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Abstract—Disk additions to a RAID-6 storage system can simultaneously increase the I/O parallelism and expand the storage

capacity. To regain a balanced load among both old and new disks, RAID-6 scaling requires moving certain data blocks onto newly

added disks. Existing approaches to RAID-6 scaling are restricted by preserving a round-robin data distribution, and require migrating

all the data, resulting in an expensive cost for RAID-6 scaling. In this paper, we propose Xscale, a new approach to accelerating X-code

RAID-6 scaling by using lightweight data reorganization. Xscale minimizes the number of data blocks that require being moved, while

maintaining a uniform data distribution across all disks. Furthermore, Xscale eliminates metadata updates while guaranteeing data

consistency and data reliability. Compared with the round-robin approach, Xscale reduces the number of blocks to be moved by 63.6-

89.5 percent, decreases the reorganization time by 35.62-37.26 percent, and reduces the I/O latency by 23.29-37.74 percent while the

scaling programs are running in the background. In addition, there is no penalty in the performance of the data layout after scaling using

Xscale, compared with the layouts maintained by other existing scaling approaches.

Index Terms—RAID-6 scaling, load balance, data migration, data reorganization, metadata update

Ç

1 INTRODUCTION

RAID-6 [1], [2], [3] storage systems provide a large I/O
bandwidth via parallel I/O operations, and tolerate

two disk failures by maintaining dual parity. RAID-6 has
received more attention, since the probability of multiple
disk failures is higher than ever [4], [5]. RAID-based archi-
tectures are also used in clusters and large-scale storage sys-
tems [6], [7]. Due to the ever-increasing demand of storage
capabilities, applications often require larger storage capaci-
ties and higher performance. This is normally achieved by
adding new disks to the existing RAID-6 volume [8], [9].
This disk addition is termed as RAID-6 scaling.

Several challenges arise when performing RAID-6 scal-
ing. First, in order to regain uniformity in the data distribu-
tion, certain blocks must be moved to the new disks.
Second, RAID-6 scaling has additional overhead of recalcu-
lating and updating the associated parities, as well as the
necessary metadata updates to checkpoint the progress of
data reorganization. Third, RAID solutions are widely used
in online services where clients and applications need con-
stant access to data. With these services, the downtime cost
can be extremely high [10], and thus any strategy to scale
RAID arrays should be able to interleave its job with normal
I/O operations. Therefore, RAID-6 scaling requires an effi-
cient approach to performing online data reorganization.

There are multiple coding methods proposed for
RAID-6 arrays. According to the layout of data and par-
ity, RAID-6 codes are categorized into horizontal codes
[3], [11] and vertical codes [12], [13], [14]. Existing scal-
ing approaches are proposed for the general case in
RAID-0 or RAID-5 [15], [16], [17], [18], [19], [20], [21].
They cannot adapt to various coding methods in RAID-
6, and therefore are not suitable for RAID-6 scaling. An
efficient approach to RAID-6 scaling should be designed
based on the characteristics of each coding method,
respectively. The X-code [14] is an elegant erasure code
for two-parity systems that, encodes, decodes and
updates optimally. This paper focuses on the problem of
X-code RAID-6 scaling.

Typical RAID scaling approaches [16], [18], [19], [20] pre-
serve the round-robin data distribution after adding disks.
However, they end up redistributing all the data between
old and new disks, regardless of the numbers of new and
old disks. Moving large amounts of data means either data
reorganization will be completed in a long time, or the
impact of data reorganization on application performance
will be significant. There are some optimizations of data
migration [16], [20] proposed for RAID scaling, e.g., I/O
aggregation and rate control. They can improve the perfor-
mance of RAID-6 scaling to a certain extent, but still suffer
from large data migration and frequent metadata updates.

1.1 How X-Code Works

X-code is a vertical array code of size N �N , and N is the
number of disks in the RAID, and it should be a prime num-
ber greater than 2. X-code has a simple geometry, and each
stripe contains N � 2 data rows and 2 parity rows. Fig. 1
shows an example of X-code’s data layout. Each data block
in a coded array is protected by an anti-diagonal parity and
a diagonal parity. The parity blocks are calculated by XOR
operations. An example of anti-diagonal parity is calculated
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by P0x ¼ D00 �D02 �D04; an example of diagonal parity is
calculated by Qx1 ¼ D21 �D41 �D11.

For an X-code array, distributions of data and parities are
naturally uniform among all disks, so overheads of disk I/Os
can be evenly shared by each disk. However, X-code’s layout
also leads to tight coupling among the disks in the RAID, so
X-code has poor scalability, which needs improvement.

1.2 Initial Idea and Technical Challenges

Our initial idea for improving the efficiency of X-code
RAID-6 scaling is that of minimizing data migration in the
process of RAID-6 scaling. Zheng and Zhang [21] proposed
the FastScale approach to accelerate RAID-0 scaling by min-
imizing data migration and lazy metadata updates. FastS-
cale provides a good starting point for the efficient scaling
of RAID-6 arrays. However, optimizing data reorganization
for RAID-6 scaling will be more difficult, due to the need to
maintain consistent, dual parities.

First, X-code has a uniform layout of data and parities,
and naturally achieves load balancing in the RAID, so the
uniformity should be maintained after scaling. Therefore,
one of the challenges is to design a new data reorganiza-
tion scheme for X-code scaling, to regain a uniform data
distribution after scaling. Second, the overheads of data
reorganization should be reduced, to accelerate RAID scal-
ing and avoid significant degradation of access perfor-
mance. Therefore, another technical challenge is to
minimize data migration in the process of data reorganiza-
tion. Third, using lazy metadata updates in X-code scaling
will result in data loss when the system crashes and one
disk fails. Therefore, the last technical challenge is to
reduce the number of metadata updates, while guarantee-
ing data consistency and data reliability.

1.3 Design Objectives

To regain load balancing after adding disks to a storage sys-
tem, RAID-6 scaling requires moving data blocks from old
disks to new disks, and it is desirable to minimize the data
migration. After scaling, a block may be moved to a new
location, so we should provide a fast addressing algorithm
for mapping a logical address to the corresponding physical
address with a low complexity.

Assume that each disk consists of s blocks, and that there
are Ni�1 old disks and Ni �Ni�1 new disks during the ith
RAID-6 scaling. Before this scaling, there are di�1 data blocks
and pi�1 parity blocks on each old disk. RAID-6 scaling should
satisfy the following five requirements, while reorganizing
the data.

� Uniform data distributions. After the ith RAID-6 scal-
ing, each one of the Ni disks holds ðdi�1 �Ni�1Þ=Ni

data blocks.
� Minimal data migration. During RAID-6 scaling, no

data block should be exchanged among old disks,
and the expected number of data blocks to be moved
is ðNi �Ni�1Þ � ððdi�1 �Ni�1Þ=NiÞ.

� Fast data addressing. We should provide an address-
ing algorithm for calculating the new location of a
block after scaling, and the addressing process
should have low time and space complexities, to
avoid a great impact on application performance.

� Data consistency across system crash. Data consistency
should be guaranteed, if the system crashes during a
scaling operation.

� Data reliability during scaling. Data reliability should
be guaranteed, if the system crashes and/or if any
two disks fail during a scaling operation.

To meet the above requirements for scaling, we propose
Xscale, a new approach to accelerating X-code RAID-6 scal-
ing by using lightweight data reorganization.

1.4 Paper Organization

The rest of the paper is organized as follows. In Section 2,
we present how Xscale accelerates RAID-6 scaling. In Sec-
tion 3, we describe our addressing algorithm in detail. In
Section 4, we prove the properties of Xscale in theory. In
Section 5, we quantitatively characterize the properties
of Xscale through extensive simulation experiments. In
Section 6, we evaluate Xscale by comparing it with existing
approaches. In Section 7, we review some related work.
Finally, we conclude this paper in Section 8.

2 XSCALE OVERVIEW

Xscale accelerates online X-code RAID-6 scaling using light-
weight data reorganization. The goal of lightweight data
reorganization is achieved with two techniques, i.e., mini-
mizing data migration and eliminating metadata updates.

2.1 Minimizing Data Migration

During RAID-6 scaling, Xscale moves data blocks from
old disks to new disks, to balance load across all the disks,
while Xscale minimizes the amount of data migration.
After data migration, RAID-6 scaling is over, and new
data can be placed into the disks. This section describes
the rules of how Xscale migrates data from old disks to
new disks.

2.1.1 View Transformation by Splitting Data and Parity

Without loss of generality, we focus on the ith scaling oper-
ation from Ni�1 to Ni disks as an example, to describe how
Xscale minimizes data migration. Each disk consists of s
blocks, and there are di�1 data blocks and pi�1 parity blocks
on each old disk before scaling.

Suppose that the physical view describes the actual data
layout on disks, and by the splitting operation, we convert
it into the logical view, where we consider how to carry out
data migration. Locations on all disks with the same block
number form a row.

Fig. 1. The data layout of an X-code array with 5 disks.
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In the logical view, data blocks are separated from parity
blocks. All the data rows are pieced together into a data seg-
ment of di�1 rows, and all the parity rows make up a parity
segment of pi�1 rows. It should be noted that the transforma-
tion of the logical view does not result in any data
migration.

2.1.2 Moving Old Data

Under the logical view, we divide the data segment into
di�1=Ni regions, each of which consists ofNi rows. For differ-
ent regions, the rules of data migration are consistent, so we
only focus on one region. As shown in Fig. 2, the shaded
area is a moving parallelogram, where the data blocks will be
migrated from. The base of a moving parallelogram is
Ni �Ni�1, and the height is Ni. Fig. 2 depicts the moving
trace of each migrated block, whose disk number is changed
while the row number is always fixed. The source locations
of moving data blocks are on the intersecting areas of the
moving parallelogram and old disks, and the destination
locations are on new disks and are outside the moving
parallelogram.

After data migration, in a region, only the moving paral-
lelogram is empty. The intersection of the moving parallel-
ogram and each disk has Ni �Ni�1 blocks. Therefore, each
disk will hold Ni�1 data blocks after migration, so that
Xscale ensures a uniform data distribution. In a region, the
data blocks to be migrated are on the intersecting area of
the moving parallelogram and old disks, and the number
is ðNi �Ni�1Þ �Ni�1. There are di�1=Ni regions in the
whole data segment, so the total number of migrated data
blocks is ðdi�1=NiÞ � ððNi �Ni�1Þ �Ni�1Þ ¼ ðNi �Ni�1Þ �
ððdi�1 �Ni�1Þ =NiÞ, and it is exactly the minimal number
of data blocks to be moved. Therefore, Xscale minimizes
data migration while maintaining a uniform data distribu-
tion across all the disks.

2.1.3 Stripe Reorganization

We suppose that each disk consists of s blocks. In an X-code
array with Ni disks, the coded array is of size Ni �Ni,
where the first Ni � 2 rows contain regular data, and the
last two rows contain parity blocks. Using the formula
pi ¼ s=Ni � 2, we can calculate the number of parity rows,
which appears in an obviously negative correlation with the
number of disks. With new disks added, the scale of the
coded array increases, so the size of the parity rows set
decreases. Xscale always chooses the last ðpi�1 � piÞ rows in
the parity segment to turn into data rows.

To understand how Xscale performs stripe reorganiza-
tion, we take RAID-6 scaling from 5 to 7 disks as an exam-
ple. As shown in Fig. 3, newly added disks are inserted
after Disk 4. Here, given s ¼ 15, we have di�1 ¼
15=5� 3 ¼ 9, pi�1 ¼ 15=5� 2 ¼ 6, and di ¼ 15=7� 5 ¼ 10,
pi ¼ 15=7� 2 ¼ 4. So, the last ðpi�1 � piÞ ¼ 6� 4 ¼ 2 rows
(i.e., Rows 13 and 14) in the parity segment turn into data
rows. In this case, parity rows 3 and 4 protect data rows
0, 1, 2, 5, and 6. Parity rows 8 and 9 protect data rows 7,
10, 11, 12, and 13. Since there is no parity information
protecting data row 14, this data row is not used for stor-
ing data.

During stripe reorganization, Xscale reconstructs the rule
on how parity rows protect data rows in a coded array. We
consider this issue in the logical view, with one data seg-
ment of di rows, and one parity segment of pi rows. The
data segment is divided into di=ðNi � 2Þ data pieces, and the
parity segment is divided into pi=2 parity pieces. A data piece
and a parity piece with the same ordinal number are paired
into a coded array, where ðNi � 2Þ data rows are protected
by 2 parity rows.

2.1.4 Placing New Data

After RAID scaling, new data can be filled gradually, and
we should determine an order of data placing, so that we
can make rules showing how to map a logical address to its
corresponding physical location.

As shown in Fig. 4, after the ith scaling operation, Xscale
divides the RAID into three areas, according to Bi and Bi�1.
Here, Bi is the position, below where the parity rows turn
into data rows during the ith scaling. In these three areas,
the rules of data placing are as follows.

Fig. 3. Xscale’s stripe reorganization during RAID-6 scaling from 5 to 7
disks. Here, s ¼ 15, di�1 ¼ 9, pi�1 ¼ 6, and di ¼ 10, pi ¼ 4, so the last
two rows in the parity segment turn into data rows.

Fig. 2. Xscale’s data migration during RAID-6 scaling from 5 to 7 disks.

Fig. 4. Xscale divides the RAID into three areas for data placing accord-
ing to Bi and Bi�1. Bi is the position, below where the parity rows turn
into data rows during the ith scaling.
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� In area E, the number and the positions of data or
parity rows in the RAID remain unchanged, during
the ith scaling operation. Xscale skips the parity
rows, and places new data blocks into the empty
positions on the data rows, in a round-robin order.
On each data row, there are Ni �Ni�1 empty posi-
tions, from where the data blocks are moved to the
newly added disks.

� Similarly, in area F, there are Ni �Ni�1 empty posi-
tions on each data row. However, the parity rows
will turn into data rows during the ith scaling opera-
tion. Each of these rows has Ni positions available
for filling data, and Xscale places new data blocks
from left to right. As for other rows, Xscale places
data in a round-robin order.

� In area G, the parity rows have turned into data rows
after previous scaling operations. It is a pure-data
area. There are Ni �Ni�1 positions for filling data on
each row. Xscale places new data blocks into these
positions row by row, in a round-robin order.

2.2 Eliminating Metadata Updates

While data migration is in progress, the RAID storage
serves user requests. Furthermore, the incoming user I/Os
may write requests to migrated data. So it is necessary to
write metadata to checkpoint the progress of data reorgani-
zation. Otherwise, data consistency may be destroyed, and
if the system crashes during data reorganization, we cannot
recover the data reorganization after the system restarts.

2.2.1 Existing Approaches

Synchronous metadata updates. Ordered operations of reor-
ganizing a data stripe and updating the mapping metadata
(a.k.a., checkpoint) can ensure data consistency. However,
ordered operations require frequent metadata writes, and
increases the cost of data reorganization significantly.

Lazy metadata updates. The technology of lazy metadata
updates is used by MiPiL [22] in RAID-5 scaling. Data blocks
are copied to new locations, and parity blocks are updated
continuously. Mapping metadata is only updated when a
user write request arrives in the area, where the data has
been moved and the movement hasn’t been checkpointed.

Lazy metadata updates can reduce the number of meta-
data writes significantly during RAID-5 scaling. Unfortu-
nately, using lazy metadata updates in X-code RAID-6
scaling will result in data loss in the events of system crashes
and disk failures. The reason is that one cannot identify
whether a data block belongs to an old stripe or a new stripe.

2.2.2 How Xscale Eliminates Metadata Updates

Xscale uses a by-product of X-code RAID-6 scaling to iden-
tify migration boundaries, and therefore eliminates meta-
data updates without compromising data consistency and
data reliability.

Basic operations for RAID scaling. Before performing data
reorganization for RAID scaling, new disks are zeroized.
This zeroizing operation does not take up the scaling time.

Fig. 5 illustrates an overview of the reorganization pro-
cess. We use hiðxÞ to describe the geometry after the ith scal-
ing operation, where Ni disks serve user requests. Within
the moving stripe, data blocks are copied to new locations.
When a user request arrives, if its physical block address is
above the moving stripe, it is mapped with hi�1ðxÞ. If its
physical block address is below the moving stripe, it is
mapped with hiðxÞ.

In the process of reorganizing the moving stripe, its par-
ity blocks are also updated so as to guarantee data reliabil-
ity. In a reorganized stripe, there usually exist non-zero
bytes on the parity blocks in the new disks. Contrarily, in a
stripe that has not been reorganized, all bytes in the new
disks are zero because of the zeroizing operation. Checking
the bytes on the parity blocks in the new discs makes it easy
to tell whether a stripe has been reorganized. However,
there is still a low probability that a reorganized stripe con-
tains no non-zero bytes on the parity blocks in the new
disks. To avoid the false negative, Xscale writes a two-byte
magic number (i.e., 0XFFFF) onto a specific location in each
new disk to mark the reorganized stripe. The specific loca-
tion is in an unused block during this scaling operation.
Fig. 6 demonstrates data reorganization within a moving
stripe during RAID-6 scaling from 5 to 7 disks. Here, Block
2 on Disk 5, and Block 5 on Disk 6 are not used for storing
user data during the scaling operation. Therefore, they are
available for the specific locations of the magic number.

After data reorganization in the moving stripe is com-
pleted, the moving stripe slides ahead by one stripe size. In
this way, the newly added disks are gradually available to
serve user requests. The whole process of RAID-6 scaling is
completed when the moving stripe reaches the end of the
RAID volume. From then on, the address mapping of the
whole volume is performed through the newmapping func-
tion, hiðxÞ, and Ni disks are used to serve requests.

Identifying reorganization boundary after accidental power-off.
If the system detects an unfinished scaling operation in the
booting stage, it continues the scaling process from the point
of interruption. Due to the fact that Xscale performs data

Fig. 5. Xscale’s scaling workflow. “M”: data blocks are migrated and par-
ity blocks are updated; “U”: data are not migrated. At any time, only the
data in the moving stripe is reorganized.

Fig. 6. Data reorganization within a moving stripe during RAID-6 scaling
from 5 to 7 disks. Here, Block 2 on Disk 5, and Block 5 on Disk 6 are not
used for storing user data.
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reorganization in a strict one-by-one sequence, it is required
to identify the reorganization boundary. In other words,
Xscale needs to locate the most recently-reorganized stripe,
which was being reorganized at the moment of the acciden-
tal power-off.

Xscale uses a modified binary search algorithm (see Fig. 7)
to quickly find the most recently reorganized stripes in a
stripe sequence. In the Identifying algorithm, the Reorgan-
ized function is used to determine whether an underlying
stripe has been reorganized. First, Xscale checks the
2� ðNi �Ni�1Þ parity blocks in the new disks. Only if one
non-zero byte is found on those parity blocks, has this
stripe been reorganized definitely, and the function returns
TRUE. It is very simple to address those blocks according to
the Xscale’s data layout. For Stripe i, they are Block
i�N0 þ ðN0 � 2Þ and Block i�N0 þ ðN0 � 1Þ in each new
disk. Second, if no non-zero byte is eventually found, Xscale
examines whether a two-byte magic number (i.e., 0XFFFF)
is written on the specific location in each new disk. If so,
this stripe has been reorganized. Otherwise, it is not reor-
ganized yet.

2.2.3 Remarks

For a stripe that has been reorganized, only in a few cases
does no non-zero byte exist on the 2� ðNi �Ni�1Þ parity
blocks in the new disks. Therefore, it is in a very low proba-
bility that Xscale writes a magic number (i.e., 0XFFFF) on
the specific location in each new disk. Even if a magic num-
ber has to be written, the specific location is close to a data
block that has been migrated. Xscale piggybacks the write
of the magic number during data migration. As a result, the
overhead of writing the magic number is negligible.

Even if the system fails unexpectedly during scaling, the
reorganization boundary can be identified after rebooting,
and therefore the data consistency is not destroyed. The
Identifying algorithm of Xscale has time complexity
OðlognÞ for n prospective new stripes.

3 DETAILED DESIGN

This section elaborates on Xscale’s design details by discus-
sing its mapping from a logical address to the correspond-
ing physical address in a RAID-6 system.

3.1 The Addressing Algorithm

Fig. 8 shows the Addressing algorithm to minimize data
migration required by RAID-6 scaling. An array N is used
to record the history of RAID scaling.N½0� is the initial num-
ber of disks in the RAID. After the ith scaling operation, the
RAID consists of N½i� disks. Suppose that new disks are
always inserted after the last disk in the RAID.

First, the Addressing algorithm determines that, block x is
added after which scaling operation, denoted as t0 (line 1),
and uses the Placing function to get the location of block x in
the physical view (line 2), when the block is just added into
the RAID. It is important to note that the physical block
number of block x will not change after scaling operations,
because Xscale only moves data blocks within the same
row. Second, the Addressing algorithm uses the Phy2Log
function to calculate the corresponding logical row number
of block x (line 3), according to the physical block number.
Finally, with the functions Moving and GoAhead, the
Addressing algorithm simulates the subsequent scaling oper-
ations, depicts the moving trace of block x in the logical
view, and eventually locates the disk holding block x, after t
scaling operations (lines 4-6). Thus, Xscale determines the
location in the physical layout of RAID for a logical block
number, x.

The Placing function. After the ith scaling operation
from Ni�1 to Ni disks, the number of parity rows
decreases, i.e., pi ¼ s=Ni � 2, and the number of data
rows can be also determined by di ¼ s� pi. So, there are
ððNi �Ni�1Þ � di�1Þ þ ððpi�1 � piÞ �NiÞ empty positions
available for new data blocks. The Placing function makes
the rule how new data blocks should be placed into these
positions.

The Phy2Log function. Before data migration, the
Addressing algorithm uses the Phy2Log function to construct
a logical view by separating data rows from parity rows.
According to the physical block number of block x given by
the Placing function, Xscale subtracts the number of parity
rows, above the row where block x falls on, from the physi-
cal block number, and obtains the corresponding logical
row number of block x.

Fig. 8. The addressing algorithm used in Xscale.

Fig. 7. The Identifying algorithm used in Xscale.
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The Moving function. During the ith scaling operation,
Xscale divides the data segment into di�1=Ni regions, and
we only focus on the region that block x falls on. Then,
Xscale identifies the location of block x in this region, with
the logical row number and the disk number of block x.
According to the migration rule shown in Section 2.1.2,
Xscale determines how block x should be moved.

The GoAhead function. This function is used to obtain
the logical row number of a physical row for the ðiþ 1Þth
scaling operation from its logical row number for the ith
scaling operation. After the ith scaling operation, suppose
that the logical row number of block x is denoted as b0.
According to the scaling history, Xscale can get the number
of disks, and can further calculate the number of parity
rows, after each time of scaling operation. Therefore, Xscale
can calculate the number of the parity rows, which are
above the corresponding physical row of b0, turning into
data rows in the ðiþ 1Þth scaling operation. Thus, Xscale
obtains the row number in the logical view, after the
ðiþ 1Þth scaling operation.

3.2 Moving Old Data

As shown in Fig. 9, the code of lines 1-5 is used to decide
whether data block x will be moved during a RAID-6
scaling. In Fig. 2, there is a moving parallelogram in each
region. The base of the parallelogram is n, and the height
is mþ n. If and only if, a data block is within the moving
parallelogram, will it be moved. In the logical view, the
row number of block x is b0. Row b0 intersects the moving
parallelogram at a segment, referred to as a moving seg-
ment. If the disk number d is within the moving segment,

block x is within the moving parallelogram, and therefore
it will be moved (line 5). Once a data block is determined
to be moved, Xscale changes its disk number with the
migration rules given in the Moving function (lines 6-19).

As shown in Fig. 11, n disks are newly added into a
RAID made up of m old disks, so the moving segment
has a width of n, and its two end points are vl and vr. If
a block x has a disk number d, and it lies in a moving
segment, it should be moved to a location on one newly
added disk, denoted as d0. According to the values of m
and n, we have a classified discussion. When m > n, the
rules of data migration can be summarized into three
cases as follows.

� The moving segment holding block x is disjoint with
the new disks, i.e., vl < vr < m. The whole moving
segment will be moved to the new disks, and the
distance between block x and the left end of the
moving segment will not change. In Fig. 11a, the
equation L1 ¼ L0

1 ¼ d� vl is satisfied, so we can
locate the new disk holding block x after migra-
tion, with the formula d0 ¼ L0

1 þm ¼ d� vl þm

(line 12 in Fig. 9).
� The right end of the moving segment holding block x

intersects with the new disks, i.e., vr � m. As shown
in Fig. 11a, the shaded area represents the intersec-
tion, and except for it, the moving segment will be
moved. As in the previous case, L2 ¼ L0

2 ¼ d� vl is
satisfied, and the new disk number can be calculated
with the formula d0 ¼ L0

2 þ vr ¼ d� vl þ vr ¼ dþ n

(lines 7-8 in Fig. 9).
� The left end of the moving segment holding block x

intersects with the new disks, i.e., vl > vr. As
shown in Fig. 11a, excluding the intersection, the
moving segment will be moved. Similarly, this
case satisfies the equation L3 ¼ L0

3 ¼ d, and the
new disk number can be calculated with the for-
mula d0 ¼ L0

3 þm ¼ dþm (lines 9-10 in Fig. 9).
Similarly, when m <¼ n, the rules of data migration can

also be shown in Fig. 11b, and can be described formally in
Fig. 9 (lines 14-19).

3.3 Placing New Data

During the ith scaling operation, if block x is at a newly-
added location, it is addressed via the Placing function given
in Fig. 10. When a RAID is constructed from scratch (i.e.,
i ¼ 0), it keeps a regular data layout of X-code, so block x
can be simply placed into the RAID in a round-robin order
(lines 1-3).

Let us examine the ith (i > 0) scaling operation, where n
disks are added into the RAID (line 5). According to the
scaling history, we can track the number of parity rows, and
mark out the positions of Bi and Bi�1 (line 4), below where
the parity rows turn into data rows, after the ith and
ði� 1Þth scaling, respectively. Among the newly added
data blocks during the ith scaling, x is the yth block (line 9).
With the value of y, we can determine the relative position
between block x and the boundary lines drawn by Bi and
Bi�1. Using the rules of data placing shown in Section 2.1.4,
we can place block x into the RAID, according to the area
on which it falls (lines 10-15).

Fig. 9. The moving function used in the addressing algorithm.
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3.4 Remarks about the Addressing Algorithm

The Addressing algorithm of Xscale is very simple and ele-
gant, and requires very little code.

When a disk array boots, the RAID topology needs to be
obtained from disks. The Addressing algorithm depends on
the number of disks added during each scaling. If a RAID-6
array is scaled t times, Xscale needs to store tþ 1 integers
(N½i�, 0 � i � t) in a persistent storage.

4 THEORETICAL PROOFS OF PROPERTIES

For a RAID-6 scaling operation, it is desirable to ensure an
even load distribution on all disks and minimal block

movement. Furthermore, since the location of a block may
be changed during a scaling operation, another objective is
to quickly compute the current location of a block. Finally, if
the system fails unexpectedly during scaling, the reorgani-
zation boundary can be quickly identified after rebooting.
In this section, we formally prove that Xscale satisfies these
requirements.

Theorem 4.1. Xscale maintains a uniform data distribution after
each RAID scaling.

Proof Sketch. Assume that there are Ni�1 old disks and
Ni �Ni�1 new disks during a RAID scaling. As shown in
Fig. 2, the physical data layout of disks is transformed
into the logical view by Xscale’s splitting operation,
where data blocks are separated from parity blocks.
Under the logical view, we divide the data segment into
different regions, each of which consists of Ni rows. For
different regions, the rules of data migration are
completely identical. Therefore, it suffices to show that
Xscale maintains a uniform data distribution in each
region after this RAID scaling.

Before this RAID scaling, there areNi data blocks on each
of the Ni�1 old data disks. As shown in Fig. 2, the intersec-
tion of the moving parallelogram and each disk has
Ni �Ni�1 data blocks. Therefore, each old disk has Ni�
ðNi �Ni�1Þ ¼ Ni�1 data blocks after this scaling.

According to the Xscale moving scheme, no data blocks
are moved onto the moving parallelogram. So, each new
disk holds at most Ni � ðNi �Ni�1Þ ¼ Ni�1 data blocks
after this scaling. All new disks can hold at most
Ni�1 � ðNi �Ni�1Þ data blocks. Since each old disk contrib-
utes Ni �Ni�1 blocks to the new disks, Ni�1 � ðNi �Ni�1Þ
data blocks are put onto new disks. Consequently, any loca-
tion on new disks outsides the moving parallelogram holds
a data block. Therefore, each new disk has Ni � ðNi �
Ni�1Þ ¼ Ni�1 data blocks after this scaling. Each disk, either
old or new, has Ni�1 data blocks. That is to say, Xscale
regains a uniform data distribution.

Theorem 4.2. Xscale performs the minimum number of data
migration during each RAID scaling.

Fig. 11. Xscale’s rules of data migration, during the scaling where n new disks are added into a RAID made up of m old disks. The solid-line rectan-
gles represent the moving segments, where data blocks are moved from. The dotted rectangles represent the locations in the new disks, on which
the moved blocks fall after migration.

Fig. 10. The placing function used in the addressing algorithm.
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Proof Sketch. Assume that there are Ni�1 old data disks
and Ni �Ni�1 new data disks during a RAID scaling.
Again, it suffices to show that Xscale performs the mini-
mum number of data migrations in each region during this
RAID scaling.

To maintain a uniform data distribution, the minimum
number of blocks to be moved is ðNi�1 � di�1Þ � ðNi �Ni�1Þ
=Ni, where each old data disk has di�1 data blocks. For one
region, each old disk has Ni data blocks. Therefore, the min-
imum number of blocks to be moved for one region is
ðNi�1 �NiÞ � ðNi �Ni�1Þ=Ni ¼ Ni�1 � ðNi �Ni�1Þ.

As shown in Fig. 2, the intersection of the moving paral-
lelogram and each disk has Ni �Ni�1 data blocks. In other
words, each old disk contributes Ni �Ni�1 blocks to the
new disks. In total, Ni�1 � ðNi �Ni�1Þ data blocks are
moved onto new disks, which is exactly the minimum num-
ber of blocks to be moved.

Theorem 4.3. The Addressing algorithm of Xscale has time com-
plexity OðtÞ after t RAID scalings.

Proof Sketch. The Addressing algorithm is iterative, iterat-
ing no more than t times, namely, the number of scaling
operations performed. Note that the Placing, Phy2Log,
Moving, and GoAhead functions all take constant time, so
the computation in each iteration is essentially constant
time. Therefore, the Addressing algorithm has time com-
plexity OðtÞ.
Theorem 4.4. The Identifying algorithm of Xscale has time com-

plexity OðlognÞ for n prospective new stripes.

Proof Sketch. The identifying algorithm is a binary search
for a specific circumstance. The time complexity of binary
search is OðlognÞ.

5 PROPERTY EXAMINATION

The purpose of this section is to quantitatively characterize
the properties of Xscale—uniform data distribution, mini-
mal data migration, fast data addressing, and eliminating
metadata updates. We compare Xscale with the round-robin
approach [16], [18], [19] and the Semi-RR approach [15] via
simulation experiments. ALV [20], MDM [17] and FastScale
[21] cannot be used in RAID-6, so they are not compared.
An X-code [14] array is defined by a controlling parameter
N , which must be a prime number greater than 2. From a 5-
disk X-code array, we add two, four, two, four, two, four
disks in turn using the three approaches respectively, and

each disk holds 2� 1;0242 blocks. Our experiments simulate
these scaling operations.

5.1 Uniform Data Distribution

In a region, we use the coefficient of variation (CV) of the
numbers of blocks on different disks as a metric to quantify

the uniformity of data distribution. The coefficient of varia-
tion is defined as the ratio of the standard deviation to the
mean. The smaller the coefficient of variation is, the more
uniform the data distribution of the region is. As for the
whole RAID-6 system, we use the mean coefficient of varia-
tion (MCV) (i.e., the average of CVs in all the regions), to
evaluate the uniformity across all the disks.

Table 1 shows the mean coefficient of variation versus
the number of newly added disks in each scaling operation.
For both the round-robin and Xscale approaches, the mean
coefficients of variation remain at 0 percent as the times of
disk additions increases. On the other hand, the Semi-RR
approach causes excessive oscillation in the mean coefficient
of variation, and the maximum can even reach 42.8 percent.
This indicates that Xscale maintains a uniform data distribu-
tion after each RAID-6 scaling operation, while Semi-RR
approach fails. So, Semi-RR causes non-uniform data distri-
bution, also referred to as data skew. Data skew makes the
runtime of application depend on the characteristic of
access, so that the storage system is prone to exhibit an
imbalance load and low I/O performance.

5.2 Minimal Data Migration

Table 2 shows the migration fraction (i.e., the fraction of
data blocks to be migrated) versus the number of newly
added disks in each scaling operation. Using the round-
robin approach, the migration fraction is almost 100 percent,
which causes a large migration cost.

The migration fractions are identical when using Semi-
RR and Xscale approaches, and they are significantly
smaller than the migration fraction in the round-robin
approach. Assume that there are Ni�1 old disks and
Ni �Ni�1 new disks during a RAID-6 scaling operation. To
regain a uniform data distribution, the minimal number of
blocks to be moved is ðNi �Ni�1Þ � ððdi�1 �Ni�1Þ=NiÞ,
where each old data disk has di�1 data blocks. Our numeri-
cal analysis indicates that the migration fractions using
Semi-RR and Xscale approaches reach this lower bound. In
other words, Xscale minimizes data migrations during each
RAID-6 scaling operation. Compared with the round-robin
approach, Xscale reduces the number of data blocks to be
migrated by 63.6-89.5 percent.

It should be noted that nearly all of the data has to be
read by Xscale for recalculation of dual parity during each
migration process.

5.3 Fast Data Addressing

In a scaled RAID, we run different approaches to locate all
data blocks in a sequential order. We time the process, and
calculate the average addressing time for a block, to quan-
tify the calculation overheads. The testbed is an Intel Xeon
CPU E5-2620 2.00 GHz machine with 32 GB of memory.

TABLE 1
Comparison of Uniformity of Data Distribution

% +2 +4 +2 +4 +2 +4

Round-Robin 0
Semi-RR 29.7 42.8 14.6 24.3 9.2 16.3
Xscale 0

TABLE 2
Comparison of Data Migration Ratio

% +2 +4 +2 +4 +2 +4

Round-Robin 	100.0

Semi-RR 28.6 36.4 15.4 23.5 10.5 17.4
Xscale
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Additionally, an Ubuntu 12.04 x64 operating system is
installed.

Table 3 shows the addressing time versus the number of
newly added disks in each scaling operation. The round-
robin approach has a low calculation overhead below 0.02
ms. Among the three approaches, Xscale has the largest
overhead of about 0.1 ms, and the calculation overhead
using Xscale shows an upward trend along with the times
of disk additions, so there may be degradation of access per-
formance after many scaling operations. On this issue, we
conduct additional experiments to scale for more times, to
see how Xscale behaves after the long-term scalability.
There are initially 5 disks in the RAID. After 10 instances of
scaling, there are 73 disks in the RAID, and the average
addressing time is about 0.12 ms. After 15 instances of scal-
ing, there are 199 disks in the RAID, and the average
addressing time is about 0.14 ms. After 20 instances of scal-
ing, there are 499 disks in the RAID, and the average
addressing time is about 0.15 ms. In general, the addressing
time slowly increases with the scaling times, and it is negli-
gible compared to milliseconds of disk I/O time.

5.4 Eliminating Metadata Updates

Existing approaches to RAID-6 scaling require metadata
updates to checkpoint the last reorganized stripe, to ensure
data consistency and data reliability across system crash
and/or disk failures. Metadata updates will cause disk I/O
operations, and increase the cost of stripe reorganization.

Table 4 shows the number of disk I/Os for metadata
updates versus the number of newly added disks in each
scaling operation. Xscale piggybacks the write of the magic
number with the regular data, so it requires no extra disk I/
O to write metadata. Contrarily, round-robin and Semi-RR
need to write metadata to the disks to checkpoint the migra-
tion progress. So, Xscale can eliminate metadata updates
during RAID-6 scaling to improve the performance, while
guaranteeing data consistency and data reliability.

6 EXPERIMENTAL EVALUATION

In this section, we compare Xscale with round-robin, Semi-
RR, and the SDM scheme [23] through detailed experi-
ments. SDM is a stripe-based data migration scheme used
to improve the scalability of RAID-6, and it also provides
uniform data distribution and minimal data migration. In
these experiments, each disk contains 512� 1;024 blocks,
and the size of a block is 32 KB, so each disk has a capacity
of 16 GB.

6.1 Simulation System

To simulate the online RAID scaling, the simulator consists
of two components: a workload generator and a disk array.
According to trace files, the workload generator initiates

online user requests at the appropriate time, so that particu-
lar workloads are induced on the disk array.

The disk array is made up of an array controller and a
storage component. The array controller is logically divided
into two parts: an I/O processor and a data mover. The I/O
processor, according to the address mapping, forwards
incoming I/O requests to the corresponding disks. The data
mover reorganizes the data on the array. The storage com-
ponent simulates modern disk drivers in great detail.

The simulator is implemented in SimPy [24] and DiskSim
[25]. The workload generator and the array controller are
implemented in SimPy. The storage component is imple-
mented in DiskSim. In other words, DiskSim is used as a
worker module to simulate disk accesses. The simulated
disk specification is that of the 15,000-RPM IBM Ultrastar
36Z15 [26].

6.2 Application Workloads

Our experiments use the following three real-system disk I/
O traces with different characteristics.

� TPC-C traced disk accesses of the TPC-C database
benchmark with 20 warehouses [27]. It was collected
with one client running 20 iterations.

� Fin is obtained from the Storage Performance Coun-
cil (SPC) [28], a vendor-neutral standards body. The
Fin trace was collected from OLTP applications [29]
running at a large financial institution. The write
ratio is high.

� Web is also from SPC. It was collected from a system
running a web search engine. The read-dominated
Web trace exhibits the strong locality in its access
pattern.

6.3 Experimental Results

6.3.1 The Scaling Efficiency

In this section, we focus on comparing reorganization times
and user request latencies when different scaling programs
are running in the background. We conduct a scaling opera-
tion of adding 2 disks to a 11-disk RAID, and each experi-
ment lasts the duration of the data reorganization. We
collect the I/O latencies of all user requests. We divide the
I/O latency sequence into multiple sections according to I/
O issuing time. From each section, we get a local average
latency, i.e., the average of I/O latencies in a section.

Fig. 12a plots the local average latencies using the four
approaches as the time increases along the x-axis, under the
Fin workload. It illustrates that Xscale makes an improve-
ment over round-robin and Semi-RR in two metrics.

First, the reorganization time using Xscale is shorter than
that using Semi-RR and round-robin. They are 4,389 sec-
onds, 5,045 seconds, and 6,897 seconds, respectively. Xscale
has a 36.36 percent shorter reorganization time than round-

TABLE 3
Comparison of Addressing Time

ms +2 +4 +2 +4 +2 +4

Round-Robin 0.014 0.014 0.014 0.013 0.013 0.013
Semi-RR 0.029 0.034 0.042 0.049 0.057 0.063
Xscale 0.044 0.052 0.067 0.077 0.092 0.101

TABLE 4
Comparison of the Number of Disk I/Os for Metadata Updates

�105 +2 +4 +2 +4 +2 +4

Round-Robin 1.80 1.06 1.32 0.90 0.97 0.74
Semi-RR 3.00 1.91 1.61 1.23 1.10 0.91
Xscale 0
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robin. The key factor in Xscale’s reduced reorganization
time is the significant decline of the amount of the data to
be moved. When round-robin is used, almost all of data
blocks have to be migrated. However, when Xscale is
used, only 15.36 percent of data blocks require being
migrated. Another technique, i.e., eliminating metadata
updates, also helps reduce the number of disk I/Os dur-
ing RAID scaling.

Second, the local average latencies of round-robin and
Semi-RR are significantly longer than those of Xscale. The
global average latencies using round-robin and Semi-RR
respectively reach 50.60 and 52.18 ms, while that using
Xscale is 31.50 ms. This is because round-robin requires
more disk I/Os during stripe reorganization than Xscale, so
that user request latencies are enlarged. For Semi-RR, its
migration rule makes the reorganization process involve
extra stripes beside the moving stripe, and this takes a great
impact on application performance.

SDM’s data reorganization is based on the “stripe set”
(i.e., a set of stripes) as a unit, which is larger than Xscale’s.
This improves SDM’s efficiency of data migration to some
extent, but also brings a negative effect towards the
response speed of disk array to user requests. The reorgani-
zation time using SDM is 4,237 seconds, which is slightly
shorter than that of Xscale; but on the other hand, the global
average I/O latency using SDM reaches 33.56 ms, which is
longer than that of Xscale.

A factor that might affect the benefits of Xscale is the
workload under which data reorganization performs.
Under the TPC-C workload, we also perform the “11+2”
scaling operation. Fig. 12b plots the local average latencies
versus the reorganization times for the four approaches. It
shows, once again, the efficiency of Xscale in improving the
reorganization time. The reorganization times using round-
robin, Semi-RR, and Xscale are 7,588, 5,521, and 4,761 sec-
onds, respectively. Xscale brings an improvement of 37.26
percent in the reorganization time. Likewise, the local aver-
age latencies of Xscale are also obviously shorter than those
of round-robin and Semi-RR. The global average latency
using Xscale is 49.91 ms, while that using round-robin and
Semi-RR reaches 65.06 and 63.92 ms. In addition, the reorga-
nization time using SDM is 4,643 seconds, and it is slightly

shorter than that of Xscale; however, the global average I/O
latency using SDM reaches 50.94 ms, and it is longer than
that using Xscale.

To make our observations more convincing and intuitive,
we carry out experiments under different workloads, and
summarize the results in Figs. 13 and 14. Fig. 13 shows a
comparison in the reorganization time among round-robin,
Semi-RR, SDM, and Xscale. Furthermore, we conduct a
comparison experiment on the reorganization time with no
application workload. To scale a RAID volume offline,
round-robin uses 6653 seconds, whereas Xscale consumes
only 4,237 seconds, so Xscale provides an improvement of
36.31 percent in the reorganization time. Fig. 14 shows a
comparison in the global average I/O latency among the
four scaling approaches. Under different workloads, Xscale
saves the response time of user I/Os by 23.29-37.74 percent
compared with round-robin, and saves the response time
by 21.92-39.63 percent compared with Semi-RR.

From these results, we draw a conclusion. Under various
application workloads, Xscale consistently outperforms
round-robin by 35.62-37.26 percent in the reorganization
time, with shorter response time of user I/Os. Xscale also
outperforms Semi-RR by 21.92-39.63 percent in the response
time of user I/Os, and requires shorter reorganization time.

Fig. 12. Comparison of reorganization times and I/O latencies.

Fig. 13. Comparison of reorganization times under different workloads.
The label “unloaded” means scaling a RAID volume offline.
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Xscale and SDM have about equal scaling efficiency, in
terms of both reorganization time and I/O latency. How-
ever, in the current state, SDM can be used in X-code RAID-
6 scaling only one time, rather than multiple times.

6.3.2 The Performance after Scaling

The above experiments show that Xscale achieves good effi-
ciency of RAID scaling. One of our concerns is whether
there is a penalty in the performance of the data layout after
scaling using Xscale, compared with the data layouts of
round-robin and SDM.

We use the Fin workload to measure the performances of
the three RAIDs, scaled from the same RAID using round-
robin, SDM and Xscale. Each experiment lasts 3,600 sec-
onds, and records the latency of each I/O. According to the
issue time, the I/O latency sequence is divided into multiple
sections evenly, and each section lasts about 100 seconds.
Then we get a local average latency from each section.

First, we compare the performances of three RAIDs, after
one scaling operation “7+4”, using the three scaling
approaches. Fig. 15a plots the local average latencies of the
four RAIDs as the time increases along the x-axis. We find
that the performances of the Xscale RAID and the SDM
RAID are very close, and they both outperform the round-

robin RAID. The global average latencies of round-robin,
SDM, and Xscale are 5.35, 4.64, and 4.50 ms, respectively.

Second, we compare the performances of two RAIDs,
after two scaling operations “7+4+2”, using round-robin
and Xscale. SDM has just considered one time of X-code
scaling, so it cannot be a right comparison in this case.
Fig. 15b plots the local average latencies of the two RAIDs
as the time increases along the x-axis. It shows that the
Xscale RAID slightly outperforms the round-robin RAID.
The global average latencies of round-robin and Xscale are
4.65 and 4.32 ms, respectively.

These experimental results show that Xscale will not
result in degradation of access performance, compared with
round-robin and SDM. To substantiate this observation, we
also measure the performances of the three RAIDs under
the TPC-C workload.

First, we compare the performances of three RAIDs, after
one scaling operation “7+4”, using the three scaling
approaches. Fig. 16a plots the local average latencies of the
three RAIDs as the time increases along the x-axis. We find
that the performances of the three RAIDs are all very close.
The global average latencies of round-robin, SDM, and
Xscale are 27.54, 29.62, and 29.68 ms, respectively.

Second, we compare the performances of two RAIDs,
after two scaling operations “7+4+2”, using round-robin
and Xscale. Fig. 16b plots the local average latencies of the
two RAIDs as the time increases along the x-axis. It again
reveals the approximate equality in the performances of the
two RAIDs. The global average latencies of round-robin
and Xscale are 29.33 and 28.03 ms, respectively.

From the above experiments, we can draw a conclusion.
There is no penalty in the performance of the data layout
after scaling using Xscale, compared with the layouts main-
tained by round-robin and SDM. In fact, the access perfor-
mance of the three RAIDs scaled using different approaches
is almost equal.

7 RELATED WORK

Efforts concentrating onRAID scaling approaches are divided
into two categories, optimizing the process of data migration
and reducing the number of data blocks to bemoved.

Fig. 14. Comparison of average I/O latencies under different workloads,
while different scaling programs are running in the background.

Fig. 15. Comparison of I/O latencies under the Fin workload.
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7.1 Optimizing Data Migration for RAID Scaling

Conventional approaches redistribute data and preserve the
round-robin order after adding disks. All data blocks are
migrated in the scaling process. Brown [18] designed a
reshape toolkit in the Linux kernel (MD-Reshape), which
writes mapping metadata with a fixed-size data window.
User requests to the window have to queue up until all data
blockswithin the window aremoved. Therefore, thewindow
size cannot be too large.Metadata updates are quite frequent.

Gonzalez and Cortes [16] proposed a gradual assimila-
tion (GA) approach to control the overhead of expanding a
RAID-5 system, but it has a large redistribution cost since
all parities still need to be modified after data migration.

US patent #6000010 [30] presents a method to scale
RAID-5 volumes, eliminating the need to rewrite data and
parity blocks to the original disks. This, however, may lead
to an uneven distribution of parity blocks and penalize
write requests.

The MDMmethod [17] eliminates the parity modification
cost of RAID-5 scaling by exchanging some data blocks
between original disks and new disks. However, it does not
guarantee an even data and parity distribution. Also, it is
unable to increase (only keep) the storage efficiency by add-
ing new disks.

Franklin and Wong [31] propose using spare disks to
provide immediate access to new space. During data redis-
tribution, new data are mapped to spare disks. Upon com-
pletion of the redistribution, new data are copied to the set
of data disk drives. Similar to WorkOut [32], this kind of
method requires spare disks to be available.

Zhang et al. [19], [20] discovered that there is always a reor-
dering window during data redistribution for round-robin
RAID scaling. By leveraging this insight, they proposed the
ALV approach to improve the efficiency of RAID-5 scaling.
However, ALV still suffers from large datamigration.

7.2 Reducing Data Migration for RAID Scaling

With the development of object-based storage, randomized
RAID [15], [33], [34] reduces data migration while delivering
a uniform load distribution. The cut-and-paste placement
strategy [34] uses a randomized allocation strategy to place

data across disks. Seo and Zimmermann [35] proposed an
approach to find a sequence of disk additions and removals
for the disk replacement problem. The goal is to minimize
the data migration cost. The SCADDAR algorithm [15] uses
a pseudo-random function to minimize the amount of data
to be moved. RUSH [36], [37] and CRUSH [38] are two algo-
rithms for online placement and reorganization of replicated
data. The Random Slicing strategy [39] used a small table
with information on insertion and removal operations to
reduce the required randomness and deliver a uniform load
distribution with minimal migration. These randomized
strategies are designed for object-based storage systems, and
focus only on how blocks are mapped to disks, ignoring the
inner data layout of each individual disk.

There are several deterministic approaches to improve
the extensibility of RAID. HP’s AutoRAID [40] allows an
online capacity expansion without data migration, by which
newly created RAID volumes use all disks, and previously
created ones use only the original disks.

To reduce data migration, the Semi-RR approach [15]
modifies the round-robin scheme, and requires a block
movement only if the target disk number is one of new
disks. Semi-RR reduces data migration significantly. Unfor-
tunately, it does not guarantee uniform distribution of data
blocks after subsequent scaling operations. This will deteri-
orate the initial equally-distributed load.

The GSR approach [41] divides data on the original array
into two sections, and moves the second one onto the new
disks, keeping the layout of most stripes. Its main limitation
is performance: after upgrades, accesses to the first section
are served by original disks, and accesses to the second are
served only by newer disks.

The SDM scheme [23] optimizes data movements accord-
ing to the future parity layout, which minimizes the over-
head of data migration and parity modification. It also
provides uniform data distribution and minimal data
migration. In the current state, however, SDM cannot
address data newly added after one RAID scaling opera-
tion. Therefore, SDM can be used in X-code RAID-6 scaling
only one time, rather than multiple times.

Zheng and Zhang [21] proposed the FastScale approach
to RAID-0 scaling. FastScale minimizes data migration

Fig. 16. Comparison of I/O latencies under the TPC-C workload.
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while maintaining a uniform data distribution. FastScale
provides a good starting point for RAID-6 scaling. How-
ever, RAID-6 scaling is more challenging, as discussed in
Section 1.2.

RS6 [42] is a new approach to accelerating RDP [3] RAID-
6 scaling by reducing disk I/Os and XOR operations. How-
ever, RDP is a horizontal code, and RS6 does not handle
RAID-6 scaling with vertical codes.

Miranda and Cortes presented CRAID [43], which reor-
ganizes only frequently-accessed data when new disks are
added, and therefore, reduces this migration even further.
Compared with Xscale, CRAID needs less data migration
for RAID scaling, while it has to identify those frequently-
accessed data all the time. Therefore, CRAID performs extra
statistics of data accesses, and in turn suffers from addi-
tional spatial and temporal overheads. It should be noted
that RAID scaling involves occasional events, while statis-
tics of data accesses are performed all the time by CRAID.

8 CONCLUSIONS

In this paper, we propose Xscale – a new approach to accel-
erating X-code RAID-6 scaling by using lightweight data
reorganization. While preserving the uniformity of data dis-
tribution, Xscale reaches the lower bound of the migration
fraction. Furthermore, Xscale uses a by-product of X-code
scaling to identify migration boundaries, and therefore
eliminates metadata updates without compromising data
consistency and data reliability.

To evaluate the benefits of our Xscale approach, we con-
duct extensive simulation experiments to quantitatively
characterize the properties of Xscale, and compare it with
round-robin, Semi-RR, and SDM. The experimental results
show that Xscale achieves both good scaling efficiencies and
low I/O latencies after scaling. Compared with the round-
robin approach, Xscale reduces the number of blocks to be
moved by 63.6-89.5 percent, saves the reorganization time
by 35.62-37.26 percent, and reduces the I/O latency by
23.29-37.74 percent while different scaling programs are
running in the background. Xscale also outperforms Semi-
RR by 21.92-39.63 percent in the response time of user I/Os,
and requires shorter reorganization time. SDM has about
equal reorganization time and I/O latency with Xscale, but
it only supports one time of X-code RAID-6 scaling in the
current state. In addition, there is no penalty in the perfor-
mance of the data layout after scaling using Xscale, com-
pared with the layouts maintained by round-robin and
SDM.
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