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Abstract—In software defined networking, to maximize the network utilization, its control plane needs to frequently update the data
plane via flow migration as the network conditions change dynamically. Since each switch updates its flow table independently and
asynchronously, the network state transition may result in serious link congestion and packet loss if it is done directly from the initial to
the final stage. Deadlocks among flows and links may also block the update process. In this paper, we pay close attention to
elaborately resolving deadlocks with the help of spare paths during the network update. We prove that the feasibility of the consistent
flow migration can be determined in exponential time. Furthermore, we demonstrate that even if there are multiple consistent migration
plans, finding the optimal one that occupies the least leisure bandwidth resources is NP-hard. For the case in which no consistent plan
is found, we introduce an efficient method to rate limit flows in order to reduce the packet loss. Extensive simulations show that our
solution achieves a much smaller traffic loss rate at the cost of affordable spare link resource usage compared to prior methods.

Index Terms—Software Defined Networks (SDNs), spare link, consistent flow migration, feasibility and optimality.
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1 INTRODUCTION

Configurations of Software Defined Networks (SDNs) are
routinely updated in order to achieve shorter transmission
latency and better bandwidth utilization [1–3]. SDN utilizes
its centralized controller to configure and execute new up-
date policies [4]. With the rise and development of SDNs
[5], the requirements of high performance networks are
becoming more and more intense. For example, regarding
the packet loss rate, data centers usually claim it to be
around 2% [6], while the requirements of wide area net-
works (WANs) and carrier-grade networks are much higher
[7]. Specifically, the carrier-grade performance is often asso-
ciated with the term “five nines” that means an availability
of 99.999%. However, complex network updates are becom-
ing increasingly common. For example, Microsoft’s SWAN
[8] and Google’s B4 [9] run updates every few minutes,
hundreds of times per day. Key challenges come from
the fact that some unexpected events during the update
may happen. These unexpected events will disrupt network
functionality and cause traffic congestion as well as packet
loss, resulting in a Quality of Service (QoS) disqualification.
These events consist of unpredicted, long switch update
times and abnormal communication delays between the
controller and the switch. There are multiple reasons for
those chaotic situations, such as imperfect clock synchro-
nization and transient controller-data plane disconnection.
In this paper, we study the consistent flow migration prob-
lem, which requires moving network flows from their initial
routing paths to the target ones in a lossless way [10].

To prevent the above anomalies, we explore three prop-
erties in network flow migration: consistency, feasibility, and
optimality. Consistency requires that the bandwidth de-
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Fig. 1: An example to illustrate migration.

mands of all flows be satisfied during the whole migration
process and there be no congestion and packet loss during
the update procedure. Because of the demanding packet loss
rate, consistency is the most important property of flow mi-
gration. However, due to insufficient bandwidth resources,
a consistent flow migration may not always exist. Therefore,
we use feasibility to refer to whether or not a consistent flow
migration exists. Optimality is raised when there are multiple
consistent flow migration. This means finding the plan that
takes the least spare resource to finish the update. This paper
explores the feasibility and optimality of flow migrations
under the consistency constraint in SDN updates.

Fig. 1 illustrates the flow migration problem with three
flows, f1, f2 and f3. In each graph, the nodes represent
the switches, and the edges are the links, all of which are
bidirectional. Each directional link has a capacity of 1 Gbps
and each flow has a bandwidth of 1 Gbps. Figs. 1(a) and
1(b) show the initial and final routing paths of the three
flows. Unfortunately, none of them can be directly migrated
to their final paths, because the initial routing path of each
flow overlaps the final routing paths of the other two flows.
Such a deadlock is challenging in terms of flow migrations.
This paper uses spare resources to achieve consistent flow
migration. A feasible flow migration is shown in Fig. 1(c)
in which f1 is migrated to an intermediate routing path on
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two spare links (v4 to v5 and v5 to v2). Such an interme-
diate routing path of f1 releases the necessary bandwidth
resource for f2 and f3, and thus, it breaks the deadlock.
Afterwards, f2 can be migrated to its final path and then to
f3, finally f1 moves to its final path. The flow migration is
completed without any packet loss.

Due to the complexity of the assistant intermediate rout-
ing paths, our problem becomes challenging. We study the
consistent flow migration problem, which requires that the
bandwidth demands of all flows be satisfied during the
entire migration process. Moreover, we want to find the
optimal one when several consistent update plans exist.
Existing works focus on the resource dependency between
the initial and final routing paths of flows. They aim at
finding a specific migration order of flows [11, 12] or using
a two-phase tagging scheme [13, 14] to complete a loss-
less flow migration to the final state. However, when the
remaining bandwidth resources in the flows’ final paths
are insufficient, , these methods cannot make any progress
except in reducing flow rates. Consequently, such flow
rate limitations will lead to packet loss as well as QoS
deterioration [15]. In contrast, our paper proposes a generic
approach to consistently migrating flows with the help of
spare paths. An algorithm is proposed to determine the
feasibility of consistent flow migration. Furthermore, to
efficiently resolve deadlocks, we demonstrate that even if
there are multiple consistent flow migrations, it is NP-hard
to find the optimal one that occupies the fewest bandwidth
resources. Therefore, a greedy algorithm is proposed to
consistently migrate flows in a sequence within a reasonably
competitive ratio. If no consistent plan is found, we also
conduct an efficient method to rate limit flows in order to
reduce the packet loss.

Our main contributions are summarized as follows:

• We formulate the network update problem as a
mixed integer programming and introduce a new
definition of Resource Dependency Graph.

• We design a spare-path-assisted algorithm to deter-
mine the feasibility of a consistent flow migration
and prove its polynomial time complexity for the
case of unit size flows, unit size edges, and constant-
size spare path lengths.

• We prove that it is NP-hard to find the optimal
solution that occupies the least bandwidth resources.
An approximation algorithm with a feasible RDG
as an input is then proposed with a detailed time
complexity analysis.

• If no consistent solution can be found, we propose
a heuristic rate-limiting-flow approach to resolve
deadlocks.

• We conduct extensive real data-driven experiments
to demonstrate the significant advantages of our
approach with regard to update time.

The remainder of this paper is organized as follows:
Section 2 surveys related works. Section 3 describes the
model and formulates the problem. Section 4 discusses the
feasibility and optimality of flow migrations in SDNs as
well as an efficient method of rate-limiting flows. Section
5 includes the experiments. Finally, Section 6 concludes the
paper and shows potential extensions.

2 RELATED WORK

There are two basic mainstream methods for flow migra-
tion implementation: ordering [12, 16–19] and two-phase
[13, 20, 21]. The ordering strategy usually updates the
forwarding table of the switches one-by-one in a speci-
fied order, which is carefully calculated in order to pre-
serve some required properties, like being loop-free and
blackhole-free. It does not introduce an additional update
overhead. However, this order might not exist when it needs
to guarantee both forwarding and policy demands. The two-
phase scheme installs both the initial and final rules on all
switches and tags packets with a rule’s version number.
This method is simple and fast. It ensures the success of
the update, but it doubles the number of rules on every
switch, which wastes expensive and power-hungry Ternary
Content Addressable Memory (TCAM) memory resources.
This paper performs the two-phase commit using version
numbers for flow migrations.

The major drawback of the basic ordering and two-phase
methods of flow migration is that they cannot guarantee
consistency as congestion may exist during flow migra-
tions. To obtain consistent flow migrations, we see that
there are mainly three kinds of approaches: link capacity
reservation [8], intermediate state-involvement [22], and
time-awareness update [23–25]. As a typical link capacity
reservation approach, SWAN [8] has two main results. First,
if a fraction of the capacity is guaranteed to be free on
each link of a flow path, SWAN can update the network
in constant steps. Second, in order to solve the problem
efficiently, linear programming is used to check whether a
solution with bounded steps exists. However, when there
is no slack on some edges, it is unlikely that this algo-
rithm will halt in certain steps, which will lead to high
computation complexity. A representative of the intermedi-
ate state-involvement approach, ZUpdate [22], attempts to
compute and execute a sequence of steps to migrate flows
in a congestion-free way. However, it stretches the update
time, which makes the chaos of traffic migration last longer.
A typical time-awareness update approach, Dionysus [26],
dynamically schedules the process based on the runtime
differences of switches’ update speeds, instead of a previous
static ordering of rule updates. It is a path-based update
method, meaning that a flow is scheduled to be migrated
to its final path when all the links along its new path have
enough bandwidth resources. If a single link along the path
is not available, this method can only wait and waste a
lot of link resources. Another kind of time-awareness plan
is based on time synchronization technology. The timed
consistent strategy [24, 25] utilizes time-triggered network
updates to achieve consistency. However, this scheme asks
too much of time synchronization. Even with a straggling
switch, the whole following process is likely to be in total
disorder.

Many prior works also strive to find a congestion-free
update scheme with the property that there will be no
congestion independent of the update order. However, most
of the congestion-free update plans require part of the link
capacity to be left vacant, which will decrease utilization of
the expensive network infrastructure. Moreover, a majority
of them always involve solving a series of linear program-
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mings (LPs), which is slow and does not scale well. We are
aware that there is little network update research on dead-
lock tackling even with the high-demanding low packet loss
rate. Dionysus [26] mentions rate-limiting random number
of flows until all the deadlocks are resolved. When a link
has not enough remaining bandwidth for several flows to
update at the same time, Dionysus utilizes the migration
completion time as a default order of flow priority. Yet, this
kind of opportunistic scheduling is likely to cause deadlocks
where no progress can be made. MCUP [27] proposes a
migration approach to minimize the transient congestion
during the update procedure when there does not exist
a congestion-free update order, or specifically, when there
are deadlocks among update-awaiting flows. [28] solves the
migrating problem by dynamically finding flow paths with
a dependency graph. [29] proposes a innovative dynamic
programming method to migrate flows.

3 FRAMEWORK

3.1 Motivation
Networking updates in SDNs consist of hardware upgrades,
deployment modifications, and configuration changes. It is
necessary to routinely update networks for better perfor-
mances in failure recovery, transmission latency, and band-
width utilization. However, this planned maintenance al-
ways puts the paths of network flows in a state of flux. Flow
migration is an important kind of configuration change.
It is a common source of instability in SDNs, leading to
update deadlocks, broken connectivity, forwarding loops,
and access control violations.

We notice that almost all the current flow migration
strategies neglect to discuss deadlocks’ situations or ran-
domly select flows to stub out until all deadlocks are
resolved, which will cause severe packet losses and QoS
deterioration. In fact, deadlocks may frequently occur even
when the initial and final traffic states are both congestion-
free and valid, because when the network does traffic en-
gineering to reallocate flow routes, the intertwined extent
of different flows’ initial and final paths is not taken into
consideration. Furthermore, inappropriate scheduling order
of flows can also lead to deadlocks [26]. Due to the high
demand for packet loss rate, it is essential to migrate flows
with the best effort to preserve the consistency even when
there are deadlocks. Our key observation is that interme-
diate state involvement in the form of spare paths can
vacate link resources of flows’ initial paths in order to break
the deadlocks. With the help of two-phase update commit,
modifying the flow path means adding a new flow entry
to each switch along the new path. Moreover, considering
the limited and expensive Ternary Content-Addressable
Memory (TCAM) in the switch routing tables, it is better
to migrate flow one-by-one, which will not cause too much
redundancy to the network. In addition, by migrating only
one flow each time step, we can also control the network
with less temporary disruption and congestion.

Fig. 2 shows a toy example with two flows, f1 and f2. In
each graph, the nodes represent the switches, and the edges
are the links, all of which are bidirectional. Each directional
link has a capacity of 1 Gbps and each flow has a bandwidth
of 1 Gbps. Figs. 2(a) and 2(b) show the initial and final
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Fig. 2: A motivating example.

routing paths of f1 and f2. Unfortunately, neither f1 nor
f2 can be directly migrated to their final paths, because the
initial routing path of f1 overlaps with the final routing path
of f2, and vice versa. Such a deadlock is challenging in terms
of flow migrations. This paper uses spare resources to achieve
consistent flow migrations. A feasible flow migration is
shown in Fig. 2(c) in which f1 is migrated to an intermediate
routing path on three spare links (v4 to v6, v6 to v5, and
v5 to v3). Such an intermediate routing path of f1 releases
necessary bandwidth resource for f2, and thus, it breaks the
deadlock. However, the flow migration in Fig. 2(c) may not
be the optimal one, as shown in Fig. 2(d), since only two
spare links can sufficiently fulfill flow migrations. Instead of
migrating f1 to an intermediate routing path on three spare
links, we can migrate f2 to an intermediate routing path on
two spare links (v2 to v5, and v5 to v3). Such a migration
breaks the deadlock and uses less spare resources than the
migration in Fig. 2(c), which is more desirable among the
feasible consistent migrating plans.

3.2 Model and Formulation

Our flow migration scenario is based on a directed network,
G = (V,E), where V is a set of vertices (i.e., switches), and
E ⊆ V 2 is a set of directed edges (i.e., links). We use vi to
denote the i-th vertex and use eij to denote the edge from vi
to vj . Each edge is capacitated, and we use cij to denote the
bandwidth capacity of eij . The network, G, includes a set,
F , of given flows. We use fk to denote the k-th flow, and
its bandwidth demand is dk. The initial and final routing
paths of fk are denoted by pk and p∗k, respectively. A path is
an ordered set of edges. For example, in Fig. 2(a), we have
p1 = {e12, e23} and p2 = {e24, e43}.

This paper studies consistent flow migrations, which
require that the bandwidth demands of all flows be satis-
fied during the entire migration process. A round-by-round
manner is used to migrate flows from their initial to final
routing paths. In each round, only one flow is migrated
to another path. Let prk denote the routing path of fk at
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the round r. Let brij denote the bandwidth usage of eij
during round r, which is equal to the total bandwidth
demands of its passing flows. We have R rounds in total,
i.e., 0 ≤ r ≤ R. Our problem is similar to the Klotski game
and is formulated as:

minimize
∑

eij∈E
[ max
0≤r≤R

brij ] (1)

s.t. brij ≤ cij ∀ 0 ≤ r ≤ R, eij ∈ E (2)∣∣{ fk | prk 6= pr+1
k }

∣∣ = 1 ∀ 0 ≤ r ≤ R (3)

p0k = pk and pRk = p∗k ∀ fk ∈ F (4)

In Eq. 1, the maximum bandwidth usage of eij among
all rounds is maxr b

r
ij . The objective is to minimize the total

maximum bandwidth usage among all edges during flow
migrations. We aim to use the minimum spare bandwidth
resources to migrate flows. Two constraints are involved.
Eq. 2 means that the bandwidth usage of eij is smaller than
or equal to its capacity, cij . Eq. 3 means that only one flow
is migrated in each round, in terms of changing its routing
path. Here, { fk | prk 6= pr+1

k } is the set of flows that change
their routing paths. Meanwhile, | · | the denotes set cardi-
nality. Eqs. 2 and 3 represent the consistency requirement
during flow migrations. However, this requirement may
not be always satisfied, leading to the feasibility problem.
Finally, Eq. 4 requires each flow to migrate from its initial
path to its final one.

3.3 Resource Dependency Graph
In this subsection, we introduce several important defini-
tions. We start with the concept of resource dependency:
Definition 1. Flow fk depends on a minimal set of other

flows (denoted by Fk) if fk could be immediately mi-
grated from its current path to its final path after the
removal of Fk but not after the removal of Fk \ {f} for
∀f ∈ Fk.

Fk may be an empty set, and fk may depend on different
minimal sets. If we map flows to nodes and map depen-
dency relationships to directed edges, a resource depen-
dency graph can be obtained. An example graph is shown
in Fig. 3(a), which corresponds to Fig. 2(a). It can be seen
that f1 and f2 depend on each other in terms of their initial
routing paths.
Definition 2. Let each flow correspond to one of its mini-

mal dependency sets. The Resource Dependency Graph
(RDG) is defined by mapping flows to nodes and their
dependencies sets to directed edges. Given an RDG,
a closed walk without repeated nodes is defined as a
deadlock.
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Fig. 4: Intertwined deadlocks in 1.

Definition 2 reveals resource deadlocks in flow migra-
tions. Let li denote the i-th deadlock and let L denote the set
of deadlocks. Note that multiple RDGs can be obtained for
a given network since a flow may depend on different min-
imal flow sets. Additionally, deadlocks can be intertwined
with each other, meaning that a flow takes part in more
than one deadlock. Our first example in Fig. 1 shows the
case. There is only one RDG with three deadlocks, d1, d2,
and d3, among f1, f2 and f3, shown in Fig. 4. Because of
the edge from f1 to f3 exists in both deadlocks, d1 and
d2 are intertwined. Similarly, because of the edges from f2
to f1 exist in both deadlocks, d2 and d3 are intertwined.
These intertwined deadlocks make the flow migration more
challenging.

Once the RDG is determined, we have:
Theorem 1. If the RDG does not include a deadlock (i.e., L =
∅), a feasible solution could use the topological order
in the RDG to migrate flows. Each flow is immediately
migrated from its initial to final paths [26].

The major challenge of our problem is to resolve dead-
locks while migrating flows. As previously mentioned,
our problem aims to use minimum spare bandwidth re-
sources to break deadlocks by migrating flows. As shown
in Figs. 2(c) and 3(b), three spare links (e46, e65, and e53) are
used to break the dependency from f2 to f1. As shown in
Figs. 2(c) and 3(c), two spare links (e25 and e53) are used to
break the dependency from f1 to f2. These spare bandwidth
resources are formally defined as spare paths with respect
to deadlocks:
Definition 3. The spare path is defined for a given flow f .

It is a path that (i) has enough bandwidth to hold f , (ii)
has the same source and destination as f , and (iii) is at
least one edge different from the initial and final paths
of f .

Definition 4. Spare path collection is a set of spare paths
for flows in a given deadlock in an RDG. Once flows
in the deadlock are migrated to the corresponding spare
paths, then (i) all remaining flows in this deadlock can be
migrated to their final paths following the dependency
order and (ii) all flows in the spare paths can be migrated
back.

Note that a deadlock might have multiple spare col-
lections. For example, the deadlock in Fig. 3(b) includes
two spare path collections: one collection includes one path
of {e46, e65, e53}, and another collection includes one path
of {e25, e53}. The key idea of the spare path collection
is that they can resolve a deadlock, without considering
intersections among different deadlocks. Let Si denote the
set of spare path collections for deadlock li. To reduce the
complexity, we limit the size of spare path collections: The
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Algorithm 1 Feasibility Determination

Input: Network G and flow set F ;
Output: Feasible solution existence;

1: for each flow fk ∈ F do
2: Compute its minimal dependency sets, Fk.
3: Generate RDGs based on flow dependency.
4: for each RDG of network, G do
5: Find the set of deadlocks, L, in this RDG.
6: for each deadlock li ∈ L do
7: Find the set of spare path collections, Si, for li.
8: if Si = ∅ then
9: continue to the next RDG;

10: return a feasible solution exists;
11: return a feasible solution may not exist;

hop length of a spare path is no more than H and the
cardinality of a spare path collection is no more than C .
Meanwhile,H and C are pre-determined parameters. Given
an RDG, all spare path collections for each deadlock can
be determined through an exhaustive search. Shorter spare
paths are preferred over longer spare paths as they use less
total bandwidth resources. Note that H and C bring a trade-
off between accuracy and time complexity. Larger H and C
can explore more possible spare path collections but run the
risk of an exponentially larger time complexity.

This paper does not consider spare paths with hop
lengths larger than H. This is because the number of paths
grows exponentially with respect to the number of nodes.
Given an RDG, all spare paths for each deadlock can be
determined through exhaustively searching. Shorter spare
paths are preferred over longer spare paths as they use
fewer total bandwidth resources. Note that H brings a
tradeoff between accuracy and time complexity. A larger
H can explore more possible spare paths but may cause a
larger time complexity.

4 FEASIBILITY AND OPTIMALITY

This section shows that the feasibility of the consistent flow
migrations can be determined with the assistance of spare
path collections. However, even if multiple consistent flow
migrations exist, searching for the optimal solution that
occupies the least bandwidth resources is NP-hard.

4.1 Feasibility

This subsection studies the feasibility problem [14], that
is, whether a consistent flow migration exists or not. The
idea is to use spare paths to break deadlocks. As shown
in Theorem 1, if the RDG does not include a deadlock, a
feasible solution could use the topological order to migrate
flows. Algorithm 1 is proposed to determine feasibility. For
a given network, lines 1 to 3 construct the RDGs. Note that
different RDGs can be obtained for the same network and
flows since a flow might depend on different minimal flow
sets. In lines 4 to 10, Algorithm 1 checks each possible RDG.
If there is an RDG in which all deadlocks can be solved by
spare path collections, Algorithm 1 returns that a consistent
flow migration exists in line 10. If deadlocks cannot be
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Fig. 5: An example to illustrate Algorithm 1.

broken in all RDGs, Algorithm 1 returns infeasibility in line
11.

Fig. 5 shows an example for Algorithm 1. Figs. 5(a) and
5(b) show the initial and final flow-routing paths, respec-
tively. Links e14, e34, and e45 have bandwidth capacities of
2 Gbps, while all other links have bandwidth capacities of 1
Gbps. Each flow has a bandwidth of 1 Gbps. In this scenario,
f1 depends on f3, and f2 does not depend on other flows. f3
can depend on either f1 or f2, leading to two different RDGs
as shown in Figs. 5(c) and 5(d). f3 needs e45 to be migrated
to its final routing path. Meanwhile, e45 can be released for
f3 by either f1 (in Fig. 5(c)) or f2 (in Fig. 5(d)). Algorithm 1
will traverse each RDG in lines 4 to 10. Let us start with
Fig. 5(c), which includes only one deadlock among f1 and
f3. This deadlock includes two spare path collections: one
has a spare path of {e12, e25} to migrate f1 and another one
has a spare path of {e31, e12, e25} to migrate f3. Therefore,
Algorithm 1 terminates.

Algorithm 1 correctly determines the feasibility. If there
is an RDG in which all deadlocks have spare path collec-
tions, Algorithm 1 returns that a consistent flow migration
exists. This is simply because, by definition, each deadlock
can be broken by one of its spare path collections. The
corresponding flows can be migrated to their spare paths
and can be migrated back after breaking the deadlock.
Algorithm 1 is a conservative approach: a feasible solution
can exist but Algorithm 1 cannot identify its existence.

For a given network, the number of RDGs may be
exponential with respect to the number of flows. This is
because each flow may depend on different minimal flow
sets. An example is shown in Fig. 5, in which f3 can depend
on either f1 or f2. However, the time complexity of Algo-
rithm 1 can be reduced to a polynomial through capping
the cardinalities of spare path collections. The number of
RDGs is O(|F |C) and the number of spare paths is O(|E|H).
In a special given network, if the bandwidth capacity of
each edge is one unit and the bandwidth demand of each
flow is one unit, the time complexity of Algorithm 1 is
O(H×|E|H+1). When the bandwidth capacity of each edge
is a unit and the bandwidth demand of each flow is also a
unit, each flow corresponds to exactly one minimal set in
terms of dependency relations. This is because each edge
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can accommodate at most one edge. Therefore, only one
RDG exists for the given network. For the same reason, the
number of deadlocks belongs toO(|E|). It takesO(|H||E|H)
to find all spare paths for all deadlocks. As a result, the time
complexity of Algorithm 1 is O(H|E|H+1) in this special
situation, which is acceptable even in the worst case.

4.2 Optimality

The previous subsection discussed the problem feasibility,
or whether a consistent flow migration exists or not. How-
ever, even if multiple consistent flow migrations exist, it
is NP-hard to find the optimal one that occupies the least
bandwidth resources. We start with the problem hardness.

Theorem 2. Our flow migration problem is NP-hard.

Proof: [14] has shown the NP-hardness of the flow migration
problem. Here we prove this through a different reduction
of the set cover problem [30]. Given some elements and a
collection of sets of elements, the set cover problem aims to
select minimum sets to cover all given elements. We reduce
sets and elements to sparse paths and deadlocks in RDGs.
Let us consider a network G in which the bandwidth capac-
ity of each edge is one unit and the bandwidth demand of
each flow is one unit. G is constructed as an independent
sequence of squares with one diagonal, and each flow is
on one side of the sequence of squares. An example is
shown in Fig. 6. Fig. 6(a) and Fig. 6(b) show the initial and
final routing paths of flows on three squares: flows f1 and
f2 are on squares v1v2v3v4 and v4v5v8v9 respectively, and
flows f3 and f4 is on square v4v6v7v9. Each element in
the set cover problem is mapped to a pair of flows in G,
which is a deadlock (e.g., deadlock between f1 and f2 and
deadlock between f3 and f4 in Fig. 6). Each set in the set
cover problem is mapped to the spare path in G (e.g., paths
{e14, e49} and {e49} in Fig. 6). At this time, the set cover
problem is reduced to our problem, which selects minimum
spare resources to break all deadlocks. Since the set cover
problem is NP-complete and reduced to our problem in
polynomial time, our problem is NP-hard. �

Since our problem is NP-hard, Algorithm 2 is proposed
as an approximation algorithm. In line 1, Algorithm 2
initializes the set of spare path collections to be S = ∅.
In lines 2 and 3, it determines all deadlocks in the RDG
and their corresponding sets of spare path collections. Lines
4 to 6 include a greedy selection until all deadlocks are
broken. In line 5, a spare path collection, s, is selected from
the unselected spare paths, ∪iSi\S. We use |{ li | s ∈ Si}|
to denote the number of deadlocks that can be broken
by s. On the other hand, we use

∑
eij∈S [maxr b

r
ij ] to

denote the total spare resources used by S. Therefore,∑
eij∈S∪{s}[maxr b

r
ij ] −

∑
eij∈S [maxr b

r
ij ] is the marginal

gain of spare resources after adding s into S. Note that
spare path collections in S may overlap with each other.

|{ li | s∈Si}|∑
eij∈S∪{s}[maxr brij ]−

∑
eij∈S [maxr brij ]

represents the benefit-

to-cost ratio of spare path collection s, in which the benefit
is the number of broken deadlocks, and the cost is the
marginal gain of spare resources. Line 6 updates the dead-
locks to be L = L\{ li | s ∈ Si}, i.e., it removes deadlocks
broken by s. Lines 5 and 6 are iterated until all deadlocks
are broken. Line 7 returns the result.
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(b) Final flow routing paths.

Fig. 6: An example to explain NP-hardness.

Algorithm 2 Spare Path Computation

Input: A feasible RDG for network G and flow set F ;
Output: The set of spare paths if feasible solutions exist;

1: Initialize the set of spare path collections, S = ∅.
2: for each deadlock, li ∈ L, in RDG do
3: Find the set of spare path collections, Si, for li.
4: while L 6= ∅ do
5: Set s = max |{ li | s∈Si}|∑

eij∈S∪{s}[maxr brij ]−
∑

eij∈S [maxr brij ]
from

∪iSi\S, and add s into S.
6: Update deadlocks to be L = L\{ li | s ∈ Si}.
7: return S as the set of spare path collections;

Use the Fig. 1 as an example. We can find a spare path
collection for d1, i.e. e45, e52. d2 has the same spare path
collection. We do not need to choose the collections. Then
we move f1 to its spare path e45, e52 in the collection. Then
the edge e12 is freed, and f2 can be migrated to its final path
in Fig. 1(b). After that, both e41 and e13 are released and f3 is
able to be updated. Finally, we move f1 to its final path and
the flow migration finishes. Next, we analyze the provable
efficient performance of Algorithm 2. We have:

Theorem 3. Algorithm 2 achieves an approximation ratio of
O(H ·C · ln |L|) for the optimal algorithm.

Proof: The proof is done through an intermediate prob-
lem, which is defined as follows: (i) we map each spare path
collection to a set, and map each deadlock to an element;
(ii) an element is included in a set if its deadlock can be
broken by the spare path collection; (iii) the intermediate
problem is the traditional set cover problem that selects the
minimum sets to cover all elements [31]. The cost of a set
is the total spare resources of its spare path collection, i.e.,∑

eij∈s[maxr b
r
ij ].
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Algorithm 3 Rate Limit Flows

Input: The RDG for network G and flow set F ;
Output: Migration plan;

1: Sort flows by the priorities;
2: while a feasible solution is not found do
3: while the deadlock l ∈ L is not resolved do
4: Rate limit the flow with the highest priority inside

the deadlock l;
5: Update the remaining capacities of links along the

flow’s initial path;
6: Migrate flows in topological order;
7: Apply Algorithm 1 to search for a feasible solution;
8: return Migration plan;

A greedy algorithm, which iteratively selects the set with
the maximum ratio of marginal element coverage to set cost,
has an approximation ratio of O(ln |L|) for the traditional
set cover problem. |L| is the number of deadlocks (i.e.,
elements). However, the set costs should be independent
from each other in the traditional set cover problem. In
contrast, spare paths can overlap with each other in our
problem, meaning that:∑

eij∈S∪{s}

[maxr b
r
ij ]−

∑
eij∈S

[maxr b
r
ij ] ≤

∑
eij∈{s}

[maxr b
r
ij ] (5)

The key observation is:∑
eij∈S∪{s}

[maxr b
r
ij ]−

∑
eij∈S

[maxr b
r
ij ] ≥

1

HC

∑
eij∈{s}

[maxr b
r
ij ] (6)

This is because the spare path collection, s, has at least
H · C edges. Each spare path has at most H edges and s
has at most C spare paths. As a result, Eq. 6 shows that
Algorithm 2 achieves a ratio of O(H ·C · ln |L|). �

The time complexity of the worst case is O(|L| ×∑C
i=1

(|F |
i

)
×(|F | × |E|H)i). It happens when we need to

check all flows’ spare path collections for |L| times, each
of which is for resolving one deadlock. For each spare
path collection, we can have the number of spare paths
ranging from 1 to C . Additionally, the complexity of using
a spare path collection of i paths is

(|F |
i

)
×(|F | × |E|H)i.

What’s more, we can also improve the performance of our
algorithm by reusing the spare paths. If one spare path is
released by a flow, all links along the spare path will have
an extra available bandwidth, which is equal to the traffic
rate of the previous occupied flow.

4.3 Rate limit flows
Note that our above algorithms do not guarantee a con-
sistent flow migration. This because a consistent flow mi-
gration may not exist or be found by Algorithm 1. In
order to resolve the deadlocks, we primarily utilize the
leisure link capacity resources as spare paths to release the
links involved in deadlocks. If there are still unresolved
deadlocks, flow migrations can be conducted through rate
limiting flows. Rate-limit means to cut off the propagation
of the flow and make its transmission rate zero. Randomly
selecting flows to be rate limited can lead to severe packet
loss. Moreover, in our previous work [32], we have proved
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(a) WAN network topology.
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(b) Fat-tree topology of data center.

Fig. 7: Network topologies for simulations.

that finding an update schedule with the minimum number
of rate-limited flows with deadlocks is NP-hard in the ab-
sence of partial flow limiting. Thus, we propose a heuristic
algorithm for efficiently rate-limiting flows. First, we define
the priority of each flow: the number of nodes in its involved
largest deadlock times the ratio between the numbers of its
ingoing edges and outgoing edges. The priority of the flow
demonstrates the intertwined extent of the flow as well as
the popularity of its occupied link resources. Specifically, the
number of nodes in its involved largest deadlock measures
the complexity of a flow’s involved deadlocks. The ratio
measures the marginal gain of a flow’s migration due to
releasing and occupying different link resources in its initial
and final paths.

In Algorithm 3, line 1 sorts the flows by their priorities.
Lines 2-7 resolve deadlocks by rate-limiting the flows. Lines
3-6 are to resolve a single deadlock. Line 4 cuts off the
flow with the highest priority. The bandwidth of edges are
updated in line 5. We use the topological order in RDG
to migrate other flows. Repeat this process until a feasible
migration is found by applying Algorithm 1.

5 EXPERIMENT

Experiments are conducted to evaluate the performances of
our proposed algorithms. After presenting the topologies
and basic settings, the evaluation results are shown from
different perspectives to provide insightful conclusions.

5.1 Experimental Settings

We conduct simulations in two real topologies. The first
one is Microsoft’s inter-data center WAN topology [26, 33],
consisting of 8 switches that are connected as shown in
Figure 7a. Each link is two-way and has a capacity of 1-
Gbps. The second one is a fat-tree topology [34] for the data
centers, shown in Figure 7b. There are 4 core switches, 8
aggregation switches, and 8 edge switches in this network.
Each edge switch connects 8 hosts. Each switch has two
1-Gbps ports, resulting in a network with a full bisection
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Fig. 8: Performance in the WAN topology.

(a) The number of deadlocks. (b) Flows involved in deadlocks. (c) Max single flow in deadlocks. (d) Feasibility probability.

Fig. 9: WAN deadlock involvement.

TABLE 1: WAN topology

Traffic load 0.2 0.4 0.6 0.8
Flow number 729 1538 2387 3120

TABLE 2: Fat-tree topology

Traffic load 0.2 0.4 0.6 0.8
Flow number 101682 24637 36827 42372

bandwidth. We change the traffic load ratio from 10% to
90% to simulate independent variables. We list several flow
numbers corresponding to different traffic load ratios in
Table I and II.

Our proposed algorithms are denoted as Network Up-
date through Spare Links (NUSL). There are two compari-
son algorithms in our simulations: One-shot, Dionysus [26]
and MCUP [27]. One-shot updates the network directly
from the initial to the final stage by cutting off all the current
flows and allowing new ones in after the network is vacant.
It causes severe packet loss and significantly reduces the
QoS. The One-shot is not able to meet the demanding loss
rate requirement in realistic networks even though it only
takes one step to update the network. Dionysus has been
specifically introduced in the related work part. It builds
the dependency graph to describe the relationships among
different flow states and migrates flows in a topological
order. When there are deadlocks, it opportunistically rate-
limits flows to zero in order to resolve deadlocks. MCUP
uses a randomized rounding algorithm and improves the
rounding result by greedily rerouting each flow in each
stage.

We evaluate various aspects under two different topolo-
gies in Fig. 7(a) and Fig. 7(b). Our experiments study the
relationships between the traffic load and three metrics:

1) the number of rate-limiting flows: when a consistent
migration plan does not exist;

2) update steps: time from the first migration until all
flows are migrated;

3) traffic loss: the total number of lost packets.

Metrics related to deadlocks are also evaluated:

1) the number of deadlocks;
2) the number of involved flows;
3) the maximum number of deadlocks that a single

flow can become involved in;
4) the probability of finding a feasible update plan

with spare paths.

Then, we test the spare bandwidth resource usage condi-
tions including the ratio of flows with intermediate state, the
spare resource cost as well as its ratio, and the average spare
path length. Flows in the network are generated randomly
at the granularity of 1Mbps. We assume the initial and
final states of the network are all valid. There are no more
new flows coming into the network during the update. No
flow paths have any loops and each link load is within its
capacity.

5.2 Evaluation Results for the WAN
The experiment results in the WAN topology are shown
in Fig. 8, Fig. 9, and Tab. 3. Algorithm performances are
compared with respect to different traffic load ratios. Fig.
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Fig. 10: Performance in the Fat-tree topology
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Fig. 11: Fat-tree topology deadlock involvement

8 shows that our algorithm, NUSL, achieves a satisfying
result compared to One-Shot and Dionysus. NUSL limits the
fewest flows in Fig. 8(a) and maintains the highest through-
put with the lowest traffic loss in Fig. 8(c). The number of
rate limiting flows for MCUP is always zero because it does
not allow to diminish flows’ bandwidth. With a load ratio
of 80%, NUSL limits only 47% of the flows in One-Shot and
78% in Dionysus since we have a more efficient Algorithm
3, Rate Limit Flows. NUSL does, however, have a longer
update time . It takes about 33% more steps than Dionysus
with a ratio of 70%. This is because NUSL introduces the
intermediate state of the update flows. It utilizes the leisure
bandwidth resources to reduce traffic loss during the update
process by migrating some flows to their alternate paths. In
this way, it vacates some competing link resources to break
deadlocks among flows. At the same time, as shown in Fig.
8(b), it leads in extra update time. As long as there is no
chaos during the update, it is acceptable to stretch the time
when the controller operates flows one by one in an orderly
manner. Dionysus performs just fine. It does not have a good
strategy for breaking deadlocks, thus, it experiences more
traffic loss than NUSL. Even in update time, Dionysus has
no obvious advantages over our approach. One-Shot acts as
an ideal baseline under both topologies in our simulation
because it represents the most naive solution for updating
the network without any strategy and does not have the
limitations of the underneath network situations. When
One-Shot is applied, there is no new traffic coming into the
network during the update. In other words, all flows must
be cut off to vacate the link resources they are occupying.
As a result, One-Shot takes the fewest steps to accomplish

the network update at the expense of the throughput. In
Fig. 8(b), the traffic loss of MCUP is much larger than NUSL
and Dionysus because it allows the traffic congestion within
limits in order to update flows in less rounds.

Deadlock involvement situations with different metrics
are described in Fig. 9. As shown in Fig. 9(a), more flows in
the network can increase the traffic load, which makes more
deadlocks emerge. For example, when the load ratio is 90%,
the deadlocks are more than two times as much as when the
ratio is 80%. The percentage of flows involved in deadlocks
also increases quickly, as shown in Fig. 9(b). In Fig. 9(c), we
use the maximum number of deadlocks in which a single
flow can get involved, to measure the complexity of the
resource dependency graph. The heavier the traffic is, the
more deadlocks a single flow can become involved in. Fig.
9(d) shows the feasibility property of our scheme. From the
results, we know that with the assistance of spare paths,
it is highly possible to find a lossless update plan when
the traffic is light. For example, when the load ratio is less
than 50%, its probability is as high as 85%. From these four
figures and the analysis, we can conclude that deadlocks are
not negligible.

5.3 Experimental Results for the Fat-tree Topology
The experiment results for the Fat-tree topology in the data
centers are shown in Fig. 10. The one-shot approach also
acts as an ideal baseline in our simulation. From the figures,
we can see that the basic tendency and relationships are
almost the same as those of the WAN topology. We will
focus on the differences between Fat-tree and WAN. It
should be first noted that Fat-tree can hold more than five
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times the flows WAN topology can under the same traffic
load ratio. By contrast, the number of rate limiting flows
and throughput maintenance with NUSL is better than in
the WAN. This is due to Fat-tree’s excellent load balancing
property. The performance of our algorithms is better than
the other two. In the update steps, the difference between
NUSL and Dionysus is smaller, because the data center is
able to achieve a relatively faster update as a result of its
almost fixed path length. Additionally, MCUP has fewer
updating steps than NUSL because all flows’ in Fattree have
similar path lengths and in almost the same pattern. In Fig.
10(c), there is actually little difference among these three
approaches. NUSL less frequently uses spare paths under
the Fat-tree topology than in WAN because this topology
always distributes in a traffic more balanced way and we
can update the network consistently without the help of
spare paths when the traffic is light. Moreover, when the
traffic is heavy, it is almost impossible to find spare paths
under the balancing network. However, the ratio of the
number of flows that need to be migrated to their backup
paths is also much smaller, which indirectly proves the
advantage of a regular topology. The ability to predict the
performance in the data center is essential for providing a
satisfying service.

Fig. 11 shows that there are comparatively fewer dead-
locks in the data centers because of the regular topology and
balanced traffic, which proves the sensibility of applying a
regular topology in the data centers. The number of flows
involved in the deadlocks is greater than WAN’s 30%. This
is because if one link is busy, it will affect a large number
of flows that would compete for the bandwidth resources.
The largest number of deadlocks a single flow gets involved
in is smaller than the WAN topology, because it is harder
to be intertwined with other flows that are routed in a tidy
pattern. It is also more likely to find a feasible update plan
with the Fat-tree topology. With the same load ratio, the
probability is about 24% higher. Thus, NUSL is extremely
suitable for the patterned topology. Fat-tree is better than
WAN in terms of deadlocks.

5.4 Spare bandwidth resources cost comparison

We also study the spare link resource utilization condition
under those two topologies in Tab. 3 and Fig. 12. For both of
the topologies, it is intuitively easy to find spare resources
within the light traffic network. As traffic becomes heavier,
it becomes more and more difficult to find a spare path for
a flow, and a helper path may not even exist. From Tab.
3, we can see that the possibility of finding a spare path
decreases significantly by more than 3

4 as the traffic load
ratio increases from 30% to 90%. This explains the reason
why NUSL needs to limit much more flows and suffer more
severe losses under heavy traffic than light traffic. Moreover,
in the spare resource cost rows of the table, we notice that
the spare resource usage cost first increases then decreases.
This is because we are not able to obtain enough spare paths
in the congested network. There is little leisure bandwidth
available for us to resolve all the deadlocks. Even if there is
one, the cost of the path is so high that the loss outweighs the
gain. As a result, it is necessary to limit the length of helper
paths in order to control the cost and the achievement.

TABLE 3: Spare link resource usage

Topology Comparison The given traffic load
setting metrics ϕ=0.3 ϕ=0.5 ϕ=0.7 ϕ=0.9
WAN Flow with int. state 84% 23% 17% 5%

topology Spare resource cost 9 37 87 52
Fat-tree Flow with int. state 79% 45% 22% 13%

topology Spare resource cost 11 21 40 31

We can attribute this phenomenon to the trade-off between
spare resource usage and deadlock resolution possibilities.

In Fig. 12(a), both ratios of the spare resource usage in
WAN and Fat-tree topologies have a obvious tendency of
increasing first and then decreasing. With a heavier traffic
load, the spare resources become less. Additionally, it is
more difficult to find an available spare path for a single
flow though there are more flows with a larger traffic load.
More interestingly, when the traffic is light with a ratio
ranging from 0.1 to 0.5, WAN requires more spare resources
while it uses less with a larger traffic load. It indicates the
unbalanced traffic distribution inside the WAN topology.
Fig. 12(b) shows the result of the average spare path length.
Both lines have the tendency to increase first and then
decrease, but the turning point around 0.7 is later than in
Fig. 12(a). It verifies that a heavier traffic load makes it
difficult to find spare paths.

It is usually more likely that a spare path can be found
in the Fat-tree infrastructure. Moreover, because all paths
have fixed lengths in the Fat-tree, the cost of each flow with
intermediate state ρ is either 2 or 5. In data centers, most of
the traffic is between different pods [34]. It costs less to use
the spare resources, because the Fat-tree topology naturally
limits the forwarding path length. The fixed path length also
reduces the number of the available spare paths from an
exponential to a polynomial. This implies that it is better for
the data center to apply the spare-path assisted strategy.

In conclusion, there are two main reasons for the above
results. First, the Fat-tree topology is more common than
the WAN topology. Its switches can be divided into three
kinds: core, aggregation, and edge. Aggregation and edge
switches can serve as a pod, shown in the Fig. 7(b). All the
forwarding paths between servers in different pods follow
the same pattern: edge-aggregation-core-aggregation-core,
whose length is 5. If the servers are in the same pod but have
different edge switches, the pattern is edge-aggregation-
edge. The forwarding paths between two servers that be-
long to the same edge switch pass through this switch.
With such forwarding paths, the workload is able to be
distributed more evenly, which reduces the possibility of
deadlocks. Second, the Fat-tree topology has a hierarchical
structure, but there is no such specific construction for the
WAN topology. The bandwidths in Fat-tree vary from the
rank where the links reside, and upper links with more s
bandwidths. However, all links in the WAN have almost
the same capacities. Unbalanced flow distribution is more
likely to be blocked in WANs.

6 CONCLUSION AND FUTURE WORK

This paper focuses on the network update problem in
the setting of SDNs. Network administrators do not take
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Fig. 12: Spare resource comparison.

flow path overlapping information into consideration when
they reallocate flow routes. Consequently, congestion will
unavoidably happen resulting in deadlocks among flows
and link resources, which will block the update process and
cause severe packet loss. While current methods neglect
deadlocks, we introduce an efficient approach to consis-
tently update networks with the help of spare paths. We
utilize a resource dependency graph to describe the rela-
tionships among different flow states and link resources.
An algorithm is proposed to determine the feasibility of
consistent flow migrations. We demonstrate that it is NP-
hard to find the optimal scheme using the fewest spare link
resources, even when there are several consistent update
plans. An efficient algorithm, NUSL, is proposed to achieve
a reasonably good competitive ratio. Our algorithms are
evaluated in various aspects under different network sce-
narios. The evaluation results demonstrate the effectiveness
and efficiency of our approach.

There are several interesting directions for future re-
search. First, one interesting problem is to extend the net-
work link capacities and flow bandwidth demands to mul-
tiple units, where inappropriate bandwidth allocation will
cause more deadlocks. A second direction involves applying
a finer granularity of flow migration such as link-based
schemes. Specifically, the link-based scheduling approaches
will reduce the possibility of deadlocks to a great extent as a
result of better utilization of link bandwidths. However, the
approaches should not induce a much higher computation
complexity and should not require the excessive time syn-
chronization accuracy. A third interesting research direction
is to migrate flows in parallel, which will accelerate the
process of network update.
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