

Directional and Explainable Serendipity Recommendation

Xueqi Li¹, Wenjun Jiang¹, Weiguang Chen¹, Jie Wu², Guojun Wang³ and Kenli Li¹ ¹Hunan University, ²Temple University and ³Guangzhou University

Presenter: Xueqi Li

Outline

◊Introduction

OESR: The details

Experiments

Occursions & Future Work

Outline

◊Introduction

OESR: The details

Occursions & Future Work

An example

DESR

Introduction

An example

- Accuracy-oriented recommendation
- Serendipity-orientedrecommendation
- ◊ Preference direction
- The necessity of directional recommendations

DESR

(c)

Experiments

Open Challenges

- ◊ What are the users' preference directions?
- ◊ How to generate serendipitous recommendations with user preference direction?

Experiments

◊ Why the items are recommended?

Outline

◊Introduction

OESR: The details

Experiments

Occursions & Future Work

The Concepts

- User Preference Direction
 - from a short-term demand to a long-term preference

- Serendipity Vector
 - Direction: the corresponding user preference direction
 - Magnitude: the range for serendipity recommendations

Experiments

Problem Definition

• Input:

a user set U, an item set I, a rating matrix M and a target user u_t

• Output:

a list of potential items I_t and the corresponding explanations

Experiments

• Objective:

Maximize serendipity(I_t, u_t)

Framework

- ◊ Long-term Preference Extraction
- Short-term Demand Capture
- ◊ Recommendation Generation
- Back-routing for Explanations

Long-term Preference Extraction with GMM

$$\begin{split} P(y|\theta) &= \sum_{k=1}^{K} \alpha_k \phi(y|\theta_k), \\ \phi(y|\theta_k) &= \frac{1}{\sqrt{2\pi}\sigma_k} \exp(-\frac{(y-\mu_k)^2}{2\sigma_k^2}), \end{split}$$

Clustering Preference Extraction

Experiments

 μ_k k-th clustering center k-th long-term preference

 σ_k the corresponding clustering level

Short-term Demand Capture with Capsule Network

Experiments

DESR

Recommendation Generation

 $S(u_{tar})$: the scope of the long-term preferences

F(preCap): the familiarity for preCap

 $\|serendipity vector\| = m_{base}(1 + S(u_{tar}))(1 + F(preCap))$

Introduction

Recommendation Generation

Setting the direction

$$\overrightarrow{serendipity vector} = \frac{\overrightarrow{preCap} - deCap}{\|\overrightarrow{serendipity vector}\|} = \frac{\overrightarrow{preCap} - deCap}{\|\overrightarrow{preCap} - deCap\|}$$

DESR

Recommendation Generation $s_i = \frac{T_i}{\sum_{i=1}^{K} T_i}$, T_i is the number of items related to the corresponding preference

Experiments

Back-routing for Explanations

 $expCap = Minimize dis(cap, reCap_{tar})$

DESR

$$explanation = \begin{cases} explanation_1 & expCap \in preCaps \\ explanation_2 & expCap \in deCaps \end{cases}$$

"The item is similar to the items, {t₁, t₂, ... , t_E }, which you watched for a long time."

"The item is similar to the items, $\{t_1, t_2, ..., t_E\}$, which you recently watched."

Experiments

Outline

◊Introduction

OESR: The details

Occursions & Future Work

- ◊ Experiment Settings
- ◊ Effects of Parameters
- ◊ Overall Comparison
- ◊ Verification on Components

DESR

Experiments

♦ A Case Study

Experiment Settings -- Data Preprocessing

Table 2: Statistics of datasets.								
Item	Statistic							
nem	MovieLens-1m	Amazon-Kindle-Store						
# users	6040	3061						
# items	3260	6073						
# ratings	998539	132594						
density ⁵	5.07%	0.71%						

(b) Kindle

Experiments

DESR

Experiment Settings -- Baselines

- RAND a random-based method
- \diamond ACC_{LSTM} an accuracy-oriented method
- ◊ KFN a serendipity-oriented method
- HAES a serendipity-oriented method

Experiment Settings -- Metrics

Metric	Abbreviation	Description				
accuracy (Eq. 16)	-	a metric to measure the recommendation accuracy				
accuracy_preference (Eq. 17)	acc_pre	a metric to measure the similarity of <i>reCaps</i> and <i>preCaps</i>				
accuracy_demand (Eq. 18)	acc_de	a metric to measure the similarity of <i>reCaps</i> and <i>deCaps</i>				
accuracy_all (Eq. 19)	acc	a metric to summarize <i>accuracy</i> , <i>acc_pre</i> and <i>acc_de</i>				
diversity (Eq. 20)	div	a metric to measure the diversity of recommendations				
difference (Eq. 21)	-	a metric to measure the difference between recommendations and u_{tar} 's history				
difference_all (Eq. 22)	dif	a metric to summarize <i>diversity</i> and <i>difference</i>				
AD (Eq. 23)	-	a metric to comprehensively measure <i>acc</i> and <i>dif</i>				

 $AD = \frac{acc * dif}{acc + dif}$

An overall metric for recommendation serendipity.

More details refer to the paper.

Introduction

Effects of Parameters -- in metrics

 Varying parameters exerts different impacts for most approaches, especially ACC_{LSTM} and DESR.

♦ A bigger weight of acc_pre (i.e., (η, θ) = (1, 0.5)) makes DESR outperform ACC_{LSTM} on acc.

DESR

Figure 6: Effects of parameters on acc. (para0: $\eta = 0.5$, $\theta = 0.5$; para1: $\eta = 0.5$, $\theta = 1$; para2: $\eta = 1$, $\theta = 0.5$; para3: $\eta = 1$, $\theta = 1$.)

Conclusi

Experiments

Effects of Parameters -- in metrics

Serendipity-oriented methods (i.e., KFN, HAES, DESR) perform better on dif when a bigger weight is assigned to difference.

OESR performs poorer than HAES on dif.

Figure 7: Effects of parameters on dif. (para0: $\lambda = 0.5$, $\gamma = 1$; para1: $\lambda = 1$, $\gamma = 0.5$; para2: $\lambda = 1$, $\gamma = 1$.)

Experiments

Effects of Parameters -- in DESR

It is hardly possible to capture
 accurate short-term demands when
 L is too big or small.

DESR

 \diamond The optimal value for L is 8.

(a) ml-1m

Experiments

(b) Kindle

Figure 8: Effects of the number of output capsules.

Effects of Parameters -- in DESR

By increasing of m_{base}, the
 performance on dif becomes better
 and that on acc becomes worse.

◊ When m_{base} = 0.4, DESR reaches the best performance on AD.

DESR

 $\|\vec{serendipity vector}\| = m_{base}(1 + S(u_{tar}))(1 + F(preCap)),$

Figure 9: Effects of *mbase*

Overall Comparison -- on Serendipity

DESR achieves the best
 performance on both datasets.

Table 6: Comparison on overall recommendation (ml-1m).

method	acc@5	acc@10	dif@5	dif@10	AD@5	AD@10
RAND	0.19	0.19	0.777	0.874	0.152	0.156
ACC _{LSTM}	0.477	0.469	0.348	0.543	0.201	0.252
KFN	0.298	0.28	0.37	0.669	0.165	0.198
HAES	0.308	0.304	0.595	0.732	0.203	0.215
DESR	0.491	0.48	0.466	0.66	0.239	0.278

DESR performs better on MovieLens-1m.

Table 7: Comparison on overall recommendation (Kindle).

method	acc@5	acc@10	dif@5	dif@10	AD@5	AD@10
RAND	0.237	0.236	0.715	0.805	0.178	0.183
ACC _{LSTM}	0.566	0.558	0.338	0.455	0.212	0.25
KFN	0.269	0.295	0.355	0.582	0.153	0.196
HAES	0.282	0.281	0.644	0.739	0.196	0.203
DESR	0.514	0.51	0.412	0.562	0.229	0.267

Experiments

Overall Comparison -- on Diversity

method	accuracy@5	accuracy@10	acc_pre@5	acc_pre@10	acc_de@5	acc_de@10	div@5	div@10	difference@5	difference@10
RAND	0.15	0.15	0.128	0.129	0.291	0.291	0.739	0.831	0.819	0.918
ACCLSTM	0.461	0.454	0.428	0.42	0.541	0.533	0.314	0.389	0.383	0.697
KFN	0.238	0.225	0.297	0.268	0.358	0.349	0.054	0.472	0.686	0.867
HAES	0.293	0.291	0.245	0.239	0.386	0.383	0.551	0.632	0.638	0.832
DESR	0.352	0.344	0.683	0.668	0.437	0.429	0.398	0.536	0.533	0.784

Table 4: Comparison on original metrics. (ml-1m)

Table 5: Comparison on original metrics. (Kindle)

method	accuracy@5	accuracy@10	acc_pre@5	acc_pre@10	acc_de@5	acc_de@10	div@5	div@10	difference@5	difference@10
RAND	0.222	0.221	0.177	0.177	0.311	0.31	0.683	0.768	0.748	0.843
ACCLSTM	0.577	0.569	0.459	0.453	0.661	0.652	0.3	0.357	0.375	0.552
KFN	0.252	0.282	0.218	0.238	0.338	0.364	0.036	0.371	0.674	0.794
HAES	0.273	0.272	0.213	0.212	0.358	0.358	0.593	0.671	0.695	0.807
DESR	0.433	0.435	0.624	0.609	0.485	0.486	0.363	0.452	0.46	0.671

◊ The more accurate the recommendations are, the less diverse they become.

◊ DESR maximizes diversity under the premise of ensuring recommendation accuracy.

Introduction

DESR

Experiments

Conclu

Verification on Components -- Preference Extraction

method	accuracy@5	accuracy@10	acc_pre@5	acc_pre@10	acc_de@5	acc_de@10	div@5	div@10	difference@5	difference@10
RAND	0.15	0.15	0.128	0.129	0.291	0.291	0.739	0.831	0.819	0.918
ACCLSTM	0.461	0.454	0.428	0.42	0.541	0.533	0.314	0.389	0.383	0.697
KFN	0.238	0.225	0.297	0.268	0.358	0.349	0.054	0.472	0.686	0.867
HAES	0.293	0.291	0.245	0.239	0.386	0.383	0.551	0.632	0.638	0.832
DESR	0.352	0.344	0.683	0.668	0.437	0.429	0.398	0.536	0.533	0.784

Table 4: Comparison on original metrics. (ml-1m)

Table 5: Comparison on original metrics. (Kindle)

method	accuracy@5	accuracy@10	acc_pre@5	acc_pre@10	acc_de@5	acc_de@10	div@5	div@10	difference@5	difference@10
RAND	0.222	0.221	0.177	0.177	0.311	0.31	0.683	0.768	0.748	0.843
ACCLSTM	0.577	0.569	0.459	0.453	0.661	0.652	0.3	0.357	0.375	0.552
KFN	0.252	0.282	0.218	0.238	0.338	0.364	0.036	0.371	0.674	0.794
HAES	0.273	0.272	0.213	0.212	0.358	0.358	0.593	0.671	0.695	0.807
DESR	0.433	0.435	0.624	0.609	0.485	0.486	0.363	0.452	0.46	0.671

♦ DESR increases *acc_pre* by at least 33.33% even when compared to ACC_{LSTM}.

◊ DESR performs even better than other serendipity-oriented methods on *accuracy*.

Introduction

DESR

Verification on Components -- Demand Capture

Figure 11: Comparison between the capsule network and GRU on capturing users' short-term demands.

◊ Capsule network and GRU reach the same optimal MSE on both datasets.

◊ Capsule network has a faster convergence and outperforms GRU on explainability.

Introduction

DESR

A Case Study – on Explanation Generation

For reCap0 (Almost Famous), "The movie is similar to the movies, Forrest Gump, Life Is Beautiful and American Beauty, which you watched for a long time." Figure 14: An illustration to show the similarity between recommendations and preferences, demands.

Figure 15: Selection of historical items.

Experiments

Summary of Experiments

◊ GMM outperforms RNN on developing a comprehensive representation on longterm preferences.

Experiments

- ◊ Capsule network has great potential in sequence processing.
- ◊ Keeping accuracy on users' long-term preferences would improve the recommendation serendipity.
- ◊ In general, DESR achieves a better performance on *AD*.

Outline

◊Introduction

OESR: The details

Occusions & Future Work

Conclusions

the reinforcement of user preference direction and explainability in serendipity
 recommendation

◊ Proposal for novel fine-grained metrics for serendipity

DESR

Future work

◊ provide more user-friendly explanations in the serendipity recommendation

Thanks!

