
Journal of Parallel and Distributed Computing 136 (2020) 1–13

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Budgeted video replacement policy inmobile crowdsensing
En Wang a, Yongjian Yang a,∗, Jie Wu b, Kaihao Lou a, Wenbin Liu a, Yuanbo Xu a

a Department of Computer Science and Technology, Jilin University, China
b Department of Computer and Information Sciences, Temple University, USA

a r t i c l e i n f o

Article history:
Received 14 August 2018
Received in revised form 28 May 2019
Accepted 7 October 2019
Available online 14 October 2019

Keywords:
Mobile video crowdsensing
Replacement policy
Budgeted
NP-hard

a b s t r a c t

Mobile crowdsensing offers a new platform that recruits a suitable set of users to collectively complete
an information collection/sensing task through users’ equipped devices. As a special case, video
crowdsensing is to collect different video segments of the same event that are taken separately
by the built-in cameras of mobile devices, and then combine them into a complete video. Mobile
crowdsensing has attracted considerable attention recently due to the rich information that can be
provided by videos. However, because of the limited caching space, a suitable video replacement
policy is necessary. In this paper, we propose a Budgeted Video replaCement policy in mobile Video
crowdsensing (BVCV), which first determines a video segment’s value according to its caching situation
and natural attributes. Then, we formulate the video caching problem as a budgeted maximum
coverage problem, which is a well-known NP-hard problem. Finally, we propose a practical greedy
solution and also infer the approximate ratio, which could be regarded as the lower bound of
BVCV to the optimal solution. Our experiments with the real mobility datasets (StudentLife dataset,
Buffalo/phonelab-wifi dataset) show that, the proposed budgeted video replacement policy achieves a
longer successfully delivered video length, compared with other general replacement policies.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Mobile CrowdSensing (MCS) is a new kind of crowdsourcing
method, where mobile users could utilize the rich sensors in their
handheld devices to sense the surroundings and jointly finish a
common sensing task [9]. The information collected by a user’s
device is just data, while the collected and addressed information
of tremendous devices can be transformed into knowledge. The
knowledge is taken from users and also serves users through
a variety of applications ranging from urban dynamic mining
and environment monitoring to parking space management and
indoor localization [7,10,14]. The existing works in terms of MCS
mainly focus on user recruitment, task allocation and incen-
tive mechanism [11,23]. Obviously, different task requirements
lead to the different data types (e.g., text, picture, or video). In
this paper, we are especially interested in Video CrowdSensing
(VCS) [12,30], where people shoot videos for an event with their
mobile devices. Compared with the traditional MCS, VCS collects
a richer information through videos and could give users a more
intuitive impression for the event.

Suppose that an important event happens in the location with-
out any surveillance video around it. The revivification of event
relies on the crowdsensed videos taken by the mobile users. For

∗ Corresponding author.
E-mail address: yyj@jlu.edu.cn (Y. Yang).

example, Waze [3] collects information on road conditions and
accidents shared by drivers. Then it provides a timely and efficient
road traffic report. Google map applications provide users with
a visual and intuitive feeling for a specific location through the
videos of street cameras. All of these are VCS applications [26],
which provide users an intuitional feedback for the specific event.

However, VCS also faces some difficulties along with providing
users a good service experience. Among them, the most impor-
tant issue is caching problem [30]. This is because, in VCS, the
data sensed by mobile devices is video file which occupies a
non-negligible cache space, and each mobile device usually has a
limited cache space to serve the crowdsensing task. So it is really
important to efficiently cache the videos (i.e., caching the more
important videos) and further get a higher video crowdsensing
quality (i.e., uploading a longer required video).

In this paper, in order to efficiently schedule the videos in
the cache, we propose a budgeted video replacement policy in
mobile video crowdsensing, which first decides a video segment’s
value according to its own attribute (video length) and also the
copy distribution (number of copies) among the other mobile
devices. Here, a video segment is part of the whole required
video. We then formulate the video caching problem as a bud-
geted maximum coverage problem [19], which is a well-known
NP-hard problem. Finally, we propose a practical greedy solution
and also infer the approximate ratio between the result of the
proposed algorithm and that of the optimal solution.

https://doi.org/10.1016/j.jpdc.2019.10.003
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.10.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.10.003&domain=pdf
mailto:yyj@jlu.edu.cn
https://doi.org/10.1016/j.jpdc.2019.10.003

2 E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13

Fig. 1. The video crowdsensing description. The users take (case 1) videos for
the specific task and copy (case 2) the stored videos with each other, until they
access the wifi, and then they upload (case 3) all the caching videos.

As shown in Fig. 1, users walk around in a city, and they take
videos for the specific event, which is required by the task. Then
they cache them in their devices (i.e., Di in Fig. 1). When they
move into a wifi area, they could upload the cached videos to
the cloud server. Users could predict the frequency to access the
wifi area, then when users encounter each other, they could copy
the videos in order to upload the videos as soon as possible.
Obviously, the cache space of a user is usually not enough to store
all the videos (generated by itself and collected from the other
users). For uploading as long as possible nonoverlapping videos
before the given deadline of task, they should decide which video
segment to delete among the existing videos and the new coming
one, according to the incremental value of video’s utility. We
assume that frequency of taking the new video from an event
or copying from another neighbor user is unknown and such
frequency does not follow any particular distribution. Although
cache management is not a new research area, it still brings many
new challenges for VCS applications.

• Video Segment Utility: it is difficult for us to decide an un-
heuristic method for ranking the importance of different
videos.
• Dependency of Videos: the relationship among different video

segments is interdependence as these video segments may
contain some overlap parts of the whole required video.
Hence, the new coming video’s contribution could not be
easily measured by its own utility, as it depends on the
existing videos.
• Variety in Video Lengths: the videos may have the different

sizes, that is to say, they consume different caching spaces. A
video with a high utility may also occupy the large caching
space. Hence, we could not directly decide the priority of
videos according to the utility.
• Multi-User Situation: the multi-user situation will be more

difficult because the different users’ caching situations will
influence each other and may also jointly influence the
successfully uploaded video length. Here, we only focus on
the different time to take videos for an event, while ignoring
the different angles and distances.

In order to overcome the above challenges, we design a bud-
geted video replacement policy in mobile video crowdsensing.
The main contributions of this paper are briefly summarized as
follows:

• We propose an efficient way to measure the corresponding
utility for each video segment, through calculating the in-
fluence on the contribution of keeping the video on user’s
cache.
• We propose a budgeted video replacement policy in mobile

video crowdsensing, taking both the different videos’ sizes
and coverages into consideration, in order to maximize the
total nonoverlapping length of uploaded videos.
• We formulate the video caching problem as the NP-hard

problem, then we adopt a practical greedy heuristic to ad-
dress the problem, and also infer the approximate ratio
between the results of the proposed algorithm and the
optimal solution.
• We conduct extensive simulations based on two widely-

used real-world traces: StudentLife dataset and
Buffalo/phonelab-wifi dataset. The results show that com-
pared with other video replacement policies, BVCV achieves
the longest successfully delivered video length.

The remainder of this paper is organized as follows: we review
the related work in Section 2. The problem formulation and de-
scription are shown in Section 3. The budgeted video replacement
policy proposed in this paper is described detailedly in Section 4
including the algorithms and approximate ratio. In Section 5,
we evaluate the performance of the proposed replacement pol-
icy through extensive simulations. We conclude the paper in
Section 6. Our proofs are presented in Appendix.

2. Related work

In this paper, we consider the related work as belonging into
two aspects: (1) visual sensing; (2) resource management.

2.1. Visual crowdsensing

There have been many works on visual crowdsensing. In [20],
Li et al. review the current situation of crowded scene technolo-
gies. They first introduce the background and concept of crowded
scene. Then, they also do a research in terms of algorithms,
protocols and models in this research area. In [4], Chen et al.
propose a sensing scheme to make users cover the events collab-
oratively. More importantly, they use crowd-powered approach
to address the events. [5] uses pyramid-tree model to address
the data selection problem. According to the task requirements,
the most suitable pictures are selected. In [28], Wang et al.
build a system called CrowdWatch, which utilizes crowd sensing
technology to sense the existing obstacles and makes a timely
decision and alert for distracted walkers. [6] proposes an indoor
3D modeling method with crowdsourced 2D photos, which are
taken by the mobile users. In [31], Xu et al. develop a locating
application in mobile devices, it extracts geometric constraints
based on images crowdsourced by the mobile devices to reduce
the sensing cost. PhotoCity [25] is an online game that teaches
the users to take photos at targeted locations. Then, the photos
could be used to build 3D models. In [21], Liu et al. design four
truthful incentive mechanisms for selecting workers to form a
valid team and cooperatively finish a crowdsourcing task. In [13],
Hong et al. propose an algorithm to select the parameters to
fit more videos of the mobile devices. [12] surveys the defini-
tions, general methods, and specific applications of VCS, and also
analyzes the future challenges and core techniques. Moreover,
in [29], they present a video crowdsourcing framework, which

E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13 3

Fig. 2. The exponential probability distribution of access time intervals (entering wifi area) for the users.

utilizes the wisdom of the crowd to produce video summaries
under the controlled cost of sourcing participants. [18] proposes
a caption editing system, which makes the crowdsourcing an
attractive task, and its interface includes game-based elements. In
this way, the system achieves crowdsourced work for the useful
task of video captioning.

The above researches pay attention to visual crowdsensing.
However, they focus on efficient video/photo crowdsensing, while
not considering the caching problem in user’s device.

2.2. Resources management

There have also been some works focusing on resources man-
agement in MCS. In order to maximize the lifetime of sensing
task, [1] proposes a novel method to handle the resource assign-
ment problem so that MCS tasks are fairly allocated to the mobile
users. [22] does a survey of state-of-the-art works for those
focusing on reducing the resource cost and getting a high service
quality. In [17], Ju et al. regard the sensing resource assignment
problem as a social welfare maximization problem, and propose
a primal–dual approximate algorithm to solve this problem. [15]
pays attention to resource-limited crowdsensing environment,
they propose an algorithm to take logical data dependencies into
consideration for the purpose that application queries are an-
swered at the central aggregation node. CARDAP [16] is proposed
as a scalable, energy-efficient distributed data analytics platform
for mobile crowdsensing.

The above researchers’ achievements allocate the resources
efficiently, but they could not be directly used in video crowd-
sensing because the data type they sensed is not video.

3. Problem descriptions

In this section, we describe the problem formulation from
the following three aspects: network model, mobility pattern
and caching scheme. Then, we further introduce the confronting
problems in this paper.

3.1. Network model

There are n users (user set U) moving around a specific area,
each user carries a mobile phone and freely takes videos for
his/her interested events. Then, the videos are stored in the local
cache. A video requester could publish his/her requirement or
task to the cloud server. Then the users would like to upload
the videos to the cloud server and get the corresponding reward.
Because the video’s size is very large in most cases, a user prefers
to upload the videos to the cloud server through a free way (wifi)
instead of uploading it costly (3G/4G). In this paper, we do not
pay attention to the payment game or management, while we

focus on the video replacement policy in each user’s device. This
is because the caching space serving crowdsensing tasks is usually
limited, and is not enough for caching a large amount of videos.
Moreover, we assume that each user knows the global informa-
tion (through the cloud server) in terms of cache distributions
of all users. The global information includes some two-tuples
⟨beginning time, ending time⟩ of video segments. When a user’s
cache overflows, then it asks the server to collect the global
information from the other users. The capturing process does
not need to upload the video segments, while just uploading
some two-tuples in text message from the other users. Hence, we
assume the uploading cost is acceptable through 3G/4G, while the
uploading of videos is very expensive and needs to use the free
wifi. More importantly, when the server sends global information
to the user, it also adds the information of successfully uploaded
video segments, which could be used to make local replacement
decision. After getting the global information, a user could make
an accurate replacement decision of video segments in its local
cache. Each user could predict the frequency to access the wifi
areas through the method in the next subsection. While we
assume that frequency of getting the new video from an event
or another neighbor user is unknown and such frequency does
not follow any particular distribution.

3.2. Mobility pattern

In the above network environment, the users primarily utilize
occasional encounters with the fixed wifi areas to upload the
cached videos. Therefore, the access intermeeting time to the wifi
areas will seriously influence the uploading frequency. We first
define the access intermeeting time as follows:

Definition 1. Access intermeeting time is the elapsed time from
the end of the previous access to a wifi area to the start of the
next access.

The existing work [8] has proved that intermeeting time tails
off exponentially in many mobility patterns, such as random-
waypoint and random direction. In order to prove that the access
intermeeting time in our traces also matches an exponential
distribution, we test the distribution of access intermeeting time
as shown in Fig. 2, the access intermeeting time nearly fol-
lows an exponential distribution for the two real-world traces
(StudentLife and Buffalo/phonelab-wifi datasets):

f (x) =
{
λe−λx x > 0
0 x ≤ 0

(1)

4 E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13

Fig. 3. The framework of budgeted video caching in video crowdsensing. The
video replacement policy in a single user is determined by the stored videos of
the other users’ caches.

Suppose that λ matches the exponential distribution of access
intermeeting time, Et represents the mathematical average val-
ues; then λ = 1

Et
. The parameter λ of StudentLife dataset could be

achieved through Fig. 2: 0.005781, and that of Buffalo/phonelab-
wifi dataset is 0.02495. Hence, the expected access intermeeting
time for the above datasets are 172.98 and 40.67 time units,
respectively. These are also the settings in the simulations of this
paper.

3.3. Caching scheme

Each user freely takes videos and stores the videos in its local
cache. The whole required video published by the task requester
is equally divided into m time units. Then, a video segment (Di)
cached by a user may cover parts of the whole required video.
Hence, for each user, it is difficult to decide which videos should
be kept in the cache. More importantly, when the multi-user
situation is considered, the problem becomes more challenging.
This is because we need to take the other users’ caching situations
into consideration when we decide the local replacement policy.

As shown in Fig. 3, video segments D1, D2 and D3 take up
all the available cache of the first user. At this time, when D4 is
taken by the user, then it should decide which video segments to
reserve and which to replace. This is not an easy problem because
the video segments are dependent of each other. Moreover, the
multi-user situation also leads to a more complex calculation
process.

As mentioned in the network model, we assume that, the
communication cost (not uploading cost) for a user to get param-
eters from cloud server could be neglected. Hence, when a user’s
cache overflows, it notifies the cloud server and searches for the
situations of other users. Then, with the purpose of maximiz-
ing the uploaded videos’ total utility, the overflowed user could
efficiently manage its local cache.

3.4. Main thoughts

Facing the above challenges, we attempt to propose a bud-
geted video replacement policy in mobile video crowdsensing.
First, we decide an efficient calculation method to measure the
degree of video’s importance. Then, we formulate the budgeted
video caching problem as the budgeted coverage problem, which
is a well-known NP-hard problem. In order to solve the NP-hard
problem, we further propose a practical greedy solution. Finally,

Table 1
Main notation used throughout the paper.
Symbol Meaning

U The user set
B The cache space for a user
m The number of video units
L The whole required video L, L = {l1, l2, . . . , lm}
Vli Value of video unit li
D The video segment set
Di The ith kind of video segment in D: Di ∈ D
bi The required cache space of Di
Pi Probability of uploading li successfully
ni The number of users caching video unit li
λ Parameter in the exponential distribution of

access intermeeting time
V ′i The increased value of Di

we infer the approximate ratio between the results of BVCV and
the optimal solution, we also test the performance of proposed
policy and prove the approximate ratio through two widely-used
real-world traces.

4. Budgeted video replacement policy

In this section, we first model the optimization problem for
the budgeted video replacement policy in mobile video crowd-
sensing. Then, we prove the NP hardness of the optimization
problem. Next, we propose the corresponding greedy algorithms
to solve the NP-hard problem. Finally, the approximate ratio is
inferred to guarantee the performance of proposed algorithm.
Main notations used throughout this paper are illustrated in
Table 1.

4.1. Optimization problem

There are n users moving around a specific area: U = {u1, u2,

. . . , un}. They freely take videos of their interested events or
activities through their mobile phones, and then they store the
videos in their local caches. Hence, each user could be regarded as
a mobile device with limited caching space. Here, we assume that
the devices have the uniform cache space B. This assumption is
just used to simplify the expression of the optimization problem.
In other words, the heterogeneous cache spaces will not lead to
a more difficult situation, and the policy proposed in this paper
is still available for the heterogeneous cache spaces.

We consider the following mobile video crowdsensing scene:
a requester publishes its video sensing task in the cloud server
for collecting the whole video for an event or activity. The whole
required video, which is long enough to cover the task require-
ment is defined as follows: L = {l1, l2, . . . , lm}, which means that
we equally divide the whole required video into m units. The
time unit of li is tunit , which could be achieved by the following
equation.

m · tunit = tend − tinit . (2)

Where tend is the required video’s end time of the sensing task,
while tinit is the required video’s start time of the sensing task.

In order to clearly describe the modeling process, we first give
the following definitions.

Definition 2. li is the ith video unit in the whole required video
of the task. The units are obtained from the equally division of
the whole required video.

Definition 3. D is the video set including all kinds of video
segments taken by the mobile devices.

E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13 5

Definition 4. Di is ith kind of video segment. Hence, D =
{D1,D2, . . . ,Dh}.

Obviously, a video taken by a user may be part of the required
task video. In other words, Di may cover part of the whole re-
quired video L, which means that Di = L′i ⊆ L. The purpose of this
paper is to measure the tradeoff between budgeted caching space
and the video’s value. Therefore, we give the following definition.

Definition 5. bi is the required caching space for video segment
Di. Without loss of generality, we assume that the caching space
of li is 1, then bi is the total length of the video segment Di.

After giving the definition of bi, we focus on the value of video
segment Di. Di consists of a series of li, and the value for li is given
in Eq. (3). However, different from budget bi, the value of Di could
not be directly calculated by the sum value of li. This is because
the delivery of Di also depends on the caching situations of other
users. Hence it is a probabilistic problem for measuring the actual
value of Di.

{Vli}
m
i=1 = 1 (3)

Focusing on the probabilistic problem, we first take the mo-
bility pattern into consideration. We attempt to measure the
expected contribution of the video segment Di. If there is only
one device in the mobile video crowdsensing, then the problem
becomes easy to solve. The value of video segment Di depends
on both the video length (the number of time unit li) and the
delivery probability (the probability for a user to be in a wifi area
before the task deadline). The video length is easy to obtain. And
the delivery probability could be calculated through the access
intermeeting time distribution, which is discussed in the previous
section.

However, if there are multi-users in the crowdsensing activity,
the problem becomes more difficult. This is because we need to
consider the caching situations of the other users and calculate
the improvement in delivery probability for storing this video in
the local cache. To this end, according to the previous discussions
in terms of mobility pattern, we first attempt to calculate the
expected delivery probability of video unit li. Suppose that there
are totally ni mobile devices carrying video unit li in their caches
at the moment. Then the access intermeeting time rate changes
from λ to niλ. This is because we assume that all the mobile
devices match the same exponential distribution. When the task
deadline is T , we could achieve the probability of uploading li
successfully before T as follows:

Pi = 1− e−λniT (4)

In the above situation, when user a needs to decide whether to
cache li, it should judge the expected achievement of caching the
video unit li. In this way, it could calculate the expected value
of video segment Di through the total sum of li covered by Di.
Suppose that, there are ni mobile devices except user a caching
video unit li. Then if user a decides to cache li, the total number
of copy li is ni + 1. If we want to measure the improvement in
delivery ratio for caching li in user a, we just need to calculate
the derivative of Pi as a function of ni.

However, based on whether there is a user carrying video unit
li, the results could be divided into the following two situations.
When there is no user carrying li, i.e., ni = 0, then the expected
improvement of delivery ratio (successfully uploading) is 1 −
e−λT . If there are ni users caching li, then the improvement is
the derivative of Pi: λTe−λTni . In this way, we could achieve the
expected value of li.

f (ni) =
dPi
dni
=

{
λTe−λTni ni ≥ 1

1− e−λT ni = 0
(5)

Next, we still use the example of user a. The total video
segment set is denoted by D. When the overflowing occurs in user
a, we suppose that the already existing video segments and the
new coming one form the video segment set D′i ⊆ D. Because the
caching space is not enough to cache all the video segments in
D′i , we should select a subset D′′i ⊆ D′i to be cached by user a in
order to maximize the total utility of cached videos.

Then, each video segment has a caching space as well as a
delivery value. So in the limited caching space, we should balance
the value and caching space. This is obviously an optimization
problem. Here, as previously described, the final cached video
segment set is D′′i , then all the video unit sets L′′ covered by D′′i
are shown as follows:⋃
Di∈D′′i

Di = L′′ ⊆ L (6)

The purpose of this paper is to decide a suitable video set D′′i
under the limited budget B, so as to maximize the total utility
of D′′i . First, in order to make the optimization problem easy to
understand, we consider an easy case, where the value of D′′i
depends on the total length of video units covered by D′′i . Thus,
the optimization problem turns out to be the following equation:

Maximize V (L′′) = |L′′|

s.t.
∑
Di∈D′′i

bi ≤ B (7)

However, in the previous optimization problem, the value
of li is simply regarded as 1. Actually, the value of li depends
on many influence factors, which have been discussed in the
previous subsections. The value of li could be achieved in a more
reasonable way:

Vli = f (ni), (8)

where f (ni), which has been defined in Eq. (5), represents the
expected improved value when we cache one more copy of video
unit li.

Then, we take the value of video segment Di into considera-
tion, it could be calculated through the sum value of li covered by
Di. Then Eq. (9) is achieved.

V (Di) =
∑
∀li∈Di

f (ni) (9)

If Di is the new coming segment, the above equation could
measure its value accurately. However, if Di is the video segment
which already exists in the cache, then there must be a cost for
replacing Di. This is mainly because the following two reasons:
(1) replacing an existing segment requires an additional caching
operation; (2) the existing video segment is likely to being used
by the user. Taking the above two cases into consideration, we
give the modified utility of the segment Di, which already exists
in the cache.

V (Di) =
∑
∀li∈Di

f (ni)+ αi, (10)

where αi means the value increment compared to a new coming
one. It is not difficult to find that, the above two items in Eq. (10)
could be both regarded as the discount for the total length of
time for the video segment Di, so they could be added together.
Moreover, if the user deletes an existing segment, the cost caused
by replacing operation and reducing user’s interest is presented
by αi:

αi = x(1− e−λx) (11)

In the above equation, x is the total length of Di. Generally
speaking, replacing a longer video segment leads to a higher

6 E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13

deleting operation cost. Meanwhile deleting a longer video seg-
ment also leads to a higher probability to influence the user’s
emotion because perhaps they are watching the videos. More-
over, we consider that the reducing of user’s emotion should be
exponential descent function, while not proportional function.
This is because, if we delete the half length of the movie, a user
may have no interest to watch it. Hence, we use x(1− e−λx) to
measure the value increment of existing video segment. Without
loss of generality, we set λ as 10

m , then, when x is approaching m
2 ,

the interest of user is almost zero. When x is approaching 0, then
there will be no influence on user’s emotion.

Finally, the optimization problem turns out to be finding a
suitable set of D′′i under the constraint that

∑
Di∈D′′i

bi ≤ B, with
the purpose of maximizing the total value of video units (V (L′′))
covered by D′′i .

Maximize V (L′′) =
∑
∀li∈L′′

Vli

s.t.
∑
Di∈D′′i

bi ≤ B (12)

4.2. NP-hard proof

Before solving the above optimization problem, we first at-
tempt to prove that the budgeted caching optimization problem
is NP-hard, as shown in the following theorem.

Theorem 1. The budgeted caching optimization problem as shown
in Eq. (12) is NP-hard.

Proof. First of all, we attempt to formulate the optimization
problem in Eq. (12) as a budgeted maximum coverage problem,
which includes a collection of sets X = {X1, X2, . . . , Xm} with
the corresponding costs c = {c1, c2, . . . , cm}. Xi is defined by
a domain of elements O = {O1,O2, . . . ,On} with the associate
weights: w = {w1, w2, . . . , wn}. The purpose is to select a
subcollection of X , and the total cost of the elements in selected
subcollection does not exceed a given budget, while the total
weight of the selected subcollection is maximized.

Then, we consider the optimization problem in this paper
again. An easier situation is that all the video units have a uniform
value of 1. Then the video segment D could be mapped into X ,
and the caching space b is mapped into c. Moreover, the value of
video segment Di is regarded as wi. It is not difficult to find that,
the simplified budgeted video caching problem is the same as the
budgeted maximum coverage problem. So if we could prove that
the budgeted maximum coverage problem is NP-hard, then the
budgeted video caching problem is also NP-hard.

Next, we also consider an easier case of budgeted maximum
coverage problem, where the cost for each Xi is uniform. Then the
problem becomes selecting the number k set of Xi so that the total
weight of covered elements is maximized. The uniform budgeted
maximum coverage problem is obviously NP-hard, this could be
inferred from the set cover problem: a task set κ is provided, a
collection of subset {κi|1 ≤ i ≤ n}. How to determine a k size of
subcollection of {κi|1 ≤ i ≤ n} that covers as many as possible
tasks in κ is obviously NP-hard. Hence, the original budgeted
video caching problem in this paper is at least NP-hard. □

4.3. Algorithms and approximate ratio

In this subsection, we attempt to propose an efficient greedy
algorithm to solve the NP-hard problem. The main idea is to
measure the trade-off between the limited caching space and the
total uploaded video length. We have proved that the budgeted

Algorithm 1 BVCV-no bound

1: M←Ø, b(M)←0, U←D′i
2: while U ̸= Ø do
3: find Di ∈ U that maximize V ′i

bi
4: if b(M)+ bi ≤ B then
5: M ← M ∪ Di
6: b(M)← b(M)+ bi
7: U ← U\Di
8: return M

video caching problem is NP-hard. Then in order to propose a
greedy algorithm to solve the NP-hard problem, we should decide
a measuring method to order the priority among the existing
video segments and the new coming one. In this way, we could
decide the suitable replacement policy in this paper.

Focusing on the priority of video segment Di, we should first
consider the expected improvement on delivery performance,
which is defined as the increased value of Di: V ′i . In other words,
V ′i is the expected increased value for caching Di in its local cache,
which is shown in the following equation, whereM is the existing
video set:

V ′i = V (M
⋃

Di)− V (M) (13)

However, the expected increased value for caching Di could
not be directly used for measuring the priority. This is because a
video segment has a high expected increased value and may also
occupy a large caching space. Then caching this video segment in
a high priority is not necessarily the best choice. It is intuitively
obvious that a video segment with the highest increased value
per unit caching space should be assigned the highest priority.
In other words, we should cache the video segment Di with the
highest value of V ′i

bi
in the highest priority.

To sum up, Algorithm 1 (BVCV-no bound) is proposed to first
cache the video segment with the highest value of V ′i

bi
, until the

budget is not enough. This is obviously an easy solution to the
NP-hard problem. Unfortunately, Algorithm 1 has an unbound
approximate ratio, which could be proved as follows.

Consider a special case that, the budget is h+ 1, and there are
only two video segments: D1 and D2 to be cached. D1 covers video
unit l1 with value of 1 and occupies b1 = 1, while D2 covers video
unit l2 with value of h and occupies b2 = h+1, where h is positive.
Obviously, the optimal solution is caching D2, and it achieves the
value of h. However, the solution picked by Algorithm 1 is D1, and
it achieves the value of 1. It is worth noting that, the approximate
ratio for this example is 1

h , and is therefore unbounded.
Next, in order to propose a greedy algorithm within a con-

trolled bound, we do a small modification to Algorithm 1. Then
Algorithm 2 is proposed to solve the above NP-hard problem.
The main idea is achieving the final solution through two ways:
the first one is the same as that of Algorithm 1, the second one
is the single set of Di with the highest value: V (Di). Then, the
higher value between the first and second ones is regarded as the
final solution of Algorithm 2. In this way, the unbounded case
in Algorithm 1 is solved. When we use Algorithm 2 to address
the previous example, the first part is the same as Algorithm 1,
and it selects D1 as the solution. While the second part selects D2
as the final solution. Obviously, when h > 1, the value of D2 is
higher than that of D1, then D2 is selected as the final solution.
Otherwise, D1 is selected as the final solution. Therefore, the
performance of algorithm is bounded. Then, we give the following
important theorem.

Theorem 2. The solution of Algorithm 2 (BVCV-loose bound) achiev-
es the approximate ratio of 1

2 (1−
1
e) to the optimal solution.

E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13 7

Algorithm 2 BVCV-loose bound

1: M1←argmax{V (Di), Di ⊆ D′i , and b(Di) ≤ B}
2: M2←Ø
3: while U ̸= Ø do
4: find Di ∈ U that maximize V ′i

bi
5: if b(M2)+ bi ≤ B then
6: M2 ← M2 ∪ Di
7: b(M2)← b(M2)+ bi
8: U ← U\Di
9: if V (M1) > V (M2) then

10: return M1
11: else
12: return M2

Algorithm 3 BVCV-tight bound

1: M1←argmax{V (E), E ⊆ D′i , |E|< k, and b(E) ≤ B}
2: M2←Ø
3: for E ⊆ D′i , |E|= k and b(E) ≤ B do
4: U = D′i\E
5: while U ̸= Ø do
6: find Di ∈ U that maximize V ′i

bi
7: if b(E)+ bi ≤ B then
8: E ← E ∪ Di
9: U ← U\Di

10: if V (E) > V (M2) then
11: M2←E
12: if V (M1) > V (M2) then
13: return M1
14: else
15: return M2

Proof. The proof of Theorem 2 is shown in Appendix A, where we
prove that the approximate ratio for Algorithm 2 to the optimal
solution is 1

2 (1 −
1
e). Algorithm 2 selects the maximum value

of Di as the candidate solution, which prevents the result from
unbounded approximate ratio. In this way, the approximate ratio
changes from an unbounded value to 1

2 (1−
1
e). □

Through Theorem 2, we propose Algorithm 2, which gets a
lower bound of 1

2 (1−
1
e) to the optimal solution for the budgeted

video caching problem. However, the bound is still a loose bound.
Although the budgeted video caching problem is not a submodule
function, the bound could also come close to 1 − 1

e . Hence, we
attempt to propose the greedy algorithm with the tight bound.
Then Algorithm 3 (BVCV-tight bound) is proposed.

The main thought of Algorithm 3 is shown as follows. We use
enumeration method to address the NP-hard problem. k is a fixed
number to record the enumeration level. Similar to Algorithm 2,
we also divide the final solution into two parts. The first part
consists of all the subsets of D′i of cardinality less than k within
the caching budget. The second part considers all the subset of D′i
in k items. And then, we repeat greedy solution until the budget
is not enough. Finally, the higher value between the first part
and second part is regarded as the final solution of Algorithm
3. According to the following important theorem, the bound of
Algorithm 3 is given.

Theorem 3. The solution of Algorithm 3 (BVCV-tight bound) achiev-
es the lower bound of 1− 1

e to the optimal solution for k ≥ 3.

Proof. The proof of Theorem 3 is shown in Appendix B, where we
prove that the approximate ratio for Algorithm 3 to the optimal

solution is 1− 1
e , which is the same as the algorithm that matches

the submodule function. Algorithm 3 uses enumeration method
to achieve a satisfactory tight bound, which changes from 1

2 (1−
1
e) to 1 − 1

e . Obviously, in the real crowdsensing system, the
maximum number of video segments cached by a user is usually
more than 3. Hence, the tight bound could be achieved. □

To sum up, three greedy algorithms: BVCV-no bound, BVCV-
loose bound and BVCV-tight bound are proposed to address the
budgeted video caching problem, which is proved to be NP-hard.
The three algorithms’ approximate ratios are getting tighter and
tighter. Finally, in this paper, we achieve the BVCV-tight bound
algorithm, whose bound comes close to 1− 1

e .

5. Performance evaluation

By now, we have introduced the proposed video replacement
policy, and also described the corresponding algorithms to solve
the NP-hard problem. Then, in this section, we attempt to do
the performance evaluations to test the following two aspects:
(1) BVCV actually achieves the highest performance in terms of
successfully delivered video length. (2) BVCV-tight bound actually
achieves the approximate ratio of 1− 1

e to the optimal solution. In
order to test the practicability of BVCV, we conduct simulations
on two widely-used real-world traces. Two situations (ordered
generated videos and randomly generated videos) are considered
in the following simulations.

5.1. Evaluation settings

To test the performances of the proposed algorithms, we
first introduce the details of the real-world datasets. We adopt
two widely-used real-world traces, StudentLife dataset [27] and
Buffalo/phonelab-wifi dataset [24] to test the performances of
the proposed video replacement policy. StudentLife is the dataset
which contains all the sensor data (wifi, bluetooth, etc), EMA
data, survey responses and educational data collected from the
phones of 48 Dartmouth students over a 10-week term to assess
their mental health, academic performance and behavioral trends.
PhoneLab is a large scale smartphone test-bed at University at
Buffalo (UB). Participants carry instrumented Nexus 5 smart-
phones as their primary devices. The dataset uses the PhoneLab
platform to collect records, which contain the wifi scan results
reported by 284 smartphones from 2014-11-07 to 2015-04-03.
The PhoneLab participants are primarily UB faculty, staff and
students, so most of the wifi networks reported are UB campus
wifi network or each participant’s home wifi network.

We first address the above two datasets by filtering out some
abnormal user records (users of missing data or with abnormal
behaviors). Based on the addressed users’ traces, we list all the
time records for a user to enter a wifi area. Then we could also
get the access intermeeting time for all the users. For StudentLife
dataset, the data is the participants’ wifi AP scan log file, the items
in concern are time and ID of wifi area. One scan log contains a
set of IDs of wifi area and if the IDs in several continuous records
have the intersection, we regard the time of the first record as
the connection time until the ID of next record does not intersect
with that of the last record. Finally we extract all the connection
time records into files. For Buffalo/phonelab-wifi dataset, we first
select the data of mobile users who have wifi connection records
every day and the data item in concern includes the ID of users,
time-stamp, connection status and ID of wifi area. If the mobile
user connects the access point successfully, the connection status
is true, otherwise it is false. The number of users that meet the
requirement is 73. If the user connects the same access point
in several continuous records, we regard the time-stamp of the
first record as the connection time until the connection status of

8 E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13

Table 2
Simulation settings.
Parameter Datasets

StudentLife Buffalo/phonelab-wifi

User number 49 73
Cache budget 500 ∼ 1200
Time unit (s) 10
Task deadline 500 ∼ 1500
Total video
length

5000 ∼ 15, 000

λ 0.005781 0.02495
Generation
interval

5 ∼ 20

Fig. 4. The performance changing process along with the growth of different conditions under the ordered generated videos in StudentLife dataset.

record is false or the ID is another access point. Subsequently, we
record the connection time of each user.

Then, we plot the curve for the distribution of access inter-
meeting time as shown in Fig. 2. The simulation results show that,
the access intermeeting time for both the two datasets satisfies
an exponential distribution. The detailed simulation parameters
in this network environment are listed in Table 2. Without loss
of generality, we set the generation frequency of new video
segments as 5 to 20, which means that in each user, a new video
segment is produced every 5 to 20 time units. In particular, time
unit is equal to 10, which means that among all the items related
to time, the minimal time unit is 10 s. Hence, for example, if the
deadline is 500, it means that after 5000 s, the task will be closed.
While the generation interval is equal to 10, which means that the
video segment is generated per 100 s.

5.2. Algorithms and performances in comparison

To test the performance of the proposed video replacement
policy, we divide the simulation results into the following two
aspects: (1) delivery performance; (2) approximate ratio.

For the first part, we attempt to test that whether BVCV could
achieve the highest successfully delivered video length compared
with other replacement policies. The compared policies [2] in-
clude FIFO, LIFO, RANDOM, D-Largest and D-Smallest. The de-
tailed information is listed as follows: FIFO first replaces the video
segment which first comes in the cache. LIFO first replaces the
video segment which just comes in the cache. RANDOM randomly
replaces a video segment in its cache. D-Largest first replaces the
video segment which occupies the largest caching space. While
D-Smallest first replaces the video segment which occupies the
smallest caching space.

For the second part, we attempt to prove that the proposed
BVCV-tight bound could be bounded by the approximate ratio
of 1 − 1

e to the optimal solution. The tested algorithms include
the BVCV-tight bound, which is described in Algorithm 3, and
the optimal solution, which is achieved through the exhaustive
method.

While a range of data is gathered from the experiments, we
take the following two main performance metrics into consider-
ation:

(1) Successfully delivered video length, which is the total up-
loaded nonoverlapping video length by all the mobile users
before the deadline.

(2) Approximate ratio, which is the ratio between the success-
fully delivered video length of BVCV-tight bound to that of
the optimal solution.

5.3. Simulation results under studentlife dataset

5.3.1. Simulation under the ordered generated videos
For the first part in Buffalo/phonelab-wifi dataset, the simula-

tion settings are the same with that of StudentLife Dataset.
First of all, as shown in Fig. 4(a), six video replacement policies

are tested along with the growth of expected generation intervals.
It is not difficult to find that, along with the growth of x-axis,
the successfully delivered video length decreases. This is easy to
understand because a longer generation interval leads to a lower
chance to upload the video segments. Hence the total successfully
delivered video length becomes shorter. Most importantly, along
with the growth of generation interval, BVCV always achieves the
highest successfully delivered video length, compared with the
other replacement policies.

Secondly, when the expected generation interval for the videos
is set as 10, the video length is set as 10,000, and the deadline
is 1000. We change the budget to see the changing curve of
successfully delivered video length. As shown in Fig. 4(b), six
video replacement policies are tested along with the growth of
budget. Obviously, along with the growth of x-axis, the success-
fully delivered video length increases. This is because a larger
budget results in a more powerful caching ability, which leads
to a higher successfully delivered video length. It is worth noting
that BVCV still achieves the highest successfully delivered video
length, compared with the other replacement policies.

Thirdly, when the budget is 850, and the expected generation
interval for the videos is set as 10, the deadline is still 1000.
We change the video length to see how the curve of successfully
delivered video length changes. As shown in Fig. 4(c), six video
replacement policies are tested along with the growth of total
video length. Obviously, along with the growth of x-axis, the suc-
cessfully delivered video length increases. This is because a longer
video length results in a longer expected successfully delivered
video length. Similar to the previous results, BVCV also achieves

E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13 9

Fig. 5. The performance changing process along with the growth of different conditions under the randomly generated videos in StudentLife dataset.

Fig. 6. The approximate ratio performance of BVCV-tight bound to the optimal solution in StudentLife dataset.

the highest successfully delivered video length, compared with
the other replacement policies, along with the increase in total
video length.

Finally, we set the budget as 850, and set the expected gen-
eration interval for the videos as 10, and the total video length
is 10,000. We change the deadline to check the changing trend
of the six different replacement policies. As shown in Fig. 4(d),
among the six replacement policies, BVCV is always the one with
the longest successfully delivered video length, along with the
growth of deadline. Moreover, along with the growth of deadline,
all the six replacement policies achieve the higher delivery per-
formances for the required video length. This is because a longer
deadline leads to the more chances to upload the videos.

In conclusion, BVCV proposed in this paper always achieves
the highest successfully delivered video length, compared with
the other five different replacement policies in the situation of
ordered generated videos.

5.3.2. Simulation under the randomly generated videos
In this subsection, we consider the situation of randomly gen-

erating videos, which means the order of videos to access a user’s
cache is totally random. We also mainly consider four factors
including: expected video interval, budget, video length, deadline.
We fix three factors, and change one factor, to see the changing
curve of the totally uploaded video length and also compare it
with the previous situation.

The simulation settings for the situation of randomly gener-
ated videos is almost the same as that of the situation in the
ordered generated videos. However, the simulation results are
not the same. For example, as shown in Fig. 5(a), the curves
for the six different replacement policies are similar to that of
Fig. 4(a), and BVCV always achieves the highest successfully deliv-
ered video length. While the order of the other five replacement
policies is different from that in Fig. 4(a). In Fig. 4(a), the delivery
performances of FIFO and LIFO are obviously lower than that of
RANDOM. After analysis, this is reasonable because in ordered
generated video sequence, the users in different areas may drop
the same video segment in FIFO and LIFO when the caches are
overflown. In other words, the initial generated video segments in
different users’ caches are the same. Hence, when their caches are
overflown, they will drop the same video segment. While RAN-
DOM randomly drops video segments when the cache overflows,
different users may drop different video segments. So, the total
successfully uploaded video length in FIFO and LIFO is lower than

that of RANDOM. However, in Fig. 5(a), the situation changes as
the video segments are randomly generated for different users,
then, FIFO, LIFO and RANDOM actually achieve a similar delivery
performance because they almost have no difference in manag-
ing the video segments of their caches. Therefore, as shown in
Fig. 5(a), the performances for FIFO, LIFO and RANDOM are very
similar.

Moreover, we also test the delivery performances for the six
replacement policies with different budgets, video lengths and
also deadlines. The simulation results show that the variation
trends for the six different replacement policies are almost same
as that in Fig. 4(a). Specifically, the successfully delivered video
length also decreases along with the growth of expected genera-
tion interval. Also, the successfully delivered video length always
rises along with the growth of caching budget. And it increases
along with the increasing of video length and deadline. All the
above phenomena are in line with common logic and also make
sense.

5.3.3. Simulation for the approximate ratio
In the third part of this section, we focus on testing the tight

bound of BVCV. Similar to the previous situation, four factors (ex-
pected video generation interval, budget, total video length and
also deadline) are considered to influence the final performance
of proposed replacement policy. Hence, we test the approximate
ratio between BVCV and the optimal solution along with the
changes of expected video generation interval, budget, total video
length and deadline.

To verify the accuracy of the inferred bound for the proposed
BVCV-tight bound, we test all the delivery performances of our
policy and the optimal solution. And we also calculate the ap-
proximate ratio of our policy to the optimal solution. The results
are plotted in Fig. 6, where we find that, along with the growths
of the four factors, the approximate ratio of BVCV-tight bound
is always larger than 0.66 except the situation that the budget
is lower than 550. In the simulation settings, the video segment
length can be obtained ranging from 200 to 400 as a random
selected way. Hence, when the budget is lower than 550, the
expected number of cached video segments is less than 3. Let us
look back to Algorithm 3 and Theorem 3, Algorithm 3 achieves an
approximate ratio of 1 − 1

e to the optimal solution when k ≥ 3.
Hence, the simulation results match the theoretical results. The
approximate ratio of BVCV-tight bound to the optimal solution is
actually larger than 1− 1

e when k ≥ 3.

10 E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13

Fig. 7. The performance changing process along with the growth of different conditions under the ordered generated videos in Buffalo/phonelab-wifi dataset.

Fig. 8. The performance changing process along with the growth of different conditions under the randomly generated videos in Buffalo/phonelab-wifi dataset.

5.4. Simulation results under Buffalo-wifi

In order to further prove the feasibility of the proposed BVCV
replacement policy in mobile video crowdsensing, we conduct
simulations under the real-world dataset: Buffalo/phonelab-wifi.

5.4.1. Simulation under the ordered generated videos
For the first part in Buffalo/phonelab-wifi dataset, the sim-

ulation settings are the same with that of StudentLife Dataset.
For the first group simulation, we set the budget as 850, the
video length is 10,000, and the deadline is 1000. We change the
expected generation interval to see the changing curve of deliv-
ery performance. As shown in Fig. 7(a), six video replacement
policies are tested along with the growth of expected generation
intervals. Obviously, along with the growth of x-axis, the suc-
cessfully delivered video length also appears to be a downtrend.
This makes sense because a longer generation interval leads to
the less chances to upload the video segments, hence the total
successfully delivered video length becomes shorter. Most im-
portantly, along with the growth of generation interval, BVCV
always achieves the highest successfully delivered video length,
compared with the other replacement policies.

Secondly, in a similar way, we set the expected generation
interval for the videos as 10, the video length is set as 10,000,
and the deadline is still 1000, we change the budget to see the
changing curve of successfully delivered video length. As shown
in Fig. 7(b), six video replacement policies are tested along with
the growth of budget. Similarly, along with the growth of x-axis,
the successfully delivered video length increases. This is because
a larger budget results in a more powerful caching ability, which
leads to a longer successfully delivered video length. To sum
up, BVCV still achieves the longest successfully delivered video
length, compared with the other replacement policies.

Thirdly, the budget, expected generation interval and deadline
are set as 850, 10 and 1000, respectively. We change the video
length to see the changing curve of successfully delivered video
length. As shown in Fig. 7(c), along with the growth of x-axis,
the successfully delivered video length increases. This is because
a longer video length results in a larger expected successfully
delivered video length.

Finally, we set the budget as 850, and set the expected gener-
ation interval for the videos as 10, and the total video length is
10,000. As shown in Fig. 7(d), among the six replacement policies,
BVCV is always the one with the highest value for successfully
delivered video length, along with the growth of deadline.

5.4.2. Simulation under the randomly generated videos
In this subsection, we focus on the Buffalo/phonelab-wifi

dataset. We still mainly consider four factors including: expected
video generation interval, budget, video length, deadline. While at
this time, we focus on the situation in the randomly generation
videos as shown in Fig. 8. It is worth noting that, as shown in
Fig. 8(d), when the deadline is 500 time units, the successfully
delivered video length has reached more than 9400. And when
the deadline is getting larger, the successfully delivered video
length will not increase any more. This is mainly because in
the randomly generated videos condition, the users in different
locations will upload all kinds of videos, so the successfully
delivered video length could be achieved in a short time. We omit
the detailed descriptions for the simulation results because the
results are similar to that of Fig. 5.

5.4.3. Approximate ratio
In the third part, we focus on proving that the tight bound

of BVCV in the Buffalo/phonelab-wifi dataset could be achieved.
We attempt to test the performance approximate ratio between
BVCV and the optimal solution along with the changes of ex-
pected video generation interval, budget, total video length and
deadline. The results are plotted in Fig. 9, where we find that,
the performance of BVCV-tight bound could be bounded by 1− 1

e
compared with the optimal solution.

6. Conclusion

In this paper, we propose a budgeted video replacement policy
(BVCV) for mobile video crowdsensing. BVCV first decides the
increased value of a video segment by considering the caching
situations and video segment’s natural attributes. Then, we prove
that the video caching problem could be regarded as a budgeted
maximum coverage problem, which is at least NP-hard. Next, we
propose three greedy algorithms to solve the NP-hard problem:
BVCV, BVCV-loose bound, BVCV-tight bound, which are ordered
by the value of lowest bound. And we prove that the approximate
ratio of the BVCV-tight could be enhanced to 1 − 1

e . Moreover,
we give the strict proof about the approximate ratio. Finally, our
experiments with the real mobility datasets (StudentLife dataset,
Buffalo/phonelab-wifi dataset) show that, the proposed budgeted
video replacement policy achieves a larger length result of suc-
cessfully delivered nonoverlapping videos, compared with the
other general replacement policies.

E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13 11

Fig. 9. The approximate ratio performance of BVCV-tight bound to the optimal solution in Buffalo/phonelab-wifi dataset.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China under Grant Nos. 61772230, 61972450 and
61702215, Changchun Science and Technology Development
Project No. 18DY005. China Postdoctoral Science Foundation No.
2017M611322. This work is also supported in part by NSF, USA
grants CNS 1629746, CNS 1564128, CNS 1449860, CNS 1461932,
CNS 1460971, and CNS 1439672.

Appendix A. Proof of Theorem 3

To prove Theorem 2, we need first give Theorems 4 and 5 to
support the proof process. Then, we give the following symbols:
Mopt denotes the optimal solution of the budgeted video caching
problem. In Algorithm 2, if a video segment is selected to add
to M (repeating this process), we call the process a round. Then,
after i rounds, the formulated video segment set is called Mi.
Without loss of generality, we reorder the formulated set so that
Di is the ith set added to Mi. And we assume that, the Dj+1 is the
first set from Mopt selected by Algorithm 2, while is not added to
Mi, because there is no enough caching space. Then, for Mi, i =
1, 2, . . . , j, Dj+1 is the first set, which is not added into the final
solution. The following theorem is achieved.

Theorem 4. After each round i, i = 1, 2, . . . , j + 1, the following
equation holds:

V (Mi)− V (Mi−1) ≥
bi
B
(V (Mopt)− V (Mi−1))

Proof. First of all, we consider all the video segments that have
not been added to the final solution after (i−1)th round. For
each video segment in Mopt\Mi−1, the value of its increased value
divided by its caching space is at most V ′i

bi
. This is because Di is

selected to be the highest value of V ′i
bi

in the remaining video
segments. Then, after i−1 rounds, the total remaining caching
space is no more than B, the total value of remaining video
segments covered by Mopt − Mi−1, while not covered by Mi−1 is
no more than B V ′i

bi
. Therefore, we have,

V (Mopt)− V (Mi−1) ≤ B
V ′i
bi

(A.1)

As described for V ′i , it could be represented by V (Mopt) −
V (Mi−1). Then in the above equation, we replace V ′i with V (Mopt)−
V (Mi−1), and multiplying both sides by bi

B . Theorem 4 is
achieved. □

Theorem 5. After each round i, i = 1, 2, . . . , j + 1, the following
equation holds:

V (Mi) ≥ V (Mopt)[1−
i∏

k=1

(1−
bi
B
)]

Proof. In order to prove the correctness of the above equation.
We consider the rounds i = 1, 2, . . . , j + 1. When i = 1, then
V (M1) = V ′1, and we attempt to prove that V (M1) ≥

b1
B Mopt . This

is not difficult to achieve because V (M1)
b1

is maximum among all
the alternative video segment sets. And the total caching space is
B, so the total value of optimal solution is necessarily less than
V (M1)
b1

B. With the conclusion that V (M1) ≥
b1
B Mopt , we prove that

Theorem 5 holds for rounds j = 1, 2 · · · , i − 1, then it will also
hold when j = i through induction. The following equation gives
the detailed proof procedure.

V (Mi) = V (Mi−1)+ [V (Mi)− V (Mi−1)]

≥ V (Mi−1)+
bi
B
(V (Mopt)− V (Mi−1))

= (1−
bi
B
)V (Mi−1)+

bi
B
V (Mopt)

≥ (1−
bi
B
)(1−

i−1∏
k=1

(1−
bk
B
))V (Mopt)+

bi
B
V (Mopt)

= (1−
i∏

k=1

(1−
bk
B
))V (Mopt) (A.2)

In the above proving process, the first inequation is based on
Theorem 4. And the second one is based on induction. □

Based on the above results, now we attempt to prove the
correctness of Theorem 2. According to the results of Theorem 5,
we have the following derivation process.

V (Mj+1) ≥ (1−
j+1∏
k=1

(1−
bk
B
))V (Mopt)

≥ (1− (1−
1

j+ 1
)j+1)V (Mopt)

≥ (1−
1
e
)V (Mopt) (A.3)

The second inequality of the above equation is due to the
following reasons. There are n variables: a1, a2, . . . , an, and the
sum of them is shown as follows: a1 + a2 + · · · + an = C . If and
only if a1 = a2 = · · · = an = C

n , then a1a2 · · · an achieve the
maximum value.

Finally, V (Mj+1) is equal to V (Mj) + V ′j+1. Then we consider
the equation V (Mj)+ V (M1), where V (M1) is the maximum value
among all the alternative single video segment sets. Obviously,
V (M1) > V ′j+1, hence we have the following equation.

V (Mj)+ V (M1) ≥ V (Mj+1) ≥ (1−
1
e
)V (Mopt) (A.4)

12 E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13

The solution for Algorithm 2 is achieved by the higher value
between V (Mj) and V (M1). Hence the value of Algorithm 2’s
solution is at least 1

2 (1−
1
e)V (Mopt). Theorem 2 holds.

Appendix B. Proof of Theorem 4

First of all, Algorithm 3 adopts enumeration method to address
the NP-hard problem. Obviously, we could assume that |Mopt | >

k. Otherwise, Algorithm 3 must find the optimal solution.
Then, we first order the optimal solution Mopt as the following

way: the first k video segments are the ones with the highest total
value. We use Mk to express the first k sets in this order, and it is
not difficult to find that Mk will be also considered in Algorithm
2. Moreover, M ′ represents the further video segments added to
Mk. After j rounds, the video segment set Mj consists of two parts:
M ′ and Mk. Then we have V (Mj) = V (Mk)+ V (M ′).

Here we could divide the Mopt into the following two parts:
the first one is Mk, and the other part from Mk to Mopt could be
regarded as an application of Algorithm 2. Then we consider the
Mopt\Mk as the rest optimal solution. We focus on the process
from Mk to Mopt , the greedy process ceaselessly adds new video
segments toMk, until the first video segment fromMopt\Mk, while
not added to M ′ due to the limited budget B. Similar to the
process of Algorithm 2, when the round is j + 1, the following
equation could be achieved through Eq. (A.4).

V (M ′)+ V (D′j+1) ≥ (1−
1
e
)V (Mopt\Mk) (B.1)

Then, because the k sets in Mk are ordered, the value of the
set in Mk is at least V (D′j+1). Otherwise, it violates to the ordering
assumption. Hence, we have:

V (Mk) ≥ kV (D′j+1). (B.2)

Now we get the following equation, Theorem 3 holds.

V (Mj) = V (Mk)+ V (M ′)

≥ V (Mk)+ (1−
1
e
)V (Mopt\Mk)− V (D′j+1)

≥ V (Mk)+ (1−
1
e
)V (Mopt\Mk)−

V (Mk)
k

≥ (1−
1
k
)V (Mk)+ (1−

1
e
)V (Mopt)

≥ (1−
1
e
)V (Mopt), k ≥ 3 (B.3)

References

[1] Luigi Atzori, Roberto Girau, Salvatore Martis, Virginia Pilloni, Marco Uras
DIEE, A SIoT-aware approach to the resource management issue in mobile
crowdsensing, in: Proc. of IEEE ICIN, 2017.

[2] Aruna Balasubramanian, Brian Neil Levine, Arun Venkataramani, DTN
routing as a resource allocation problem, in: Proc. of ACM SIGCOMM, 2007.

[3] Georgios Chatzimilioudis, Andreas Konstantinidis, Christos Laoudias,
Crowdsourcing with smartphones, IEEE Internet Comput. 16 (5) (2012)
36–44.

[4] Huihui Chen, Bin Guo, Zhiwen Yu, Qi Han, Toward real-time and cooper-
ative mobile visual sensing and sharing, in: Proc. of IEEE INFOCOM, 2016,
pp. 1–9.

[5] Huihui Chen, Bin Guo, Zhiwen Yu, Qi Han, A generic framework for
constraint-driven data selection in mobile crowd photographing, IEEE
Internet Things J. 4 (1) (2017) 284–296.

[6] Jiang Dong, Yu Xiao, Marius Noreikis, Zhonghong Ou, Antti Yla-Jaaski,
iMoon: Using smartphones for image-based indoor navigation, in: Proc.
of ACM SenSys, 2015, pp. 85–97.

[7] Rong Du, Carlo Fischione, Ming Xiao, Flowing with the water: On optimal
monitoring of water distribution networks by mobile sensors, in: Proc. of
IEEE INFOCOM, 2016.

[8] A. Elwhishi, P. Ho, K. Naik, B. Shihada, A novel message scheduling
framework for delay tolerant networks routing, IEEE Trans. Parallel Distrib.
Syst. 24 (5) (2013) 871–880.

[9] Raghu K. Ganti, Fan Ye, Hui Lei, Mobile crowdsensing: Current
state and future challenges, IEEE Commun. Mag. 49 (11) (2011)
32–39.

[10] Yi Gao, Wei Dong, Kai Guo, Xue Liu, Yuan Chen, Xiaojin Liu, Jiajun Bu,
Chun Chen, Mosaic: A low-cost mobile sensing system for urban air quality
monitoring, in: Proc. of IEEE INFOCOM, 2016.

[11] Guoju Gao, Mingjun Xiao, Jie Wu, Liusheng Huang, Chang Hu, Truthful in-
centive mechanism for nondeterministic crowdsensing with vehicles, IEEE
Trans. Mob. Comput. (2018) http://dx.doi.org/10.1109/TMC.2018.2829506.

[12] Bin Guo, Qi Han, Huihui Chen, Longfei Shangguan, Zimu Zhou, Zhiwen Yu,
The emergence of visual crowdsensing: Challenges and opportunities, IEEE
Commun. Surv. Tutor. PP (99) (2017) 1–18.

[13] Hua-Jun Hong, Ching-Ling Fan, Yen-Chen Lin, Cheng-Hsin Hsu, Optimizing
cloud-based video crowdsensing, IEEE Internet Things J. 3 (3) (2016)
299–313.

[14] Yidan Hu, Guojun Dai, Jin Fan, Yifan Wu, Hua Zhang, Blueaer: A fine-
grained urban PM2.5 3D monitoring system using mobile sensing, in: Proc.
of IEEE INFOCOM, 2016.

[15] Shaohan Hu, Shen Li, Shuochao Yao, Lu Su, Ramesh Govindan, Reginald
Hobbs, Tarek F. Abdelzaher, On exploiting logical dependencies for mini-
mizing additive cost metrics in resource-limited crowdsensing, in: Proc. of
IEEE ICDCS, 2015.

[16] Prem Prakash Jayaraman, Joao Bartolo Gomes, Hai-Long Nguyen,
Zahraa Said Abdallah, Shonali Krishnaswamy, Arkady Zaslavsky, Scalable
energy-efficient distributed data analytics for crowdsensing applications
in mobile environments, IEEE Trans. Compt. Soc. Syst. 2 (3) (2015)
109–123.

[17] Zhenyu Ju, Chuanhe Huang, Yanjiao Chen, Lin Ma, A truthful auction
mechanism for resource provisioning in mobile crowdsensing, in: Proc.
of IEEE IPCCC, 2017.

[18] Hernisa Kacorri, Kaoru Shinkawa, Shin Saito, Introducing game elements
in crowdsourced video captioning by non-expert, in: Proc. of ACM W4A,
2014.

[19] Samir Khuller, Anna Moss, Joseph (Seffi) Naor, The budgeted maximum
coverage problem, Inform. Process. Lett. 70 (1) (1999) 39–45.

[20] Teng Li, Huan Chang, Meng Wang, Bingbing Ni, Richang Hong, Crowded
scene analysis: A survey, IEEE Trans. Circuits Syst. Video Technol. 25 (3)
(2015) 367–386.

[21] Qing Liu, Tie Luo, Ruiming Tang, Stéphane Bressan, An efficient and truthful
pricing mechanism for team formation in crowdsourcing markets, in: Proc.
of IEEE ICC, 2015.

[22] Jinwei Liu, Haiying Shen, Xiang Zhang, A survey of mobile crowdsensing
techniques: A critical component for the internet of things, in: Proc. of
IEEE ICCCN, 2016.

[23] Francesco Restuccia, Sajal K. Das, Jamie Payton, Incentive mechanisms for
participatory sensing: Survey and research challenges, ACM Trans. Sensor
Netw. (2016).

[24] Jinghao Shi, Chunming Qiao, Dimitrios Koutsonikolas, Geoffrey Challen,
CRAWDAD dataset buffalo/phonelab wifi (v. 2016 03 09), 2016,
Downloaded from https://crawdad.org/buffalo/phonelabwifi/20160309.

[25] K. Tuite, N. Snavely, D. y. Hsiao, N. Tabing, Z. Popovic, Photocity: training
experts at large-scale image acquisition through a competitive game, in:
Proc. of ACM CHI, 2011, pp. 1383–1392.

[26] M. Y. S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, T. Huang, Pho-
tonet: a similarity-aware picture delivery service for situation awareness,
in: Proc. of IEEE RTSS, 2011, pp. 317–226.

[27] Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Studentlife: Assessing
mental health, academic performance and behavioral trends of college stu-
dents using smartphones, in: Proc. of the ACM Conference on Ubiquitous
Computing, 2014.

[28] Qianru Wang, Bin Guo, Leye Wang, Tong Xin, He Du, Huihui Chen, Zhiwen
Yu, Crowdwatch: Dynamic sidewalk obstacle detection using mobile crowd
sensing, IEEE Internet Things J. PP (99) (2017) 1–13.

[29] Shao-Yu Wu, Ruck Thawonmas, Kuan-Ta Chen, Video summarization via
crowdsourcing, in: Proc. of ACM CHI, 2011.

[30] Yibo Wu, Yi Wang, Wenjie Hu, Guohong Cao, Smartphoto: A resource-
aware crowdsourcing approach for image sensing with smartphones, IEEE
Trans. Mob. Comput. 15 (5) (2016) 1249–1263.

[31] Han Xu, Zheng Yang, Zimu Zhou, Longfei Shangguanand Ke Yi, Yunhao
Liu, Enhancing wifi-based localization with visual clues, in: Proc. of ACM
UBICOMP, 2015, pp. 963–974.

http://refhub.elsevier.com/S0743-7315(18)30595-1/sb3
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb3
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb3
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb3
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb3
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb5
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb5
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb5
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb5
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb5
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb8
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb8
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb8
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb8
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb8
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb9
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb9
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb9
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb9
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb9
http://dx.doi.org/10.1109/TMC.2018.2829506
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb12
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb12
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb12
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb12
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb12
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb13
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb13
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb13
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb13
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb13
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb16
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb19
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb19
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb19
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb20
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb20
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb20
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb20
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb20
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb23
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb23
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb23
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb23
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb23
https://crawdad.org/buffalo/phonelabwifi/20160309
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb28
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb28
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb28
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb28
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb28
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb30
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb30
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb30
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb30
http://refhub.elsevier.com/S0743-7315(18)30595-1/sb30

E. Wang, Y. Yang, J. Wu et al. / Journal of Parallel and Distributed Computing 136 (2020) 1–13 13

En Wang received his B.E. degree in software en-
gineering from Jilin University, Changchun, in 2011,
his M.E. degree in computer science and technology
from Jilin University, Changchun, in 2013, and his
Ph.D. in computer science and technology from Jilin
University, Changchun, in 2016. He is currently an
associate professor in the Department of Computer
Science and Technology at Jilin University, Changchun.
He is also a visiting scholar in the Department of Com-
puter and Information Sciences at Temple University
in Philadelphia. His current research focuses on the

efficient utilization of network resources, scheduling and drop strategy in terms
of buffer-management, energy-efficient communication between human-carried
devices, and mobile crowdsensing.

Yongjian Yang received his B.E. degree in automati-
zation from Jilin University of Technology, Changchun,
Jilin, China, in 1983; his M.E. degree in computer
communication from Beijing University of Post and
Telecommunications, Beijing, China, in 1991; and his
Ph.D. in software and theory of computer from Jilin
University, Changchun, Jilin, China, in 2005. He is
currently a professor and a Ph.D. supervisor at Jilin
University, the Vice Dean of the Software College of
Jilin University, Director of Key lab under the Min-
istry of Information Industry, Standing Director of the

Communication Academy, and a member of the Computer Science Academy
of Jilin Province. His research interests include: network intelligence man-
agement, wireless mobile communication and services, and wireless mobile
communication.

Jie Wu is the Associate Vice Provost for International
Affairs at Temple University. He also serves as Director
of the Center for Networked Computing and Laura H.
Carnell professor in the Department of Computer and
Information Sciences. Prior to joining Temple Univer-
sity, he was a program director at the National Science
Foundation and was a distinguished professor at Florida
Atlantic University. His current research interests in-
clude mobile computing and wireless networks, routing
protocols, cloud and green computing, network trust
and security, and social network applications. Dr. Wu

regularly publishes in scholarly journals, conference proceedings, and books.
He serves on several editorial boards, including IEEE Transactions on Service
Computing and the Journal of Parallel and Distributed Computing. Dr. Wu was
general cochair/chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013,
and ACM MobiHoc 2014, as well as program co-chair for IEEE INFOCOM 2011
and CCF CNCC 2013. He was an IEEE Computer Society Distinguished Visitor,
ACM Distinguished Speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker and a
Fellow of the IEEE. He is the recipient of the 2011 China Computer Federation
(CCF) Overseas Outstanding Achievement Award.

Kaihao Lou received his B.E.degree in Software En-
gineering from Jilin University, Changchun, Jilin,China,
in 2017. He is currently a postgraduate student in
Computer System Architecture from Jilin University,
Changchun, Jilin, China. His current research focuses on
Mobile Crowdsensing.

Wenbin Liu received his B.S. degree in Physics from
Jilin University, Changchun, China in 2012; and M.E.
degree in Department of Software from Jilin University,
Changchun in 2016. He is currently a Ph.D. candidate
in the Department of Computer Science and Technol-
ogy, Jilin University, Changchun. His current research
focuses on the Mobile CrowdSensing.

Yuanbo Xu received his B.Sc. degree and M.S. degree in
the College of Computer Science and Technology, Jilin
University, Changchun, China. He is pursuing his Ph.D.
degree in Key Laboratory of Symbol Computation and
Knowledge Engineering of the Ministry of Education,
Jilin University, Changchun, China. He is also a visiting
scholar at the Rutgers, the State University of New Jer-
sey. His research interests include applications of data
mining, recommender system, and mobile computing.

	Budgeted video replacement policy in mobile crowdsensing
	Introduction
	Related work
	Visual crowdsensing
	Resources management

	Problem descriptions
	Network model
	Mobility pattern
	Caching scheme
	Main thoughts

	Budgeted video replacement policy
	Optimization problem
	NP-hard proof
	Algorithms and approximate ratio

	Performance evaluation
	Evaluation settings
	Algorithms and performances in comparison
	Simulation results under studentlife dataset
	Simulation under the ordered generated videos
	Simulation under the randomly generated videos
	Simulation for the approximate ratio

	Simulation results under Buffalo-wifi
	Simulation under the ordered generated videos
	Simulation under the randomly generated videos
	Approximate ratio

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proof of Theorem 3
	Appendix B. Proof of Theorem 4
	References

