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Abstract. Crowdsensing is a new activity form gathering a suitable
set of users to collectively finish a sensing task. It has attracted great
attention because it provides an easy-access sensing scheme and reduces
the sensing cost compared with the traditional sensing method. Hence,
several crowdsensing platforms have emerged at the right moment, where
the requester can publish sensing tasks and the users compete for the
winners of the tasks. Thus, there is a multi-round game among users,
in which we consider a case that the users bid their available time for
the specific sensing tasks, and the purpose of a user is to obtain as
many tasks as possible within the available time budget. To this end,
we propose a Multi-round Bidding strategy based on Game theory for
Crowdsensing task (MBGC), where each user decides the bidding for the
specific task according to its trade-off between the expected number of
obtained tasks and remaining available time. Then, a user dynamically
decides the probabilities to bid different kinds of biddings in the different
rounds according to the Nash Equilibrium solution. We conduct extensive
simulations to simulate the game process for the crowdsensing tasks.
The results show that compared with other bidding strategies, MBGC
always achieves the largest number of obtained tasks with an identical
time budget.

Keywords: Crowdsensing · Bidding strategy · Game theory ·
Nash Equilibrium

1 Introduction

Recently, a noticeable phenomenon comes into our daily life: smartphones are
widely used by almost everyone. The used devices are smart and powerful enough
to sense the characteristics surrounding the environments, such as air quality,
temperature as well as traffic congestion. Thanks to this, a novel sensing way
called Mobile Crowdsensing (MCS) [1] has attracted a lot of attention because
it could gather the power of many hand-hold devices to finish a common task.
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For example, the collection of moving cars’ speeds could be used to draw a traffic
map [2], while reports about available seatings in all the restaurants could be
used to instruct the users to make smart dining choice [3].

By now, the works on MCS mainly focus on the following three aspects:
task allocation [4], user recruitment [5] and incentive mechanism [6]. It is not
difficult to find that, all the above works usually pay attention to the assignments
among users and tasks. However, almost all the works assume that either the
users prefer to assist in finishing the sensing tasks or they just play game with
the requester and not the other users. Actually, this assumption is not suitable
because a user may get a higher achievement (higher reward or lower cost) when
they do a good trade-off by taking the other users’ decisions into consideration.
Hence, the problems turn out to be the optimization or game theory problems.

Fig. 1. The multi-round bidding problem description for crowdsensing task. In different
bidding rounds, the users should determine the suitable bidding strategy according to
the remaining available time.

In this paper, we focus on a multi-round bidding game in MCS. Multi-round
means that there are many tasks that can be assigned to the users, and in each
round there is only one task to be allocated. Obviously, there may be multi tasks
to be allocated at the same time, while we assume that the tasks are independent
with each other, and each user could only apply for finishing one time at the
same time. Then, for each round the users compete to be the winner of the task.
The user with the largest bidding (paying the longest time to the task) could win
and get the reward. Generally speaking, people bid a price (money) for the task.
However, the total money budget is usually different for different users. Hence,
in this paper, we assume that they bid their available time quantum for the task
in each round. Obviously, a game exists in the multi-round bidding process. If
a user bids a long time quantum for a task, then it will have short remaining
available time for the upcoming tasks. At the same time, if a user bids a short
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time quantum for a task, then it will have a low chance to get the reward of this
task. Hence, we should decide a suitable bidding strategy in MCS.

The multi-round bidding problem is described in Fig. 1. There are many
users taking part in the bidding game. Also, there are some tasks assigned to
the different bidding rounds, each round has only one sensing task. Then the
users bid their available time quantum for each task. The task will select the
user with the largest bidding as the winner. The purpose of the user is to win as
many tasks as possible within the total available time budget in the multi-round
game.

The multi-round bidding game is challenging for the following reasons: (1) the
user could not know the bidding cases of the other users; (2) the bidding strategy
is a dynamic decision-making process, and a user may dynamically change the
strategy; (3) it is a game theory problem because there is an obvious trade-off
among users’ different choices. In order to overcome the above difficulties, we
propose a multi-round bidding strategy based on game theory in MCS (MBGC).
The main idea of MBGC is to find the Nash Equilibrium, which well solves the
trade-off between expected number of obtained tasks and remaining available
time. Then according to the Nash Equilibrium, we could dynamically decide the
suitable bidding in each round to maximize the total number of obtained tasks.

The main contributions of this paper are briefly summarized as follows:

– We find the Nash Equilibrium in the multi-round bidding game in MCS, and
under the condition that the user does not know the cases of other users’
biddings.

– We propose a multi-round bidding strategy based on Game Theory in mobile
crowdsensing (MBGC), where each user dynamically decides its suitable bid-
ding according to the trade-off between the winning probability and remaining
available time, in order to maximize the total reward within the available time
budget.

– We conduct extensive simulations based on the actual bidding games. The
results show that compared with other bidding strategies, MBGC achieves a
larger number of obtained tasks.

The remainder of this paper is organized as follows: The problem description
and formulation are introduced in Sect. 2. Section 3 analyzes the multi-round
bidding problem and introduces game theory in MCS. The detailed bidding
strategies are proposed in Sect. 4. In Sect. 5, we evaluate the performance of
MBGC through extensive simulations. We review the related work in Sect. 6.
We conclude the paper in Sect. 7.

2 Problem Description and Formulation

In this section, we first detailedly describe the problem to be addressed. Then
we translate the problem into mathematical expressions. Finally, the problem is
formulated as the game theory problem.
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2.1 Problem Description

We first consider the following crowdsensing environment, a task requester pub-
lishes a series of tasks at different time. Each task is to sense some data in the
specific area, hence it needs the users to spend time finishing the sensing tasks.
There is a group of users U = {u1, u2, · · · , un} participating in the crowdsensing
tasks. Then in each round, the users compete with each other to be the winner
and obtain the task. In this way, a multi-round bidding problem is formulated.
In other words, the users play a game with each other, they bid the available
time quantum for each task, and the process to decide a task winner is called a
round. We assume that, there is only one winner for each task.

Fig. 2. The multi-round bidding framework including one requester and multiple users.
Users should decide a bidding strategy in different bidding rounds in order to obtain
as many tasks as possible.

As shown in Fig. 2, there are four users and a task requester. The whole time
for completing all the sensing tasks is divided into several rounds, where each
task is scheduled in only one round, and also one winner will be selected among
the four users. In each round, the requester publishes a sensing task, and all
the users bid for the task. The user with the largest bid could win the game.
If there are two or more users bidding the same time quantum, which is the
longest among all the biddings, then the requester will randomly select a user as
the winner. The procedure continues until all the rounds are gone. In this paper,
we assume that the total available time budget for all the users is uniform. The
main notations are illustrated in Table 1.

2.2 Problem Formulation

We pay attention to the multi-round bidding strategy in MCS as previously
described. In each round, the users could bid different kinds of biddings, we
assume that there are m kinds of biddings: bi, (m ≥ i ≥ 1). So if a user bids a
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Fig. 3. The changing processes of the available time budget and the number of winning
rounds for the four different bidding strategies.

time quantum for a task, then its available time budget is reduced. It is worth
noting that the total available time budget for all the users is B. Obviously, all
the users prefer to reasonably schedule their bidding strategy in order to win
as many rounds as possible. The bidding strategy could be easily expressed as
follows: for the player, how to divide his total available time budget into all the
rounds in order to win as many as possible. It is not difficult to find that, there
is a game among users, i.e., bidding a long time quantum when the others bid
short ones is obviously a good choice. However, the user still takes the risk that
the others may also bid a long time quantum.

We randomly select a user as the player, who will adopt the bidding strategy
proposed in this paper. And the other ones are regarded as the competitors. In
order to make the player win as many rounds as possible, some naive solutions
could be easily proposed. For example, the first one is to always bid the shortest
time quantum for all the rounds. The second one is to always bid the longest time
quantum, in which the player may win many rounds in the beginning rounds and
will not win any more in the last rounds. Hence, it is obviously not an optimal
solution. The third one is to always bid the average time quantum (total time
divided by the number of rounds). As shown in Fig. 3, neither constantly bid-
ding max/min time quantum nor constantly bidding average time quantum can
achieve the best winning reward. Based on game theory, we could dynamically
schedule the biddings in different rounds more efficiently (game theory method
in Fig. 3). In this paper, we propose a multi-round bidding strategy based on the
game theory in mobile crowdsensing, through balancing the trade-off between
winning probability and remaining available time.

3 Multi-round Bidding Game

3.1 Bidding Time Quantum

Here, bidding time quantum means the time that the user would like to take for
finishing the sensing task. Obviously, a longer bidding time quantum leads to a
higher probability to win in this round, while also leading to a shorter available
time in the upcoming rounds. Suppose that, for the player, the total available
time budget is B, and there are totally h rounds. For each round k, the bidding
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Table 1. Main notations used throughout the paper

Symbol Meaning

N Total number of users

bi Different kinds of biddings, which is the arithmetic
progression: (b1, b2, · · · , bm)

pi The probability for a user to bid bi

Pmax(bi) The probability that bi is the maximal bidding among all
the remaining users

B The total available time budget

Pwin The winning probability of bidding the maximum time

γ Euler’s constant

Br The remaining available time

si (bi − bm)/Br, consumption ratio when bidding bi

s (b1 − bm)/Br, consumption ratio when bidding b1

u(bi) The benefit for bidding bi

time quantum is b(k), which is selected from a series of bi, m ≥ i ≥ 1. Then we
have B =

∑h
k=1 b(k).

If a user chooses to bid a long time quantum in a round, then the available
time will be consumed a lot. In contrast, if a user chooses to bid a short time
quantum, the available time will not be influenced that much. We attempt to
measure the different influences when the user bids different kinds of biddings.
We use si to define the time consumption when a user bids bi, the set bi are
arithmetic progression and bm is the shortest bidding time quantum. Let Br

be the remaining available time, then we have si = bi−bm
Br

, i = 1, 2, · · · ,m.
According to the value of Br, the above expression could be represented as the
following two cases:

si =

{
bi−bm
Br

Br ≥ bi − bm

1 Br <bi − bm
(1)

3.2 Winning Probability

In this section, we try to compute the winning probability for a user. It is not
difficult to find that, a user could win only when his bidding time quantum is
the longest among all the users (may be the same length as others). If a user
bids the longest time quantum b1, and all the other users bid the shorter time
quantum than him, then he should win 100%. If there are k users bidding b1
in the others, then the winning probability should be 1

k+1 . Hence, the following
two questions are important for measuring the winning probability.

Here, we use symbol Pmax(bi) to present the probability that bi is the maximal
bidding among all the remaining users. Obviously, we have

∑n
i=1 Pmax(bi) = 1.
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Then, the probability (pi) of bidding bi in a round also influences the result of
winning probability. Then we have

∑n
i=1 pi = 1. In the following sections, the

above two terms are used to calculate the winning probability.

3.3 Game Theory

Game theory studies the interactions among players, who take actions to influ-
ence each other, and usually have conflicting or common benefits. Recently, game
theory is widely used in balancing the resources sharing among multiple mobile
devices, which are called players. These players decide to do the actions by them-
selves and compete for non-shared resources [7]. In this paper, the purpose of a
player is to win as many rounds as possible during the multiple rounds.

Consider the following game process, an action done by a player ni ∈ N
in round ei ∈ E is called a strategy gi ∈ G. In this paper, we assume that
the strategy set is the same for all users, and selected from a series of bi. Then
G = G1 × G2 × · · · × GN is the set of the players’ strategies. For user ni,
the payoff of action gi is denoted by ui ∈ U which is the expected payoff after
considering the action done by ni as well as the actions of the other players.
Hence, a game is determined by quadruple form 〈N,E,G,U〉.

Obviously, the above game is a symmetric finite game because the strategy
set G and round set E for all the users are the same. Moreover, the number of
rounds and the number of their strategies are finite. These characteristics are
very important in the following discussions.

Dominant Strategies and Nash Equilibrium. Nash Equilibrium (NE) is
an important concept in game theory, each user chooses a strategy to maximize
its expected individual payoff, and for all the users they form an equilibrium
state, where all the users do not want to change its strategy because they could
achieve the maximum expected payoff. In other words, in an NE state, if a user
changes its action, it will achieve a lower expected payoff. When entering an NE
state, the strategy adopted by a user is called a dominant strategy. A dominant
strategy equilibrium is a strategy set including all the dominant strategies of all
players. Hence, NE is commonly a classical state, where a player does not have
the incentive to change its strategy so that the other players also will not change
theirs.

Pure and Mixed Strategies. A pure strategy means that a user clearly
decides its action, which includes ‘do’ or ‘not do’, while a mixed strategy means
that a user could make a probabilistic decision about the actions. Actually, the
main difference between pure strategy and mixed strategy is that pure strategies
assign a probability of 1 to a specific action and probability of 0 to the remaining
of the available actions. In the following parts, NE in pure (mixed) strategy is
called pure (mixed) strategy NE.
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Existence of Equilibrium. In order to prove that the multi-round bidding
problem proposed in this paper has a Nash Equilibrium, we give the following
theorems [8,9]:

Theorem 1 (Nash Theorem). Any finite game has either a pure or a mixed
strategy NE.

Theorem 2 (Nash Theorem for symmetric games). A finite symmetric
game has a symmetric mixed strategy NE.

Table 2. Payoffs of ni in the 3-strategies bidding game

N users Longest b1 = 3
with Pmax(b1)

Longest b2 = 2
with Pmax(b2)

Longest b3 = 1
with Pmax(b3)

ni bids b1 (1 − s) · Pwin (1 − s) · 1 (1 − s) · 1
ni bids b2 0 (1 − 1

2
s) · Pwin (1 − 1

2
s) · 1

ni bids b3 0 0 1
N

4 Multi-round Bidding Strategy Based on Game Theory

As previously stated, the game in this paper is a non-cooperative, multi-round,
multi-strategy, symmetric game.

The N -Player Three-Strategy Bidding Game. Here, ‘multi’ means the
number is larger than two or at least three. Hence we consider a simple case,
where N users play the bidding game with the three strategies to be selected.
In this paper, we do not consider the simplest case: two strategies, because the
similar case has been discussed in the previous research work [10].

Consider the N -player three-strategy bidding game. Table 2 shows the pay-
offs of the users considering both the improvement on winning probability and
also the consumption in remaining available time. si as shown in Eq. 1, is the
normalized time consumption when the user bids bi. As shown in Table 2, when
the player decides to bid b1 (the longest time quantum), then the following three
cases are considered: (1) the longest bidding time quantum of the other users is
b1; (2) the longest bidding time quantum of the other users is b2; (3) the longest
bidding time quantum of the other users is b3. For case 1, the time consump-
tion is s = b1−bm

Br
, while the winning probability is Pwin, which represents the

expected probability of obtaining the task when the user bids the longest time
quantum. However, for cases 2 and 3, the time consumptions are still s, while
the chance of winning is 1, because the player bidding b1 must win the task.

Next, when the user bids b2, there are also the same three cases being con-
sidered. For case 1, because the longest bid of the others is b1, hence the player
bidding b2 has no chance to win, so the probability is 0. For case 2, the time
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consumption is 1
2s because s2 = b2−b3

b1−b3
s and the set bi forms arithmetic progres-

sion, hence s2 = 1
2s. We omit the descriptions for bidding b3, as the procedure

is similar to the above cases. Then we focus on whether there is a pure or mixed
strategy NE for the above N player three-strategy game.

Table 3. Payoffs of ni in the multi-strategy bidding game

N users Longest

b1 = 6 with

Pmax(b1)

Longest

b2 = 5 with

Pmax(b2)

Longest

b3 = 4 with

Pmax(b3)

Longest

b4 = 3 with

Pmax(b4)

Longest

b5 = 2 with

Pmax(b5)

Longest

b6 = 1 with

Pmax(b6)

ni bids b1 (1 − s) · Pwin (1 − s) · 1 (1 − s) · 1 (1 − s) · 1 (1 − s) · 1 (1 − s) · 1
ni bids b2 0 (1− 4

5 s)·Pwin (1 − 4
5 s) · 1 (1 − 4

5 s) · 1 (1 − 4
5 s) · 1 (1 − 4

5 s) · 1
ni bids b3 0 0 (1− 3

5 s)·Pwin (1 − 3
5 s) · 1 (1 − 3

5 s) · 1 (1 − 3
5 s) · 1

ni bids b4 0 0 0 (1− 2
5 s)·Pwin (1 − 2

5 s) · 1 (1 − 2
5 s) · 1

ni bids b5 0 0 0 0 (1− 1
5 s)·Pwin (1 − 1

5 s) · 1
ni bids b6 0 0 0 0 0 1

5

Theorem 3. There is no pure strategy NE for the above N -player three-strategy
bidding game.

Proof. As shown in Table 2, if there is a pure strategy NE for the N -player
three-strategy bidding game, then no matter in which case, the payoff to bid b1
is always higher or lower than that of bidding b2 or b3. However, this is not true
in Table 2. When the longest bidding time quantum for the others is b1, then the
player will bid b1 to achieve a higher payoff (1 − s)Pwin > 0. However, when the
longest bidding time quantum for the others is b3, then the player will bid b2 to
achieve a higher payoff (1 − 1

2s)1 > (1 − s)1. Hence, there is no pure strategy
NE for the above N -player three-strategy bidding game. Theorem 3 is proved.

Theorem 4. Mixed strategy NE exists for the N -player three-strategy bidding
game.

Proof. We assume that each user has a probability of pi to bid bi. And for
the above three cases, we use Pmax(bi) to present the probability that bi is the
maximal bidding among the remaining users. Then, we achieve the following
three equations:

Pmax(b1) =
N−1∑

k=1

(
N − 1

k

)

· p1
k · (1 − p1)N−1−k

= 1 − (1 − p1)N−1 (2)

Pmax(b2) = (1 − p1)N−1 − (1 − p1 − p2)N−1 (3)

Pmax(b3) = pN−1
3 (4)
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Then, the expected payoff of the player when it bids b1 is shown as follows:

u(b1)= (1−s)PwinPmax(b1)+(1−s)Pmax(b2)+(1−s)Pmax(b3) (5)

where Pwin is shown as follows:

Pwin =

∑N−1
k=1

1
k+1

N − 1
=

ln(N) + γ + 1
N − 1

, γ = 0.577215 (6)

Here k (N > k > 1) is the number of users bidding the longest time quantum
among all the other users, and γ is the Euler’s constant. We use property of nth
harmonic number1 to get the above equation. It is not difficult to find that,
Eq. 6 is still useful for calculating the Pwin in multi-user multi-round and multi-
strategy case, which is discussed in the following section.

Similarly, we could achieve u(b2) and u(b3). Combining u(b1) = u(b3) and
u(b2) = u(b3), we could get the solution of pi. So the mixed strategy NE actually
exists because we can get the solution of pi in the above equations, and pi satisfies
0 ≤ pi ≤ 1. The detail calculation process is shown in the N -player multi-round
multi-strategy case.

The N -Player Multi-round Multi-strategy Game. The game is that a
player plays with the other N − 1 users. Without loss of generality, we show a
six-round six-strategy case in Table 3. First of all, we consider the normalized
time consumption si = n−1

n−i s, which represents the case that the player bids
bi in this round. Then, we consider the payoffs if a user bids bi. Suppose that
the longest bidding time quantum of the others is also bi, and there are k users
bidding bi among the other users. Then the winning probability is 1

k+1 . The
payoffs in terms of available time is 1 − si. Hence, we have the expected payoffs
u(bi) = (1 − n−1

n−i s)
1

k+1 . Similarly, if the longest bidding time quantum of the
others is shorter than bi, the player must win the game, hence u(bi) = 1 − si.
Finally, if the longest bidding time quantum of the others is longer than bi, then
u(bi) = 0.

u(bi)=

⎧
⎪⎨

⎪⎩

(1−n−1
n−i s)

1
k+1 the longest bidding = bi

(1−n−1
n−i s)1 the longest bidding < bi

0 the longest bidding > bi

(7)

We also assume that each user has a probability of pi to bid bi. Then, sim-
ilar to N -player three-strategy bidding game, we get Pmax(b1) ∼ Pmax(b6) and
∑6

k=1 Pmax(bk) = 1. Then the payoff of the player when it bids b1 is shown as
follows:

u(b1) = (1 − s)PwinPmax(b1) +
6∑

i=2

(1 − s)Pmax(bi) (8)

1 https://en.wikipedia.org/wiki/Harmonic number.

https://en.wikipedia.org/wiki/Harmonic_number
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In a similar way, u(bi) could be achieved, and we find the NE solution for pi
through solving a group of equations: u(bi) = u(bj), i �= j.

Here, we use the fsolve function in Matlab to solve the nonlinear equations [11].
In this way, the player could dynamically calculate the pi in NE according to the
current remaining available time. Finally, the player decides the probability of bid-
ding different time quantums for the specific sensing task in the different rounds.

Fig. 4. Performance comparisons along with the changes of budget & number of rounds
& number of users, when users could choose 6 different biddings.

5 Performance Evaluation

5.1 Settings

We test the proposed strategy through simulations. A group of users compete
for a series of tasks, and in each round they have some biddings to select. We
consider that the following elements will influence the final number of winning
rounds: the number of different kinds of biddings, total available time budget, the
number of users and the number of rounds. The detailed simulation parameters
are set as follows: the number of different kinds of biddings is 6, the budget
changes from 60 to 500, number of rounds changes from 1 to 14 and the range
of number of users is [5, 10].

5.2 Methods and Performances in Comparison

The compared methods include: bid-max (always bidding the longest time quan-
tum), bid-ran (always bidding a random time quantum), bid-ave (always bidding
average time quantum, which is calculated through the budget divided by the
number of rounds) and bid-min (always bidding the shortest time quantum).

While a range of data is gathered from the simulations, we take the following
main performance metric into consideration: numbers of tasks obtained, which
is the number of winning rounds in the bidding game.
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5.3 Simulation Results

We focus on three groups of simulations: 6 different kinds of biddings. For the
first group of simulations, we test the number of tasks obtained along with
the increase in budget, number of rounds and number of users. The simulation
results are shown in Fig. 4. Along with the growth of budget, the number of tasks
obtained also increases, because a large budget leads to a long total available
time, and the number of tasks obtained also rises. Moreover, along with the
increase in the number of rounds, the number of tasks obtained is also increasing,
because a large number of rounds lead to a large number of tasks. Finally, along
with the growth of the number of users, the number of tasks obtained goes down,
which means that more competitors lead to a less number of tasks obtained by
the player.

As shown in Fig. 5, we test the number of tasks obtained along with the
increase in the number of different biddings. The results show that the proposed
MBGC achieves a better performance when the bidding number is large enough.
This is because large number of biddings leave us a lot of space to dynamically
decide the bidding time quantum. Hence, the performance gets better. Then, in
Fig. 6, we test some specific methods related to MBGC, where “bid 3” means a
method of always bidding the third shortest time quantum. We find that MBGC
always achieves the best performance. It is worth noting that, when the bidding
round gets large enough, ‘bid 1’ gets better, which makes sense because bidding
a short time quantum will save the time cost for the last rounds. Finally, we test
the changes of pi along with number of round, the results in Fig. 7 show their
changing processes are not monotonous and have crossed with each other.

Fig. 5. The performance
changing process along
with the growth of num-
ber of biddings for differ-
ent bidding strategies.

Fig. 6. The performance
changing process along
with the number of round
for different bidding
strategies.

Fig. 7. The probability
change processes along
with the increase of bid-
ding rounds in MBGC.
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6 Related Work

6.1 Task Allocation

In order to address the free crowdsensing market where multiple task initiators
and users want to maximize their profits, He [12] studied the exchange economy
theory and adopted the Walrasian Equilibrium which is proven to exist within
each supply-demand pattern. Xiong et al. [13] proposed a task allocation frame-
work called iCrowd based on Piggyback task model, iCrowd utilizes historical
data to forecast mobility of users and employs suitable set of users to optimize
task allocation. Wang et al. [14] researched a spatial crowdsourcing situation
under limited task probability coverage and budget, then they present the pre-
diction model of worker mobility behavior to obtain the optimal solution of task
allocation. The above researches discuss the task allocation methods in MCS.
However, the users in the above works were selected by the requester according
to the users’ attributes. The users could only passively accept tasks.

6.2 Game Theory

Chakeri et al. [15] regarded incentive mechanism as a non-cooperative game and
presented a discrete time dynamic called elite strategy dynamics based on best
response dynamic to compute a Nash Equilibrium and get the maximization
utilities. Yang et al. [16] combined quality evaluation and money incentive, then
they presented a truth evaluation based quality and remaining share method.
Focusing on user diversity and social effect in mobile crowdsensing, Cheung et
al. [17] analyzed a payment scheme for provider to utilize users’ social rela-
tionship to achieve diversity, and then proposed a two-round decision strategy
where provider optimizes its utility as a leader, after that the users decide their
contribution level according to providers’ scheme as a follower in the game pro-
cess. Alsheikh et al. [18] focused on privacy management and optimal pricing in
mobile crowdsensing, and analyzed the negative correlation of sensing quality
and privacy level, then combined the utility maximization models with profit
sharing models from game theory. Jiang et al. [19] considered high operational
cost such as storage resources, and presented a scalability P2P-based MCS archi-
tecture, focusing on user behavior in the context of game theory and presenting
a quality-aware data sharing market. The above works focused on proposing
incentive mechanisms, while they did not consider the multi-round bidding case
among users.

7 Conclusion

In this paper, the multi-round bidding game is formulated in mobile crowdsens-
ing. In each round, the users compete for a sensing task. They bid a long enough
time quantum for winning the task while taking a risk of failure and wasting
the bidding time quantum. We propose a multi-round bidding strategy based
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on the game theory in mobile crowdsensing (MBGC), where users dynamically
determine the bidding time quantum through the trade-off between the winning
probability and remaining available time. Then, a Nash Equilibrium is achieved
to instruct the users to reasonably schedule their bidding strategies. We conduct
simulations to test the number of tasks obtained. The results show that, com-
pared with the other bidding strategies, MBGC achieves a better performance.
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