends ŵ∗ to A. A outputs its guess w′ for w∗,
and wins if w′ = w∗. We define the probability
that A breaks keyword secrecy as AdvA=Pr[w′ = w∗].
We say that PRMSM achieves keyword secrecy if
AdvA=

1
u−t + ε, where ϵ is a negligible parameter, t

denotes the number of keywords that A has known,
and u denotes the size of keyword dictionary.

2.4 Notations
• O: the data owner collection, denoted as a set of

m data owners O = (O1, O2, . . . , Om).
• Fi: the plaintext file collection of Oi, denoted as

a set of n data file Fi=(Fi,1, Fi,2,. . . ,Fi,n).
• Ci: the ciphertext file collection of Fi, denoted as
Ci=(Ci,1, Ci,2,. . . ,Ci,n).

• W : the keyword collection, denoted as a set of u
keywords W = (w1, w2, . . . , wu).

• Ŵi: Oi’s encrypted keyword collection of W ,
denoted as Ŵi = (ŵi,1, ŵi,2, . . . , ŵi,u).

• W̃ : the subset of W which represents queried
keywords, denoted as W̃ = (w1, w2, . . . , wq).

• TW̃ : the trapdoor for W̃ , denoted as TW̃ =
(Tw1 , Tw2 , . . . , Twq ).

• Si,j,t: the relevance score of tth keyword to jth
file of ith data owner.

3 PRELIMINARIES

Before we introduce our detailed construction, we first
briefly introduce some techniques that will be used in
this paper.

3.1 Bilinear Map
Let G and G1 denote two cyclic groups with a prime
order p. We further denote g and g1 as the generator
of G and G1, respectively. Let ê be a bilinear map
ê : G×G→ G1, then the following three conditions are
satisfied: 1) Bilinear: ∀a, b ∈ Z∗

p, ê(ga, gb) = ê(g, g)ab. 2)
Non-degenerate: ê(g, g) ̸= 1. 3) Computable: ê can be
efficiently computed.

3.2 Decisional Bilinear Diffie-Hellman (DBDH) As-
sumption

Definition 3: Suppose a challenger chooses random
a, b, c, z ∈ Zp, the DBDH assumption is that there is
no probabilistic polynomial time adversary, who can
distinguish the tuple (A = ga, B = gb, C = gc, Z =
e(g, g)abc) from the tuple (A = ga, B = gb, C = gc, Z =
e(g, g)z), with a non-negligible advantage.

4 DATA USER AUTHENTICATION

To prevent attackers from pretending to be legal data
users performing searches and launching statistical
attacks based on the search result, data users must
be authenticated before the administration server re-
encrypts trapdoors for data users. Traditional authen-
tication methods often follow three steps. First, data
requester and data authenticator share a secret key,
say, k0. Second, the requester encrypts his personally
identifiable information d0 using k0 and sends the en-
crypted data (d0)k0

to the authenticator. Third, the au-
thenticator decrypts the received data with k0 and au-
thenticates the decrypted data. However, this method
has two main drawbacks. First, since the secret key
shared between the requester and the authenticator
remains unchanged, it is easy to incur replay attack.
Second, once the secret key is revealed to attackers,
the authenticator cannot distinguish between the legal
requester and the attackers; the attackers can pretend
to be legal requesters without being detected.

In this section, we first give an overview of the
data user authentication protocol. Then, we introduce
how to achieve secure and efficient data user authen-
tication. Finally, we demonstrate how to detect illegal
searches and how to enable secure and efficient data
user revocation.

4.1 Overview

Now we give an example to illustrate the main idea of
the user authentication protocol(the detailed protocol
is elaborated in the following subsections). Assume
Alice wants to be authenticated by the administration
server, so she starts a conversation with the server.
The server then authenticates the contents of the
conversation. If the contents are authenticated, both
Alice and the server will generate the initial secret key
according to the conversation contents. After the ini-
tialization, to be authenticated successfully, Alice has
to provide the historical data of their conversations.
If the authentication is successful, both Alice and the
administration server will change their secret keys ac-
cording the contents of the conversation. In this way,
the secret keys keep changing dynamically; without
knowing the correct historical data, an attacker cannot
start a successful conversation with the administration
server.

4.2 User Authentication

Before we introduce the dynamic key generation
method and the authentication protocol, we first intro-
duce the format of the authentication data. As shown
in Fig. 2, the authentication data consists of five
parts. The request counter field records the number of
search requests that the data user has submitted. The
last request time field asks the data user to provide
the historical data of his previous request time. The
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Fig. 2: Format of Authentication Data

personally identifiable data (e.g., passport number,
telephone number) field is used to identify a specific
data user, while the random number and CRC field
are further used to check whether the authentication
data has been tampered with.

The key point of a successful authentication is to
provide both the dynamically changing secret keys
and the historical data of the corresponding data
user. Let ki,j denotes the secret key shared between
administration server and the jth data user Uj after
i instances of search requests, and di,j denotes the
authentication data for the (i+1)th request of Uj . Our
authentication protocol runs in the following six steps.
A. Data user Uj prepares his authentication data

di,j , i.e., Uj needs to fill in all the fields of authentica-
tion data based on his historical data.
B. Data user Uj encrypts di,j with the current secret

key ki,j and submits the encrypted authentication
data (di,j)ki,j

to the administration server.
C. After submitting the authentication data, the

data user Uj generates another secret key ki+1,j =
ki,j ⊕H(di,j), and stores both ki,j and ki+1,j .
D. Upon receiving Uj ’s encrypted authentication

data, the administration server decrypts it with ki,j .
E. The administration server checks the request

counter, last request time, personally identifiable data
and CRC, respectively. If the authentication succeeds,
the administration server first generates a new secret
key ki+1,j = ki,j ⊕H(di,j), then he replies a confirma-
tion data di+1,j , and encrypts it with ki+1,j . Otherwise,
the administration server encrypts di+1,j with secret
key ki,j .
F . Upon receiving a reply from the administration

server, the data user Uj will try to decrypt it with
ki+1,j . If the decrypted data contains the confirmation
data, the authentication is successful. Otherwise, the
authentication is regarded as being unsuccessful. The
data user deletes the new generated secret key ki+1,j

and considers whether to start another authentication.
Fig. 3 shows an example of successful authen-

tication between the administration server and the
data user. As we can see, after each successful au-
thentication process, the secret key will be changed
dynamically according to the previous key and some
historical data. Therefore, once an attacker steals a se-
cret key, he can hardly get any benefits. On one hand,
if the attacker knows nothing about the historical data
of the legal data user, he cannot even construct a legal
authentication data. On the other hand, if the legal
data user performs another successful authentication,
the previous secret key will be expired.
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Fig. 3: Example of data user authentication and dy-
namic secret key generation

4.3 Illegal Search Detection
In our scheme, the authentication process is protected
by the dynamic secret key and the historical infor-
mation. We assume that an attacker has successfully
eavesdropped the secret key k0,j of Uj . Then he has
to construct the authentication data; if the attacker
has not successfully eavesdropped the historical da-
ta, e.g., the request counter, the last request time,
he cannot construct the correct authentication data.
Therefore this illegal action will soon be detected by
the administration server. Further, if the attacker has
successfully eavesdropped all data of Uj , the attacker
can correctly construct the authentication data and
pretend himself to be Uj without being detected by
the administration server. However, once the legal
data user Uj performs his search, since the secret key
on the administration server side has changed, there
will be contradictory secret keys between the admin-
istration server and the legal data user. Therefore, the
data user and administration server will soon detect
this illegal action.

4.4 Data User Revocation
Different from previous works, data user revocation
in our scheme does not need to re-encrypt and update
large amounts of data stored on the cloud server. In-
stead, the adminstration server only needs to update
the secret data Sa stored on the cloud server. As will
be detailed in the next section, Sa = gka1·ka2·ra , where
ka1 and ka2 are the secret keys of the administration
server, and ra is randomly generated for every update
operation. Consequently, the previous trapdoors will
be expired. Additionally, without the help of the
administration server, the revoked data user cannot
generate the correct trapdoor Twh′ . Therefore, a data
user cannot perform correct searches once he is re-
voked.

5 MATCHING DIFFERENT-KEY ENCRYPTED
KEYWORDS
Numerous data owners are often involved in practical
cloud applications. For privacy concerns, they would
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be reluctant to share secret keys with others. Instead,
they prefer to use their own secret keys to encrypt
their sensitive data (keywords, files). When keywords
of different data owners are encrypted with different
secret keys, the coming question is how to locate
different-key encrypted keywords among multiple da-
ta owners. In this section, to enable secure, efficient
and convenient searches over encrypted cloud data
owned by multiple data owners, we systematically
design schemes to achieve the following three require-
ments: First, different data owners use different secret
keys to encrypt their keywords. Second, authenticated
data users can generate their trapdoors without know-
ing these secret keys. Third, upon receiving trapdoors,
the cloud server can find the corresponding keyword-
s from different data owners’ encrypted keywords
without knowing the actual value of keywords or
trapdoors.

5.1 Overview
Now we present an example to illustrate the main
idea of our keywords matching protocol(the detailed
protocol is elaborated in the following subsections).
Assume Alice wants to use the cloud to store her file
F , she first encrypts her file F , and gets the ciphertext
C. To enable other users to perform secure searches
on C, Alice extracts a keyword wi,h, and sends the
encrypted keyword ŵi,h = (Ea′ , Eo) to the adminis-
tration server. The administration server further re-
encrypts Ea′ to Ea, and submits ŵi,h = (Ea, Eo) to the
cloud server. Now Bob wants to search a keyword wh′ ,
he first generates the trapdoor T ′

wh′ and submits it to
the administration server. The administration server
re-encrypts T ′

wh′ to Twh′ = (T1, T2, T3), generates a
secret data Sa, and submits Twh′ , Sa to the cloud
server. The cloud server will judge whether Bob’s
search request matches Alice’s encrypted keyword by
checking whether ê (Ea, T3) = ê (Eo, T1) · ê (Sa, T2)
holds.

5.2 Construction Initialization
Our construction is based on the aforementioned bi-
linear map. Let g and g1 denote the generator of two
cyclic groups G and G1 with order p. Let ê be a
bilinear map ê : G × G → G1. Given different secret
parameters as input, a randomized key generation
algorithm will output the private keys used in the
system. ka1 ∈ Z+

p , ka2 ∈ Z+
p , ki,f ∈ Z+

p , ki,w ∈ Z+
p ←

(0, 1)
∗, where ka1 and ka2 are the private keys of the

administration server, ki,w and ki,f are the private
keys used to encrypt keywords and files of data owner
Oi, respectively. Let H(·) be a public hash function, its
output locates in Z+

p .

5.3 Keyword Encryption
For keyword encryption, the following conditions
should be satisfied: first, different data owners use

their own secret keys to encrypt keywords. Second,
for the same keyword, it would be encrypted to dif-
ferent cipher-texts each time. These properties benefit
our scheme for two reasons. First, losing the key of
one data owner would not lead to the disclosure of
other owners’ data. Second, the cloud server cannot
see any relationship among encrypted keywords. Giv-
en the hth keyword of data owner Oi, i.e., wi,h, we
encrypt wi,h as follows.

ŵi,h =
(
gki,w·ro·H(wi,h), gki,w·ro

)
(1)

where ro is a randomly generated number each
time, which helps enhance the security of ŵi,h. For
easy description and understanding, we let E′

a =
gki,w·ro·H(wi,h) and Eo = gki,w·ro .

The data owner delivers Ea′ and Eo to the admin-
istration server, and the administration server further
re-encrypts Ea′ with his secret keys ka1 and ka2 and
gets Ea.

Ea =
(
Ea′ · gka1

)ka2 (2)

Therefore ŵi,h = (Ea, Eo). The administrative serv-
er further submits ŵi,h to the cloud server. Note that,
since the administration server only does simple com-
putations on the encrypted data, he cannot learn any
sensitive information from these random encrypted
data without knowing the secret keys of data owners.

5.4 Trapdoor Generation
To make the data users generate trapdoors securely,
conveniently and efficiently, our proposed scheme
should satisfy two main conditions. First, the data
user does not need to ask a large amount of data
owners for secret keys to generate trapdoors. Sec-
ond, for the same keyword, the trapdoor generated
each time should be different. To meet this condition,
the trapdoor generation is conducted in two steps:
First, the data user generates trapdoors based on his
search keyword and a random number. Second, the
administration server re-encrypts the trapdoors for
the authenticated data user.

Assume a data user wants to search keyword wh′ ,
so he encrypts it as follows:

T ′
wh′ =

(
gH(wh′ )·ru , gru

)
(3)

where ru is a randomly generated number each
time. As we can see, during the trapdoor generation
process, secret keys of data owners are not required.
Additionally, with the help of random variable ru, for
the same keyword wh′ , we can generate two different
trapdoors which prevent attackers from knowing the
relationship among trapdoors.

Upon receiving T ′
wh′ , the administration server first

generates a random number ra, and then re-encrypts
T ′

wh′ as follows:

Twh′ =
(
gH(wh′ )·ru·ka1·ka2·ra , gru·ka1 , gru·ka1·ra

)
(4)
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For easy description and understanding, we let
T1 = gH(wh′ )·ru·ka1·ka2·ra , T2 = gru·ka1 , T3 = gru·ka1·ra ,
hence, Twh′ = (T1, T2, T3). Finally, the administration
server submits Twh′ to the cloud server.

5.5 Keywords Matching among Different Data
Owners

The cloud server stores all encrypted files and key-
words of different data owners. The administration
server will also store a secret data Sa = gka1·ka2·ra

on the cloud server. Upon receiving a query request,
the cloud will search over the data of all these data
owners. The cloud processes the search request in two
steps. First, the cloud matches the queried keywords
from all keywords stored on it, and it gets a candidate
file set. Second, the cloud ranks files in the candidate
file set and finds the most top-k relevant files. We
introduce the matching strategy here, while leaving
the task of introducing the ranking strategy in the next
section. When the cloud obtains the trapdoor Twh′ and
encrypted keywords (Eo, Ea), he first computes

ê (Sa, T2)

= ê
(
gra·ka1·ka2 , gru·ka1

)
(5)

= ê(g, g)
ra·ka1·ka2·ru·ka1

Then he can judge whether wh′ = wi,h (i.e., an
encrypted keyword is located) holds if the following
equation is true.

ê (Ea, T3)

= ê

((
gki,w·ro·H(wi,h) · gka1

)ka2

, gru·ka1·ra
)

= ê(g, g)
(ki,w·ro·H(wi,h)+ka1)·ka2·ru·ka1·ra (6)

= ê(g, g)
ki,w·ro·H(wi,h)·ka2·ru·ka1·ra · ê (Sa, T2)

= ê
(
gki,w·ro , gH(wi,h)·ka2·ru·ka1·ra

)
· ê (Sa, T2)

= ê (Eo, T1) · ê (Sa, T2)

6 PRIVACY PRESERVING RANKED SEARCH

The aforementioned section helps the cloud match
the queried keywords, and obtain a candidate file
set. However, we cannot simply return undifferential
files to data users for the following two reasons. First,
returning all candidate files would cause abundant
communication overhead for the whole system. Sec-
ond, data users would only concern the top-k relevant
files corresponding to their queries. In this section,
we first elucidate an order and privacy preserving
encoding scheme. Then we illustrate an additive order
preserving and privacy preserving encoding scheme.
Finally, we apply the proposed scheme to encode the
relevance scores and obtain the top-k search results.

 

 

x 1 2 3 4 5 

f(x) 100-1000 1100-1800 2000-4200 4300-5000 5100-7000

 

Fig. 4: An example of Order Preserving and Privacy
Preserving Function

6.1 Order and Privacy Preserving Function

To rank the relevance score while preserving its priva-
cy, the proposed function should satisfy the following
conditions. 1) This function should preserve the order
of data, as this helps the cloud server determine which
file is more relevant to a certain keyword, according to
the encoded relevance scores. 2) This function should
not be revealed by the cloud server so that cloud
server can make comparisons on encoded relevance
scores without knowing their actual values. 3) Dif-
ferent data owners should have different functions
such that revealing the encoded value of a data owner
would not lead to the leakage of encoded values of
other data owners. In order to satisfy condition 1,
we introduce a data processing part m(x, ·), which
preserves the order of x. To satisfy condition 2, we
introduce a disturbing part rf which helps prevent the
cloud server from revealing this function. To satisfy
condition 3, we use m(x, ·) to process the ID of data
owners. So this function belongs to the following
function family:

F y
oppf (x) =

∑
0≤j,k≤τ

Aj,k ·m(x, j) ·m(y, k) + rf (7)

where τ denotes the degree of F y
oppf (x) and Aj,k

denotes the coefficients of m(x, j) ·m(y, k). We further
define m(x, j) as follows: m(x, 0) = 1, m(x, 1) = x,
and m(x, j) = (m(x, j−1)+α · x) · (1+λ) if j>1, where
α and λ are two constant numbers.

Now we introduce how to set the disturbing part
rf . Since

∑
0≤j,k≤τAj,k·(m(x+1, j)−m(x, j))·m(y, k)≥∑

0≤j,k≤τAj,k·((1+λ)
j−1

+ α·
∑

1≤i≤j−2(1+λ)).
Let l be an integer such that
2l−1≤

∑
0≤j,k≤τAj,k·((1+λ)

j−1
+α·

∑
1≤i≤j−2(1+λ))≤2l,

we can set rf ∈ (0, 2l−1).
Obviously, ∀x1>x2, we have F y

oppf (x1)>F
y
oppf (x2).

6.2 Additive Order and Privacy Preserving Func-
tion

With the order and privacy preserving function, we
have: if x1 > x2, then y1 > y2. However, the addition
of the function is not necessarily order preserving.

An example is presented in Fig. 4. Obviously, f(x)
is order preserving; to preserve privacy, a disturbing
part is introduced. As we can see, f(1) + f(5) varies
from 5200 to 8000, f(1) + f(4) varies from 4400 to
6000, f(2) + f(3) varies from 3100 to 6000. Though
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1 + 5 > 1 + 4 and 1 + 5 > 2 + 3, it is probable for
f(1)+f(5) < f(1)+f(4) and f(1)+f(5) < f(2)+f(3).

To correctly perform the secure ranked multi-
keyword search, the sum of any two encoded rel-
evance scores should still be ordered and privacy
preserved (we use the sum of encoded relevance score
to evaluate the relevance between a file and multiple
keywords in this paper). To satisfy this condition,
we further design an additive order and privacy
preserving function family based on Eq. 7:

F y
aoppf (x) =

∑
0≤j,k≤τ

Aj,k ·m(x, j) ·m(y, k) + raof (8)

Where τ denotes the degree of F y
aoppf (x) and Aj,k

denotes the coefficients of m(x, j) ·m(y, k).
Before we take a step further towards the use

of F y
aoppf (x), we will first introduce our auxiliary

theorem. i.e., how to make an order and privacy
preserving function to be additive order and privacy
preserving.

Definition 4: Given an order preserving function
y = f(x), we define ∆f(xi) = f(xi+1) − f(xi) and
∆̃f(xi) = ∆f(xi+1)−∆f(xi). To preserve privacy, we
define yi = f(xi) + ri, where ri is a random number
and ri > 0. We define the max value of ri as rimax,
and rimax = f(xi)−i·∆(xi), hence yi can change from
f(xi) to f(xi) + rimax.

Theorem 1: Given an order preserving function yi =
f(xi) + ri, when the following three conditions
are satisfied: (1) ∀i, ∆f(xi + 1) ≤ ∆f(xi); (2) ∀i,∣∣∣∆̃f(xi + 1)

∣∣∣ ≥ ∣∣∣∆̃f(xi)
∣∣∣; (3) ∀i, ri <

(
i2 · ∆̃f(xi)

)
/2.

The order and privacy preserving function yi is also
an additive order and privacy preserving, that is,
for any

∑
xi∈D1xi ≤

∑
xj∈D2xj , where D1 and D2

denotes two subsets of the definition domain, we have∑
xi∈D1yi ≤

∑
xj∈D2yj .

Proof: The proof is elaborated in Appendix A.

6.3 Encoding relevance scores
In our paper, we use a well-known method to com-
pute the relevance score [26], i.e., Score(w,Fd) =
1

|Fd| (1+ ln fd,w) ln(1+
N
fw

), where w denotes the given
keyword, |Fd| is the length of file Fd, fd,w denotes the
TF of w in file Fd, fw denotes the number of files
containing w, and N denotes the total number of files
in the collection.

Now we introduce how to encode the relevance
score with an additive order and privacy preserving
function in our additive order and privacy preserving
function family F y

aoppf (x). Given input Si,j,t (the rel-
evance score of tth keyword to jth file of ith data
owner). Data owners can independently choose a
function from this family to protect the privacy of
their relevance scores. For simplicity, in this paper, we
specify data owner i to choose F

Hi(i)
aoppf (·) and define

Vi,j,t as the encoded data of Si,j,t :

Vi,j,t = F
Hi(i)
aoppf (Si,j,t) (9)

where Hi(·) is a public known hash function, and i is
the ID of data owner Oi.

With the well-designed properties of Faoppf , the
cloud server can make a comparison among encoded
relevance scores for the same data owner. However,
since different data owners encode their relevance
scores with different functions in Faoppf , the cloud
server cannot make a comparison between encoded
relevance scores for different data owners. To solve
this problem, we define:

Ti,j,t(y) = F y
aoppf (Si,j,t) (10)

where Ti,j,t(y) is used to help the cloud server
make comparisons among relevance scores encoded
by different data owners, and y is a variable which
takes the hash value of data owner’s ID as input.

Finally, we attach each Vi,j,t with a Ti,j,t(y).

6.4 Ranking search results

In this paper, we use the sum of the relevance scores
as the metric to rank search results. Now, we intro-
duce the strategies of ranking search results based on
the encoded relevance scores. First, the cloud com-
putes Vi,j =

∑
t∈W̃

Vi,j,t, the sum of encoded relevance

scores between the jth file and matched keywords for
Oi, and the auxiliary value Ti,j(y) =

∑
t∈W̃

Ti,j,t(y). Then

the cloud ranks the sum of encoded relevance score
with the following two conditions:

(1) Two encoded data belong to the same data
owner. Given that a data user issues a query W̃ =
{wm, wn}, we assume that Oi’s F1 and F2 satisfy the
query. Then the cloud adds the encoded relevance
score together and gets the relevance score of Oi

′sF1

to W̃ :
Vi,1 = Vi,1,m + Vi,1,n (11)

Similarly,
Vi,2 = Vi,2,m + Vi,2,n (12)

If Vi,1 ≥ Vi,2, then F1 is more relevant to the queried
keyword sets W̃ , otherwise, F2 is more relevant to W̃ .

(2) Two encoded data belong to two different data
owners. Given that a data user issues a query W̃ =
{wm, wn}, we assume Oi’s F1 and Oj ’s F2 satisfy the
query. The cloud server makes comparison on their
encoded relevance scores in the following four steps:

First, the cloud server computes the relevance score
of Oi

′s F1 to W̃

Vi,1 = Vi,1,m + Vi,1,n (13)

Second, the cloud server computes the Tj,2(y)

Tj,2(y) = Tj,2,m(y) + Tj,2,n(y) (14)

Third, the cloud server substitutes Hi(i) for the
variable y and gets Tj,2(H(i)).
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C1,1

C1,2

C2,1

C2,3

O1 O2

H(1)

Fig. 5: Example of ranking search results

Finally, the cloud draws the conclusion: if Vi,1 ≥
Tj,2(Hi(i)), then Oi

′s F1 is more relevant to W̃ than
Oj

′sF2, otherwise, Oj
′sF2 is more relevant to W̃ .

Now, the cloud server can make comparisons on
encoded relevance scores. Thus, it is easy for the cloud
to return the top-k relevant files to the data user.

Fig. 5 shows an example of making comparisons on
the encoded relevance scores. As we can see, given
the trapdoor Tw1

, the cloud server finds that ŵ1,1 and
ŵ2,1 match Tw1 . Data owner O1 has two encrypted
files C1,1 and C1,2 that contain ŵ1,1. Data owner
O2 also has two encrypted files C2,1 and C2,3 that
contain ŵ2,1. For O1, he compares V1,1,1 with V1,2,1, if
V1,1,1 > V1,2,1, the cloud server regards C1,1 as being
more relevant to Tw1 ; otherwise, C2,1 is more relevant
to Tw1 . We assume C1,2 is more relevant to Tw1 for O1

and C2,1 is more relevant for O2; then the cloud makes
comparisons between C1,2 and C2,1. As shown in the
figure, the cloud first substitutes H(1) to T2,1,1(y) and
gets T2,1,1(H(1)), then he compares T2,1,1(H(1)) with
V1,2,1, if V1,2,1 > T2,1,1(H(1)). Then O1’s encrypted file
C1,2 is more relevant to Tw1 , otherwise, O2’s encrypted
file C2,1 is more relevant to the search request.

7 SECURITY ANALYSIS

In this section, we provide step-by-step security anal-
yses to demonstrate that the security requirements
have been satisfied for the data files, the keywords,
the queries, and the relevance scores.

7.1 Data Files
The data files are protected by symmetric encryption
before upload. As long as the encryption algorithm is
not breakable, the cloud server cannot know the data.

7.2 Keywords
We formulate the security goals achieved by PRMSM
with the following two theorems.

Theorem 2: Given the DBDH (Decisional Bilinear
Diffie-Hellman) assumption, PRMSM is semantically
secure against the chosen keyword attack under the
selective security model.
Proof: See Appendix B.

Theorem 3: Given the DL (Discrete Logarithm) as-
sumption, PRMSM achieves keyword secrecy in the
random oracle model.
Proof: See Appendix C.

7.3 Trapdoors

Recall the trapdoor construction formula,

Twh′ =
(
gH(wh′ )·ru·ka1·ka2·ra , gru·ka1 , gru·ka1·ra

)
(15)

If the cloud server wants to know the actual value
of the trapdoor, and distinguish two trapdoors, it has
to solve the discrete logarithm problem in Zp with
large prime p, therefore, the privacy of trapdoor is
protected as long as the discrete logarithm problem is
hard.

7.4 Relevance Scores

In our scheme, relevance scores are encoded with two
Additive Order and Privacy Preserving Functions.
Now we analyze the security of additive order and
privacy preserving functions. Assume the input for
the F y

aopp(x) is s, and the data owner ID is i. Then
the cloud server can only capture the following value
that is derived from s:

F (Hi(i))
aopp (s) =

∑
0≤j,k≤τ

Aj,k ·m(s, j)·m(Hi(i), k)+raof

(16)
Assume the cloud server has collected n encod-

ed relevance scores for the same relevance score s
(F (Hi(i))

aopp (s)), then he can construct n equations. How-
ever, these functions have n + 1 unknown variables.
Therefore, it is infeasible for the cloud server to break
the additive order and privacy preserving F y

aopp(x).
Thus, the security of the corresponding F y

aopp(x) en-
coded relevance score is also preserved.

8 PERFORMANCE EVALUATION

In this section, we measure the efficiency of PRMSM,
and compare it with its previous version, Secure
Ranked Multi-keyword Search for Multiple data own-
ers in cloud computing (SRMSM) [27], and the state-
of-the-art, privacy-preserving Multi-keyword Ranked
Search over Encrypted cloud data (MRSE) [11], side
by side. Since MRSE is only suitable for the single
owner model, our PRMSM and SRMSM not only
work well in multi-owner settings, but also outper-
form MRSE on many aspects.
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Fig. 6: Time cost of index construction.
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Fig. 7: Time cost of generating trapdoors.

8.1 Evaluation Settings
We conduct performance experiments on a real data
set, the Internet Request For Comments dataset (RFC)
[28]. We use Hermetic Word Frequency Counter [29]
to extract keywords from each RFC file. After the
keyword extraction, we compute keyword statistics
such as the keyword frequency in each file, the length
of each file, the number of files containing a specific
keyword, etc. We further calculate the relevance score
of a keyword to a file based on these statistics. The
file size and keyword frequency of this data set can
be seen in [20].

The experiment programs are coded using the
Python programming language on a PC with 2.2GHZ
Intel Core CPU and 2GB memory. We implement
all necessary routines for data owners to preprocess
data files: for the data user to generate trapdoors,
for the administrative server to re-encrypt keywords,
trapdoors, and for the cloud server to perform ranked
searches. We use the Weil pairing [30] to construct our
bilinear map.

8.2 Evaluation Results
8.2.1 Index Construction
Fig. 6(a) shows that, given the same keyword dictio-
nary (u=4000), time of index construction for these
schemes increases linearly with an increasing number
of files, while SRMSM and PRMSM spend much less
time on index construction. Fig. 6(b) demonstrates

that, given the same number of files (n=1000), SRMSM
and PRMSM consume much less time than MRSE
on constructing indexes. Additionally, SRMSM and
PRMSM are insensitive to the size of the keyword
dictionary for index construction, while MRSE suf-
fers a quadratic growth with the size of keyword
dictionary increases. Fig. 6(c) shows the encoding
efficiency of our proposed AOPPF. The time spent on
encoding increases from 0.1s to 1s when the number
of keywords increases from 1000 to 10000. This time
cost can be acceptable.

8.2.2 Trapdoor Generation
Compared with index construction, trapdoor genera-
tion consumes relatively less time. Fig. 7(a) demon-
strates that, given the same number of queried key-
words (q=100), SRMSM and PRMSM are insensitive to
the size of keyword dictionary on trapdoor generation
and consumes 0.026s and 0.031s, respectively. Mean-
while, MRSE increases from 0.04s to 6.2s. Fig. 7(b)
shows that, given the same number of dictionary size
(u=4000), when the number of queried keywords in-
creases from 100 to 1000, the trapdoor generation time
for MRSE is 0.31s, and remains unchanged. While
SRMSM increases from 0.024s to 0.25s, PRMSM in-
creases from 0.031s to 0.31s. We observe that PRMSM
spends a little more time than SRMSM on trapdoor
generation; the reason is that PRMSM introduces an
additional variable to ensure the randomness of trap-
doors.
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Fig. 8: Time cost of the administration server.
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Fig. 9: Time cost of search.

8.2.3 Re-encryption by the administration server

Fig. 8(a) illustrates the re-encryption time cost of the
administration server in PRMSM. As we can see, for
the same average number of keywords per owner, the
more data owners are involved, the more time is spent
on re-encryption. When there are 300 data owners,
each data owner has 100 keywords; we need 3.8s to
re-encrypt these keywords, which is acceptable.

Fig. 8(b) demonstrates the time cost of re-encrypting
trapdoors. We observe that, for the same average
number of trapdoors per user, the more data users
that submit trapdoors, the more time would be spent
on re-encryption. When there are 1000 data users
who concurrently submit data, each data user has 10
trapdoors; we only need 3.34s for re-encryption.

8.2.4 Search

From Fig. 9, we observe that, PRMSM spends more
time for searching. The fundamental reason is that,
the pairing operation used in PRMSM needs more
time. As we can see from Fig. 9(a) and Fig. 9(c),
the more keywords existing in the cloud server, the
more time is required for pairing operation. Fig. 9(b)
confirms that when the number of keywords stored on
the cloud server remains a constant, PRMSM will not
increase even if the number of files increases. Though
PRMSM spends relatively more time, this observation
also confirms that the searching operation should be
outsourced to the cloud server.

9 RELATED WORK
In this section, we review three categories of work:
searchable encryption, secure keyword search in cloud
computing, and order preserving encryption.

9.1 Searchable Encryption
The earliest attempt of searchable encryption was
made by Song et al. In [3], they propose to encrypt
each word in a file independently and allow the server
to find whether a single queried keyword is contained
in the file without knowing the exact word. This
proposal is more of theoretic interests because of high
computational costs. Goh et al. propose building a
keyword index for each file and using Bloom filter
to accelerate the search [4]. Curtmola et al. propose
building indices for each keyword, and use hash
tables as an alternative approach to searchable en-
cryption [5]. The first public key scheme for keyword
search over encrypted data is presented in [6]. [7] and
[8] further enrich the search functionalities of search-
able encryption by proposing schemes for conjunctive
keyword search.

The searchable encryption cares mostly about single
keyword search or boolean keyword search. Extend-
ing these techniques for ranked multi-keyword search
will incur heavy computation and storage costs.

9.2 Secure Keyword Search in Cloud Computing
The privacy concerns in cloud computing motivate
the study on secure keyword search. Wang et al.
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first defined and solved the secure ranked keyword
search over encrypted cloud data. In [9] and [18], they
proposed a scheme that returns the top-k relevant files
upon a single keyword search. Cao et al. [10], [11],
and Sun et al. [31], [12] extended the secure keyword
search for multi-keyword queries. Their approaches
vectorize the list of keywords and apply matrix mul-
tiplications to hide the actual keyword information
from the cloud server, while still allowing the server
to find out the top-k relevant data files. Xu et al.
proposed MKQE (Multi-Keyword ranked Query on
Encrypted data) that enables a dynamic keyword dic-
tionary and avoids the ranking order being distorted
by several high frequency keywords [13]. Li et al.
[14], Chuah et al. [15], Xu et al. [16] and Wang et al.
[17] proposed fuzzy keyword search over encrypted
cloud data aiming at tolerance of both minor typos
and format inconsistencies for users’ search input. [19]
further proposed privacy-assured similarity search
mechanisms over outsourced cloud data. In [20], we
proposed a secure, efficient, and distributed keyword
search protocol in the geo-distributed cloud environ-
ment.

The system model of these previous works only
consider one data owner, which implies that in their
solutions, the data owner and data users can easily
communicate and exchange secret information. When
numerous data owners are involved in the system,
secret information exchanging will cause considerable
communication overhead. Sun et al. [21] and Zheng
et al. [22] proposed secure attribute-based keyword
search schemes in the challenging scenario where
multiple owners are involved. However, applying CP-
ABE in the cloud system would introduce problems
for data user revocation, i.e., the cloud has to update
the large amount of data stored on it for a data user
revocation [32]. Additionally, they do not support
privacy preserving ranked multi-keyword search. Our
paper differs from previous studies regarding the em-
phasis of multiple data owners in the system model.
This paper seeks a solution scheme to maximally relax
the requirements for data owners and users, so that
the scheme could be suitable for a large number of
cloud computing users.

9.3 Order Preserving Encryption

The order preserving encryption is used to prevent
the cloud server from knowing the exact relevance
scores of keywords to a data file. The early work of
Agrawal et al. proposed an Order Preserving sym-
metric Encryption (OPE) scheme where the numerical
order of plain texts are preserved [33]. Boldyreva et
al. further introduced a modular order preserving
encryption in [34]. Yi et al [35] proposed an order p-
reserving function to encode data in sensor networks.
Popa et al. [36] recently proposed an ideal-secure
order-preserving encryption scheme. Kerschbaum et

al. [37] further proposed a scheme which is not only
idea-secure but is also an efficient order-preserving
encryption scheme. However, these schemes are not
additive order preserving. As a complementary work
to the previous order preserving work, we propose a
new additive order and privacy preserving functions
(AOPPF). Data owners can freely choose any function
from an AOPPF family to encode their relevance
scores. The cloud server computes the sum of encoded
relevance scores and ranks them based on the sum.

10 CONCLUSIONS

In this paper, we explore the problem of secure
multi-keyword search for multiple data owners and
multiple data users in the cloud computing envi-
ronment. Different from prior works, our schemes
enable authenticated data users to achieve secure,
convenient, and efficient searches over multiple data
owners’ data. To efficiently authenticate data users
and detect attackers who steal the secret key and
perform illegal searches, we propose a novel dynamic
secret key generation protocol and a new data user
authentication protocol. To enable the cloud server to
perform secure search among multiple owners’ data
encrypted with different secret keys, we systematical-
ly construct a novel secure search protocol. To rank the
search results and preserve the privacy of relevance
scores between keywords and files, we propose a
novel Additive Order and Privacy Preserving Func-
tion family. Moreover, we show that our approach
is computationally efficient, even for large data and
keyword sets. As our future work, on one hand, we
will consider the problem of secure fuzzy keyword
search in a multi-owner paradigm. On the other hand,
we plan to implement our scheme on the commercial
clouds.
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