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Abstract. Mobile Taxi-Hailing (MTH) is one of the most attractive
smartphone applications, through which passengers can reserve taxis
ahead for their travels so that the taxi service’s efficiency can improve
significantly. The taxi-hailing order assignment is an important com-
ponent of MTH systems. Current MTH order assignment mechanisms
fall short in flexibility and personalized pricing, resulting in an unsat-
isfactory service experience. To address this problem, we introduce a
Competitive Order Assignment (COA) framework for the MTH systems.
The COA framework mainly consists of the Multi-armed-bandit Auto-
matic Valuation (MAV) mechanism and the Reverse-auction-based Order
Assignment (ROA) mechanism. The taxis apply the MAV mechanism to
automatically generate the transport service valuations for orders. The
platform applies the ROA mechanism to complete each round of order
assignment. Then, we analyze the online performance of MAV, and prove
that ROA satisfies the properties of truthfulness and individual rational-
ity. Finally, we also demonstrate the significant performances of MAV
and ROA through extensive simulations on a real trace.

1 Introduction

With the explosive popularity of smartphones, various mobile applications have
been developed to make people’s lives more convenient. One of the most appeal-
ing applications is the Mobile Taxi-Hailing (MTH) system, such as Uber, Didi
Chuxing, Lyft, Ola, etc. By using these MTH systems, passengers need not wait
for a long time before hailing a taxi, and taxis also will not spend lots of time
searching for passengers. Consequently, more and more passengers are willing to
use these systems to hail taxis. Statistics show that there have been more than
5 billion Uber trips in 2017 and 15 million daily active riders on average [2].

A typical MTH system consists of a platform residing on the cloud and a
collection of passengers and taxi drivers, who have installed the MTH application
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in their smartphones, as shown in Fig. 1. If a passenger wants to hail a taxi,
he/she would generate a taxi-hailing order and send it to the platform via his/her
smartphone. The order includes the start position, destination, and so on. On
the other hand, each taxi driver would periodically report its state information
to the platform, including the taxi’s location, whether the taxi is vacant, etc.
After receiving orders from the passengers, the platform would assign each order
to a vacant taxi. The order assignment is a vital component of the MTH system.

Fig. 1. A typical MTH system

Current MTH systems mainly adopt two types of order assignment strategies.
The first is that taxi drivers manually grab the orders publicized by the plat-
form. However, many drivers often complain that they cannot grab any orders
most of time, since other drivers might manipulate by using third-party soft-
wares. Another strategy is that the platform directly assigns a vacant taxi to
each order according to the distance between them, the reputation of the taxi,
etc. However, taxi drivers might be assigned many orders that they do not pre-
fer. In addition, some drivers might wish to compete for their preferred orders
by reducing their prices. Nevertheless, this direct assignment strategy has not
considered the order competition among taxis and falls short in the personalized
pricing requirement. So far, there have been some mechanisms designed for the
taxi-hailing order assignment or the taxi dispatch problem, such as [9,10,23].
However, although these mechanisms adopt some complex assignment strategies
that aim at different optimization objectives, they have still not involved the
personalized pricing and competitive order assignment issues.

To enable taxis to flexibly compete for their preferred taxi-hailing orders
with personalized prices, we propose a Competitive Order Assignment (COA)
framework for MTH systems. The COA framework mainly includes a Multi-
armed-bandit Automatic Valuation (MAV) mechanism and a Reverse-auction-
based Order Assignment (ROA) mechanism. On the taxi’s side, COA allows each
taxi to flexibly set valuations for different taxi-hailing orders. First, each taxi uses
some pre-defined rules to determine its preferences for different orders, and then
determine multiple candidate mark-up pricing strategies as its service charges
based on the preferences. For example, an order whose start position is near or
destination is located in familiar areas is a preferred order, for which the taxi may
ask a lower service charge. Then, once receiving orders from the platform, each
taxi can automatically select a strategy to generate its valuation for each order.
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Note that different mark-up strategies mean different rewards. Even the same
strategy might lead to different rewards in different spatio-temporal scenarios.
Thus, the automatic valuation is a complex issue. To solve this problem, we
see the automatic valuation as a multi-armed bandit process and design the
MAV mechanism, by which each taxi can learn to select appropriate strategies
maximizing the cumulative rewards. On the platform side, the order assignment
is conducted periodically. We treat each round of order assignment as a reverse
auction process and design the ROA mechanism. In this way, each taxi can
rationally compete for its preferred orders via bidding their truthful valuations.
More specifically, our major contributions include:

1. We design a competitive order assignment (COA) framework for MTH sys-
tems, in which taxis can automatically generate valuations to compete for the
taxi-hailing orders.

2. We see the automatic valuation in COA as a multi-armed bandit process,
and propose the MAV mechanism. MAV let each taxi automatically select
appropriate mark-up pricing strategies for arriving orders to maximize the
cumulative rewards. Further, we analyze the online performance of MAV.

3. We model the competitive order assignment in COA as a series of reverse
auction processes, and propose the ROA mechanism, including the winner
selection and the payment computation. Moreover, we prove that the ROA
mechanism is truthful and individually rational.

4. We conduct extensive simulations on a real trace to verify the significant
performances of the proposed ROA and MAV mechanisms.

The remainder of the paper is organized as follows. we introduce the COA
framework and problem formalization in Sect. 2. The ROA and MAV mechanisms
are proposed in Sect. 3. The theoretical analyses are presented in Sect. 4. In
Sect. 5, we evaluate the performances of MAV and ROA. After reviewing the
related works in Sect. 6, we conclude the paper in Sect. 7.

2 Framework and Problem Formalization

2.1 The COA Framework

We consider a typical MTH system, including a platform in a cloud, a set of
taxis registered in the platform and lots of passengers.

Definition 1 (Taxi-hailing Order). A taxi-hailing order is defined as oi =
〈startT ime, startLoc,Des〉, where startT ime, startLoc, and Des are the start
time, start location, and destination of the corresponding trip, respectively.
Moreover, all orders have a common Time-to-Live (TTL). If an order has not
been assigned to a taxi during its TTL, it will become invalid.

Definition 2 (Taxi Driver). A taxi vj is described by its state information:
sj = 〈isV acant, startLoc, startT ime〉, where isV acant is a boolean indicating
whether the taxi is vacant. If isV acant is true, it means that the taxi can
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provide the transport service immediately. Then, startLoc and startT ime are
the current location and time of the taxi, respectively. Otherwise, the taxi is
carrying passengers. In this case, startLoc and startT ime are the destination and
arrival time of the current trip, respectively. In addition, to achieve personalized
pricing, each taxi vj determines its preferences on providing transport services
by using some simple pre-defined rules, and then determines multiple candidate
mark-up pricing strategies Kj ={1j , · · · ,Kj} according to the preferences.

The platform continuously receives the taxi-hailing orders from passengers
to form an order list O, and receives the real-time state information from taxis
to form a taxi state list S. Then, by comparing the startT ime and startLoc
values of sj ∈S and oi ∈O, the platform will know whether taxi vj can arrive at
the start location of order oi in time. Therefore, the platform can determine the
taxis that can provide the transport service to order oi, denoted by Vi.

∈

∈

∈

Fig. 2. The automatic valuation process. Fig. 3. The reverse auction process.

Based on the above descriptions, we design a Competitive Order Assignment
(COA) framework for the MTH system. In the COA framework, taxis set their
valuations for arriving taxi-hailing orders based on an automatic valuation mech-
anism. The platform completes the order assignment via a reverse auction mech-
anism. The order assignment is conducted periodically, and the period equals to
the TTL of orders. At the beginning of each period, the platform conducts a
round of assignment for the orders that it has received.

2.2 Automatic Valuation Problem Formalization

After receiving taxi-hailing orders from the platform, each taxi selects the mark-
up pricing strategy and further generates the valuation for each order automat-
ically. Since different mark-up strategies mean different rewards over different
spatio-temporal scenarios, to select appropriate strategies is a complex issue.
Therefore, we formalize the automatic valuation as a multi-armed bandit pro-
cess. A typical multi-armed bandit process consists of a slot machine with mul-
tiple arms, each of which is associated with a reward drawn from an initially
unknown distribution. A player needs to sequentially select the arms via some
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policies, called bandit policies, so as to maximize the cumulative reward [3,13].
Then, the formalization is as follows, which is also illustrated in Fig. 2.

First, we see each taxi vj as a player, and its mark-up pricing strategies
Kj are the arms to be selected. Each arm kj ∈ Kj is associated with a reward
Xkj

(t). The reward Xkj
(t) is a random variable that is i.i.d. and has unknown

probability distribution with a bounded support. Without loss of generality, we
assume that Xkj

(t) lies within the range [0, 1] with a mean μkj
.

Second, the objective of the automatic valuation is to seek a bandit policy
to maximize the cumulative reward. Denote the arm selected in the t-th round
as aj(t)∈Kj . The historical records are Hj(t)= {Xaj(1)(1), · · · ,Xaj(t)(t)} with
Hj(0)=∅. Then, a bandit policy πj =(πj(t)∞

t=1) is defined as a sequence of maps
πj(t) : Hj(t−1) → Kj , which specifies the arm that will be selected under the
historical records. Based on this, we define the cumulative reward that taxi vj

has received up to the t-th round under the policy πj as

mj(t)=
∑Kj

kj=1
μkj

E[Nkj
(t)]

∣∣∣
πj

. (1)

Here, Nkj
(t) is the total number of times that the kj-th arm has been selected

up to the t-th round, i.e., Nkj
(t)=

∑t
τ=1 1(aj(τ)=kj), where 1(·) is an indicator

function which is 1 if (·) is true; otherwise, it equals to 0.
Finally, once selecting an arm aj(t), the valuation, denoted by c

aj(t)
i,j , is deter-

mined as the sum of a base price and the mark-up strategy aj(t), in which the
base price is the inherent transport cost of the taxi vj serving order oi. Then,
taxis can keep their valuations to participate in the order assignment process.
Meanwhile, the taxi will receive a reward Xaj(t)(t). Specially, when taxi vj loses
the order oi which the arm aj(t), the reward Xaj(t)(t) will be 0.

For ease of description, we assume that each taxi deals with one order and
selects the arms once in each round. If there are multiple orders for taxi vj in a
round, we can construct multiple virtual taxis and let each of which deal with one
order. In addition, since the valuation for each order is the private information
of each taxi, the bandit process of each taxi is also independent of others.

2.3 Reverse Auction Problem Formalization

Along with the continuous arrival of taxi-hailing orders, the platform conducts
the order assignment based on a reverse auction model. In this model, taxis are
seen as the sellers of transport services and the platform holding orders is the
buyer. Then, the interactions between passengers and taxis via the platform are
described as follows, which is also depicted in Fig. 3.

First, when a passenger wants to start a trip, it submits a taxi-hailing order
to the platform. Meanwhile, the passenger will also submit a taxi fare that it is
willing to pay for the transport service. Second, the platform receives orders from
passengers and publicizes them to taxis. Each order will only be publicized to
the taxis that can provide the transport service to it. Third, each taxi receives
the orders from the platform. For each received order, taxis determine their
true valuations and bids, and then submit all of their bids to the platform.
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Here, each bid is not necessarily equal to the corresponding valuation, since each
taxi might manipulate the claimed charge. Finally, the platform determines the
winners of the auction, computes the payment for each winner, and assigns the
corresponding orders.

Consider an arbitrary t-th round of auction, where the set of orders is O,
the taxis that can provide the transport service for order oi ∈ O is Vi, and the
taxis’ valuations and bids are {c

aj(t)
i,j |oi ∈ O, vi ∈ Vi} and {bi,j |oi ∈ O, vi ∈ Vi},

respectively. The auction process involves the Winner Selection (WS) problem
and the Payment Computation (PC) problem, which are formulated as follows.

First, we consider the optimization objective in each round of order assign-
ment is to maximize the social welfare, defined as follows.

Definition 3. The social welfare is the total taxi fares of the orders that are
assigned to some taxis minus the total valuations of these selected taxis.

Then, we can formalize the WS problem as follows.

Definition 4. The Winner Selection (WS) problem:

Maximize :
∑

oi∈O,vj∈Vi
φi,jzi,j (2)

Subject to :
∑

oi∈O zi,j ≤ 1, zi,j ∈{0, 1} (3)
∑

vj∈V zi,j ≤ 1, zi,j ∈{0, 1} (4)

Table 1. Description of major notations

Variable Description

aj(t) the arm that taxi vj selects in the t-th round of auction

c
aj(t)

i,j , bi,j the true valuation and bid of taxi vj for serving order oi

ri the taxi fare of the order oi

Nkj (t) the number of times that the kj-th arm has been selected by taxi vj

up to the t-th round

Xkj (t), μkj the reward that taxi vj receives from the kj-th arm in the t-th round,
and the mean of its probability distribution

mj(t) the cumulative reward that taxi vj receives up to the t-th round

μ̂kj (t) the average reward that taxi vj receives from the kj-th arm up to the
t-th round, i.e., the estimated value of μkj

μ∗
j the mean reward associated with the optimal arm

φi,j the value of ri−bi,j

Here, zi,j = 1 indicates that taxi vj is selected as the winner to provide the
transport service to order oi; otherwise, if zi,j =0, order oi will not be assigned
to taxi vj . Moreover, we define φi,j = ri − bi,j . Note that our reverse auction
mechanism is truthful, which means that all taxis will always submit the true
valuations as their bids. Hence, we can directly assume bi,j = c

aj(t)
i,j . Then

∑
oi∈O,vj∈Vi

φi,jzi,j =
∑

oi∈O,vj∈Vi
(ri −c

aj(t)
i,j )zi,j is the social welfare. We will

prove the truthfulness in Sect. 4, which implies that this assumption holds.
Finally, the PC problem is defined as follows:
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Definition 5. The Payment Computation (PC) problem is how to deter-
mine the payment for each winner so that the whole auction mechanism satisfies
the truthfulness and the individual rationality.

Definition 6 (Truthfulness). Let bi,j be an arbitrary bid for taxi vj that
wins the order oi, and pi,j(bi,j) is the corresponding payment determined by the
payment computation algorithm of an auction mechanism. Then, if pi,j(bi,j)−
c
aj(t)
i,j ≤ pi,j(c

aj(t)
i,j )−c

aj(t)
i,j , we say that the auction mechanism is truthful.

Definition 7 (Individual Rationality). For each winning bid bi,j , the corre-
sponding payoff is nonnegative, i.e., pi,j(bi,j)−c

aj(t)
i,j ≥0.

Definition 6 can guarantee that each taxi claims its valuation truthfully, since
an untruthful bid will lead to a worse payoff. Definition 7 shows that each taxi
can receive a nonnegative payoff if it participates in the auction. In addition,
both the reverse auction mechanism and the automatic valuation mechanism
need to achieve computational efficiency, defined as follows:

Definition 8 (Computational Efficiency). Each round of automatic valua-
tion process and reverse auction process can terminate in a polynomial time.

For ease of reference, we list the main notations of this paper in Table 1.

3 The MAV and ROA Mechanisms

3.1 MAV: Automatic Valuation

We have formulated the automatic valuation as a multi-armed bandit process,
in which the key is to seek a bandit policy maximizing the cumulative reward of
each taxi. Since the distribution of the reward of each arm is unknown a prior,
the fundamental challenge in the multi-armed bandit process is to balance the
tradeoff between the exploration and exploitation. On the one hand, taxis have
to explore the rewards by randomly selecting the arms. On the other hand, taxis
also need to exploit the current knowledge of the rewards to select a best arm.

To solve this bandit dilemma, the Upper Confidence Bound (UCB) policy
has been widely used [6,13]. However, this policy needs to select each arm once
a time initially, which is impractical to be applied to our system. The ε-Greedy
policy is another classical policy [20]. This policy selects a random arm with
ε-frequency, and otherwise selects the arm with the current highest estimated
expected reward. However, after enough explorations, the estimated rewards will
be increasingly close to the true values. The constant factor ε ∈ [0, 1] prevents
the policy from getting arbitrarily close to the optimal arm. Therefore, in this
paper, we first let taxis explore in the first t0 rounds, where t0 > 0. Then, each
taxi explores with probability t0/t, and exploits with probability 1−t0/t. More
specifically, in the t-th round, taxi vj selects an arm aj(t)∈Kj according to the
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Algorithm 1. MAV: Automatic Valuation
Input: vj , Kj , t0 >0
Output: mj(t)
1: t←0, mj(0)←0;
2: if t≤ t0 then
3: aj(t)←a random arm selected from K;
4: else if rand()< t0/t then
5: aj(t)←a random arm selected from K;
6: else
7: aj(t)←argmaxkj∈Kj

μ̂kj (t−1);

8: ∀kj ∈Kj , update Nkj (t) and μ̂kj (t) according to Eq. 8 and Eq. 7, respectively;
9: mj(t)←mj(t−1)+Xaj(t)(t);

10: t← t+1;

following rule: when t ≤ t0, aj(t) is an arm randomly chosen from the set Kj ;
when t≥ t0,

aj(t)=
{

argmaxkj∈Kj
μ̂kj

(t−1), with probability 1− t0
t ,

a random arm in Kj , with probability t0
t .

(5)

Here, μ̂kj
(t) is the estimated value of μkj

. Moreover, we estimate each expected
reward value μkj

by averaging the rewards actually received, i.e.,

μ̂kj
(t)=

∑t
τ=1 Xkj

(τ) · 1(aj(τ)=kj)
Nkj

(t)
, (6)

which is equivalent to the following recursive formulas:

μ̂kj
(t)=

{
μ̂kj

(t−1), if aj(t) 	=kj ,
μ̂kj

(t−1)·Nkj
(t−1)+Xkj

(t)

Nkj
(t) , if aj(t)=kj ,

(7)

and,

Nkj
(t)=

{
Nkj

(t−1), if aj(t) 	=kj ,
Nkj

(t−1)+1, if aj(t)=kj .
(8)

Based on the above policy, the MAV mechanism automatically selects the
mark-up pricing strategies for each taxi in the order assignment process. Then,
the taxis can efficiently determine their valuations for each order. The detailed
automatic valuation algorithm is shown in Algorithm 1. Since the automatic
valuation algorithm is distributed and conducted on each taxi’s side, we only
display the automatic valuation process of taxi vj in Algorithm 1. In Steps 2–7,
taxi vj selects an arm aj(t). In Steps 8–9, the number of times of each arm that
has been selected and the corresponding estimated reward are updated, followed
by the computation of cumulative reward.



668 H. Zhao et al.

Algorithm 2. ROA: Payment Computation (PC)

Input: G={O, V ′, Φ}, Ψ
Output: {pi,j(bi,j)|〈oi, vj〉∈Ψ}
1: Calculate the total social welfare

∑
Ψ φi,j on the matching Ψ ;

2: for each 〈oi, vj〉∈Ψ do
3: Φ−i,j ←Φ−{φi,j}; G−i,j ←{O, V ′, Φ−i,j};
4: Finding a maximum weighted matching Ψ−i,j in graph G−i,j ;
5: Calculate the total social welfare

∑
Ψ−i,j

φi,j on the matching Ψ−i,j ;

6: pi,j(bi,j)←∑
Ψ φi,j −∑

Ψ−i,j
φi,j +bi,j ;

3.2 ROA: Optimal Winner Selection and Payment Computation

To select the winners of the auction and determine the order assignment results,
we transform the winner selection problem into finding the maximum weighted
bipartite matching problem. Consider the t-th round of order assignment where
the set of orders is O, the set of taxis is {Vi|oi ∈O}, and their bids are {bi,j |oi ∈
O, vj ∈ Vi}. We construct a weighted bipartite graph G = {O,V ′, Φ}, where
V ′ = ∪oi∈OVi and Φ = {φi,j |oi ∈ O, vj ∈ Vi ⊆ V ′}. Here, the order set O and the
taxi set V ′ are two separate vertex sets. Set Φ indicates the edges across O and V ′,
and φi,j =ri−bi,j is the weight of edge 〈oi, vj〉. With the graph G, we can apply
an existing maximum weighted matching algorithm, which has polynomial-time
computational complexity, such as the famous Kuhn-Munkres algorithm [12,16],
to get the optimal matching results. Let Ψ ={〈oi, vj〉} be the optimal matching
with maximum weight in graph G. Then, we can get the winners and the order
assignment results. We set zi,j =1 if 〈oi, vj〉∈Ψ ; otherwise, zi,j =0.

In order to ensure that each taxi truthfully reports its true valuation, we
compute the payment to each winning taxi based on the VCG auction [17]. The
VCG auction can guarantee the truthfulness when the optimal assignment can
be achieved. In VCG auction, the winner will be paid with the “externalities”
that its presence incurs to others. More specifically, for a given weighted bipartite
graph G={O,V ′, Φ} and the optimal matching Ψ ={〈oi, vj〉}, the payment of a
winning bid bi,j can be determined as follows.

First, we consider a winner selection with the bid bi,j , and the matching
solution is Ψ . Then,

∑
Ψ φi,j −φi,j denotes the total social welfare produced by

the matching Ψ except for the single social welfare φi,j . Second, we consider a
winner selection without the bid bi,j . We remove edge 〈oi, vj〉 from G to get
the corresponding weighted bipartite graph without bi,j , denoted by G−i,j , i.e.,
G−i,j = {O,V ′, Φ−i,j}, where Φ−i,j = Φ−{φi,j}. Then, we conduct the same
maximum weighted matching algorithm over G−i,j to get a matching solution,
denoted by Ψ−i,j . Then,

∑
Ψ−i,j

φi,j denotes the total social welfare without the
presence of bid bi,j . Finally, the payment pi,j(bi,j) satisfies:

ri−pi,j(bi,j)=
∑

Ψ−i,j

φi,j −( ∑
Ψ

φi,j −φi,j

)
, (9)

which implies
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pi,j(bi,j)=
∑

Ψ
φi,j −

∑
Ψ−i,j

φi,j +bi,j . (10)

The detailed payment computation algorithm is shown in Algorithm 2. The
total social welfare on the matching Ψ is calculated in Step 1. For each winning
bid bi,j , the weighted bipartite graph G−i,j is constructed in Step 3. In Steps
4–5, the maximum weighted matching algorithm is conducted over G−i,j and the
total social welfare on the new matching Ψ−i,j is calculated. Then, the payment
pi,j(bi,j) is computed in Step 6.

4 Theoretical Analysis

4.1 Online Performance of MAV

To analyze the online performance of the MAV mechanism, we derive the
expected regret of an arbitrary taxi vj . First, we consider an Oracle policy,
which knows the value of μkj

and can select the optimal arm in each round. Let
μ∗

j be the mean value associated with the optimal arm, i.e., μ∗
j =maxkj∈Kj

μkj
.

Next, we define the loss of selecting the kj-th arm as Δkj
= μ∗

j −μkj
. Then,

the expected regret, denoted by Rj(t), can be defined as the loss in cumulative
reward compared with the Oracle policy, i.e.,

Rj(t)=μ∗
j ·t−mj(t)=μ∗

j ·t−
∑Kj

kj=1
μkj

E[Nkj
(t)]=

∑
kj :μkj

<μ∗
j

E[Nkj
(t)]Δkj

. (11)

Based on this, we can derive the following theorem.

Theorem 1. For any ρ>1, t≥ t0, the probability that taxi vj selects a subop-
timal arm lj under Algorithm 1 is at most

P[aj(t)= lj ]≤ t0
tKj

+
(
1− t0

tKj

)
(α+β), (12)

where α= 4
Δ2

lj

exp(
Δ2

lj

2 )
(

t0
t

) t0Δ2
lj

2ρKj , β= 2t0
ρKj

(
t0
t

) qt0
ρKj ln( e2t

t0
), q= 3(ρ−1)2

8ρ−2 .

To prove this theorem, we will make use of the following two inequalities for
bounded random variables.

Lemma 1 (Chernoff-Hoeffding bound). Suppose that X1,X2, · · · ,Xn are
n random variables with common range [0, 1], satisfying E[Xt|X1, · · · ,Xt−1]=μ
for ∀t∈ [1, n]. Let Sn =X1+· · ·+Xn. Then, for any a≥0, we have:

P[Sn ≥nμ+a]≤exp(−2a2/n),P[Sn ≤nμ−a]≤exp(−2a2/n).

Lemma 2 (Bernstein inequality). Suppose that X1,X2, · · · ,Xn are n ran-
dom variables with common range [0, 1], and

∑n
t=1 V ar[Xt|X1, · · · ,Xt−1]=σ2.

Let Sn =X1+· · ·+Xn. Then, for any a≥0, we have:

P [Sn ≥E [Sn]+a]≤exp
(−3a

2
/(6σ

2
+2a)

)
, P [Sn ≤E [Sn]−a]≤exp

(−3a
2
/(6σ

2
+2a)

)
.
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Proof: For some ρ>1, let x0 = 1
ρKj

(
t0+

∑t
τ=t0+1

t0
τ

)
. The probability that taxi

vj selects the lj-th arm in the t-th round is

P [aj(t)= lj ]≤ t0
tKj

+
(
1− t0

t

)
P[μ̂lj (t) ≥ μ̂∗

j (t)], (13)

in which

P[μ̂lj (t)≥ μ̂∗
j (t)]≤P

[
μ̂lj (t)≥μlj +

Δlj

2
]
+P

[
μ̂∗

j (t)≤μ∗
j − Δlj

2
]
. (14)

The analyses of both the terms in the right hand side of Eq. 14 are the same.
Let N

(R)
lj

(t) be the number of times that the lj-th arm has been selected in the
exploration stage up to the t-th round. Then we have,

P
[
μ̂lj (t)≥μlj +

Δlj

2
]
=

∑t

τ=1
P
[
Nlj (t)=τ ; μ̂lj (τ)≥μlj +

Δlj

2
]

=
∑t

τ=1
P
[
Nlj (t)=τ |μ̂lj (τ)≥μlj +

Δlj

2
]·P[

μ̂lj (τ)≥μlj +
Δlj

2
]

≤
∑t

τ=1
P
[
Nlj (t)=τ |μ̂lj (τ)≥μlj +

Δlj

2
]·exp(−

Δ2
lj

τ

2
)

(according to the Chernoff-Hoeffding bound in Lemma 1)

≤
∑	x0


τ=1
P
[
Nlj (t)=τ |μ̂lj (τ)≥μlj +

Δlj

2
]
+

2
Δ2

lj

exp(−
Δ2

lj

x0�
2

)

≤ x0 ·P
[
N

(R)
lj

(t)≤x0

]
+

2
Δ2

lj

exp(−
Δ2

lj

x0�
2

).

(15)

Since E[N (R)
lj

(t)]= t0
Kj

+
∑t

τ=t0+1
t0

τKj
=ρx0, and var[N (R)

lj
(t)]=

∑t
τ=t0+1

(
( t0

Kj
+

t0
tKj

)− ( t0
Kj

+ t0
tK )2

) ≤ E[N (R)
lj

(t)] = ρx0, according to the Bernstein inequality
given in Lemma 2, we have,

P[N (R)
lj

(t)≤x0]=P[N (R)
lj

(t)≤ρx0−(ρ−1)x0]≤exp(−qx0), (16)

where q= 3(ρ−1)2

8ρ−2 .
Next, we derive the upper and lower bounds on x0. Since x0 = 1

ρKj

(
t0 +

∑t
τ=t0+1

t0
τ

)
= t0

ρKj

(
1+

∑t
τ=t0+1

1
τ

)
, and ln( t

et0
)≤∑τ

τ=t0+1
1
t ≤ ln( e2t

t0
), we have

t0
ρKj

ln(
t

t0
)≤x0≤ t0

ρKj
ln(

e2t

t0
). (17)

Combining Eqs. 15–17, we have

P

[
μ̂lj (t)≥μlj +

Δlj

2

]
≤ t0

ρKj

( t0
t

) qt0
ρKj ln(

e2t

t0
)+

2
Δ2

lj

( t0
t

) t0Δ2
lj

2ρKj exp(
Δ2

lj

2
).
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In the same way, we can obtain

P

[
μ̂∗

j (t)≤μ∗
j − Δlj

2

]
≤ t0

ρKj

( t0
t

) qt0
ρKj ln(

e2t

t0
)+

2
Δ2

lj

( t0
t

) t0Δ2
lj

2ρKj exp(
Δ2

lj

2
).

Therefore, according to Eq. 13, the probability P[aj(t)= lj ] is as most

t0
tKj

+
(
1− t0

t

)( 4
Δ2

lj

( t0
t

) t0Δ2
lj

2ρKj exp(
Δ2

lj

2
)
)
+

(
1− t0

t

)( 2t0
ρKj

( t0
t

) qt0
ρKj ln(

e2t

t0
)
)
.

The theorem holds. �
Finally, based on the above theorem, we obtain the following theorem which

bounds the expected regret of our bandit policy.

Theorem 2. For any ρ>1, given parameter t0 such that t0≥max{ 2ρKj

Δ2
minj

,
ρKj

q },

where Δminj
= min

lj :μlj
<μ∗

j

Δlj and q= 3(ρ−1)2
8ρ−2 . Then, in each t-th round of auction

where t>t0, for an arbitrary taxi vj , the expected regret produced by the bandit

policy described in Algorithm 1 is at most
(∑

lj :μlj
<μ∗

j
Δlj

)
t0
Kj

ln t+O( 1t ).

4.2 Truthfulness, Individual Rationality and Efficiency

Theorem 3. The ROA mechanism satisfies the property of truthfulness.

Proof: Suppose that taxi vj submits an untruthful bid b′
i,j for order oi, i.e.,

b′
i,j 	=c

aj(t)
i,j . The payment to the bid b′

i,j and order assignment result is denoted

as z′
i,j . Denote the order assignment result as zi,j under the case bi,j = c

aj(t)
i,j .

Then, there are two cases: (1) z′
i,j =zi,j ; (2) z′

i,j 	=zi,j .

Case 1 (z′
i,j = zi,j): If z′

i,j = zi,j = 0, it is obviously that the payoffs under the
truthful information and the untruthful information are the same and equal to
0. If z′

i,j = zi,j = 1, then the order oi is assigned to taxi vj with bid bi,j or b′
i,j .

This means that the presence of bid bi,j or b′
i,j incurs no effect to other assign-

ment results. Thus, we can obtain that pi,j(b′
i,j) =

∑
Ψ φi,j −∑

Ψ−i,j
φi,j +b′

i,j =∑
Ψ\{〈oi,vj〉} φi,j−

∑
Ψ−i,j

φi,j+ri. This indicates that the payment is independent
of the bid submitted by taxi vj . Therefore, in this case, pi,j(b′

i,j)=pi,j(bi,j), and
the payoffs are the same as well.

Case 2 (z′
i,j 	= zi,j): Consider the case z′

i,j = 0 and zi,j = 1. This implies that
taxi vj loses order oi when bidding untruthfully, and its payoff is 0. Therefore,
the misreporting leads to the less payoff than bidding truthfully. If z′

i,j =1 and
zi,j =0, which means that taxi vj wins order oi with the untruthful bid b′

i,j , then
the taxi must claim a lower bid, i.e., b′

i,j < bi,j , and b′
i,j ≤ pi,j(b′

i,j). Since taxi
vj loses order oi with bid bi,j , we have pi,j(bi,j) ≤ bi,j . Consequently, its payoff
satisfies: pi,j(b′

i,j)−c
aj(t)
i,j ≤ bi,j −c

aj(t)
i,j = c

aj(t)
i,j −c

aj(t)
i,j =0. Thus, in this case, the

payoff is negative.
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Therefore, each taxi cannot increase its payoffs by manipulating its real val-
uations, which proves the theorem. �

Theorem 4. The ROA mechanism meets the condition of individual rationality.

Proof: If a taxi vj does not win the order oi with the bid bi,j , the corresponding
payoff will be zero. Otherwise, if taxi vj wins the order oi with bid bi,j , the
corresponding payoff is pi,j(bi,j)− c

aj(t)
i,j . Here, according to Theorem 3, each

bid must be submitted truthfully to achieve the best payoff. Then, pi,j(bi,j) =
pi,j(c

aj(t)
i,j ), which implies pi,j(bi,j)−c

aj(t)
i,j =

∑
Ψ φi,j −∑

Ψ−i,j
φi,j . Since

∑
Ψ φi,j

is the optimal solution of the winner selection problem and
∑

Ψ−i,j
φi,j is only a

feasible solution where the bid bi,j is absent, we have
∑

Ψ φi,j −∑
Ψ−i,j

φi,j ≥ 0.
Hence, the payoff is no less than 0. The theorem holds. �

Next, we prove the computational efficiency of MAV and ROA.

Theorem 5. The ROA mechanism and the MAV mechanism both have a poly-
nomial time computation complexity in one round of order assignment.

Proof: The ROA mechanism is composed of the winner selection and the pay-
ment computation processes. As described in Sect. 3.2, each round of winner
selection can be optimally solved with an existing maximal weighted matching
algorithm, whose computation complexity is as most O(max{|O|, |V|}3). The
payment computation is completed in Algorithm 2, which is dominated by Step
4. Thus, the computation complexity is as most O(max{|O|, |V|}3·min{|O|, |V|}).
Therefore, the ROA mechanism can terminate in a polynomial time. The com-
putation overhead of Algorithm 1 of the MAV mechanism is dominated by Step
7, i.e., O(|Kj | ln(|Kj |)). Therefore, the MAV mechanism can terminate in a poly-
nomial time. Therefore, the theorem holds. �

Table 2. Simulation settings

Parameter name Values

the average number of orders per auction period |O| 50, 100, 150, 200

the average number of taxis per auction period |V| 300, 400, 500, 600

parameter t0 in the t0
t
-Greedy policy 100, 1000, 5000

parameter ε in the ε-Greedy policy 0.1, 0.01

5 Evaluation

5.1 Algorithms in Comparison

In order to evaluate the online performance of the MAV mechanism, we imple-
ment an automatic valuation algorithm based on the ε-Greedy policy for com-
parison [20]. Given a fixed parameter ε, the ε-Greedy policy selects the arm
kj =argmaxlj∈Kj

μ̂lj (t−1) with probability 1−ε; otherwise, the policy selects a
random arm with probability ε.
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In order to evaluate the order assignment performance of ROA, i.e., the social
welfare performance, we implement three other algorithms for comparison: the
Greedy (GRY) algorithm, the Nearest Taxi Selection (NTS) algorithm [9], and
the Immediate Selection (IS) algorithm. The GRY algorithm conducts the order
assignment under the same bipartite weighted graph as which is constructed in
the ROA mechanism. Different from the optimal winner selection algorithm, the
GRY algorithm always selects the edge with the largest weight until the taxi set
or the order set becomes empty. The taxis in the selected edges are the winners.
And the orders in the selected edges are assigned to the corresponding taxis.
It is noted that the VCG auction requires that the optimal assignment of the
orders must be guaranteed. Consequently, we apply the second price auction to
determine the winners’ payments in the GRY algorithm. The NTS algorithm
selects the nearest taxi for each order. The IS algorithm makes the assignment
decision immediately after each order arrives at the platform and each order will
be assigned to the taxi that has the maximum single social welfare currently.

5.2 Simulation Parameters and Settings

In the evaluation, we use a trace of New York City’s taxi trips on January, 2016
[1], which is also used in [23]. This trace consists of about 100,000 completed
trip records in 24 h (after discarding some obvious inaccurate records), which
is at most 100 trips per minute on average. Each trip record in the trace is
composed of the pick-up and drop-off locations (shown as latitude/longitude),
the pick-up and drop-off times, the trip distance, and the payment details. From
these records, we directly extract the startT ime, startLoc, and Des values of
each order and taxi. According to these values, we derive each round of orders
O and taxis V through determining the period TTL. For each order oi ∈O, we
also determine the set of serviceable taxis Vi.

Since the trace only contains successful transport records without involving
any auction mechanisms, there are no records about the taxis’ bids. To evaluate
MAV and ROA, we first let taxi fare of each order be equal to the payment
value in the trace. Next, we generate each valuation c

aj(t)
i,j as follows. First, we

set a base price basePricei for each order oi as the inherent transport cost and
let basePricei = ri

2 . Second, we set the number of service charging strategies
of Kj each taxi as 20, which are set as 20 values randomly chosen from [0, 1],
denoted as Ser1j , · · · , SerKj . Third, the rewards {Xkj

(t)|vj ∈V, kj ∈Kj} in each
round of order assignment are randomly sampled from a truncated Gaussian
distribution with mean μkj

∈ [0, 1], standard deviation σkj
∈ [0, 1], and support

[0, 1]. Finally, each taxi vj selects its service charging strategies by a policy to
obtain the maximal cumulative reward, i.e., the minimal cumulative regret. For
ease of description, we call the arm selection policy described in Algorithm 1 the
t0
t -Greedy policy. Then, if taxi vj selects the aj(t)-th strategy in the t-th round of
order assignment, its valuation for order oi will be c

aj(t)
i,j =basePricei(1+Seraj(t)),

meanwhile taxi vj will receive the corresponding reward Xaj(t)(t).
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In addition, we set different values for the parameter t0 in our t0
t -Greedy

policy, and set different values for the parameter ε in the ε-Greedy policy for
concrete comparison. The detailed parameter settings are listed in Table 2, where
the default values are in bold fonts.

5.3 Evaluation Metrics and Results

The major metrics in our simulations include the Online Performance w.r.t.
the MAV mechanism, the Social Welfare, Truthfulness, Individual Rationality,
Overpayment Ratio and Time Efficiency w.r.t. the ROA mechanism. Here, the
overpayment is the difference between the total payment to winners and the sum
of valuations of each winner. Then, the overpayment ratio is defined as:

λ=

∑
Ψ pi,j(bi,j)−

∑
Ψ c

aj(t)
i,j

∑
Ψ c

aj(t)
i,j

. (18)

It measures the payments paid by the platform to induce the truthfulness of all
taxis. The evaluation results are presented as follows.

Online Performance of MAV. To evaluate the online performance of the MAV
mechanism, we track two performance metrics: the cumulative regret and the
frequency of selecting the optimal arm (denoted as “% optimal arm”). The results
are shown in Figs. 4(a)–(b), in which each curve is the average output of 1000
times of repeated simulations. We can find that the regret generated by the
t0
t -Greedy policy grows logarithmically over time, which is consistent with the
theoretical analysis in Theorem 2. Moreover, when t0 is smaller, the regret grows
at a slower speed as shown in Fig. 4(b). This illuminates that the policy has
learnt well after a small number of pure exploration. We can also discover that
the ε=0.1 policy explores more than the ε=0.01 policy, and it finds the optimal
arm earlier. The ε = 0.01 policy learns more slowly, but it eventually performs
better than the ε=0.1 policy. Nevertheless, an optimally tuned t0

t -Greedy policy
(e.g., t0=100) performs almost best among other policies.

%

ε
ε

(a) % optimal arm

ε
ε

×103

(b) Regret

Fig. 4. Evaluation on online perfor-
mance of MAV.

×103

(a) |V|=600

×103

(b) |O|=100

Fig. 5. Evaluation on social welfare of
ROA.



Reverse-Auction-Based Competitive Order Assignment 675

(a) Truthfulness (b) Individual ra-
tionality

Fig. 6. Evaluation on truthfulness and
individual rationality.

(a) Overpayment
ratio

(b) Run time

Fig. 7. Evaluation on overpayment
ratio and time efficiency.

Social Welfare of ROA. We evaluate the social welfare performance of the ROA
mechanism as follows. First, we set the average number of orders per auction
period at |O| = 50, 100, 150, and 200 by randomly selecting 50 orders in each
minute and letting the auction period TTL = 1, 2, 3, and 4 min. Meanwhile,
we fix the average number of taxis per auction period at |V| = 600. Second,
we change |V| from 300 to 600, while fixing |O| = 100. Finally, we conduct
the MAV mechanism with t0 = 100 to generate the valuations of each taxi.
Taxis report their true valuations as their bids to participate in the auction.
The results are shown in Figs. 5(a)–(b). On average, the social welfare of ROA
is about 79.38%, 61.66% and 52.05% larger than those of GRY, IS and NTS,
respectively. Moreover, the social welfare increases with the increasing numbers
of orders and taxis, but the increment of the latter is limited. This is because
only a few of increased taxis can win the auction.

Truthfulness and Individual Rationality of ROA. We verify the truthfulness and
individual rationality of ROA under the default settings. First, we randomly
select a bid and allow the corresponding taxi to claim a bid different from its
real valuation. The result, depicted in Fig. 6(a), shows that the payoff remains
unchanged when the taxi’s bid is smaller than its valuation. This means that
each taxi will still be winner when it claims a lower bid than its current winning
bid. However, the payoff is zero when the bid is larger than its payment. This
means that the payment paid to each taxi is a critical value ensuring to be a
winner. We can hence find that each taxi cannot improve its payoff by bidding
untruthfully. To verify the individual rationality, we randomly choose plenty of
taxis and orders, and compare the valuation of each taxi with the corresponding
payment. The result, plotted in Fig. 6(b), shows that each payment is larger than
the corresponding valuation. The individual rationality is also guaranteed.

Overpayment Ratio and Time Efficiency of ROA. To evaluate the overpayment
ratio performance, we make a comparison with the GRY algorithm. Figure 7(a)
shows that the overpayment ratio of ROA is smaller than that of GRY. This
implies that the GRY algorithm must pay more so as to induce cooperation
from selfish taxis. Moreover, the overpayment ratio of ROA decreases slightly
with the increasing number of taxis. This is because that the increasing number
of taxis means more taxis with low valuations can be winners, leading to the
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reduced overpayment ratio. Second, as shown in Fig. 7(b), when the number of
orders is 50, and the number of taxis is 300, the run time is less than 1 min,
which is smaller than the auction period. Moreover, when the numbers of orders
and taxis are both 300, the run time is no more than 3 min. Therefore, the ROA
mechanism can work efficiently in real applications.

6 Related Work

In recent years, much attention has been drawn to the study of the taxi-hailing
order assignment, taxi dispatch problem, and the task assignment problem in
vehicle-based crowdsourcing, such as [9,10,14,15,18,21–23]. However, most of
these works are based on the direct assignment strategy without involving any
auction and personalized pricing mechanisms. Also, many ride sharing services
have appeared along with various algorithms on how to match an order to a
taxi which can provide the ride sharing service [4,5,7,8], in which the most
related works are [4,5]. Different from our work, [4,5] do not consider the pro-
cess in which the taxis’ valuations for orders can be learnt or refined over time
by observing the historical assignment results. In view of this, we introduce the
multi-armed bandit model in our COA framework, by which taxis can automat-
ically price for the orders. Then, they participate in the order auction process.
The multi-armed bandit is an online learning model which is widely used in
crowdsourcing, cognitive radio networks, etc., [11,19]. For example, [19] models
the unknown expert recruitment problem in crowdsourcing as the multi-armed
bandit game, where the unknown experts are seen as arms.

7 Conclusion and Future Work

In this paper, we study the order assignment problem in the mobile taxi-hailing
systems and propose a competitive order assignment (COA) framework. In COA,
we let each taxi automatically set valuations for its preferred orders and design
the MAV mechanism. Then, we conduct the competitive order assignment based
on a reverse auction and design the ROA mechanism. Further, we analyze the
online performance of MAV, and proof that ROA is truthful and individually
rational. Moreover, the significance performances of ROA and MAV are also
verifies through extensive simulations on a real trace.
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