
Detecting Attacks Smartly in Vehicle Cloud
Computing

Wei Zhang∗†‡, Siwang Zhou∗, Avinash Srinivasan‡, Jie Wu‡, Yaping Lin∗†
∗College of Computer Science and Electronic Engineering, Hunan University, Hunan, China
†Hunan Provincial Key Laboratory of Dependable Systems and Networks, Hunan, China

‡Department of Computer and Information Sciences, Temple University, Philadelphia, USA

Abstract—With the advantages of vehicle networks and cloud
computing, Vehicle Cloud Computing (VCC) has emerged and
wins a lot of interests. In this paper, we propose an attack
detection scheme in the VCC, that can detect the potential
attacks launched by malicious vehicles, while preserving benign
vehicles’ privacy. First of all, we propose a distributed secret
key distribution scheme, where multiple authorities are involved
to distribute keys independently. Then, we systematically con-
struct a novel protocol that enables the cloud to smartly detect
numerous potential attacks originating from malicious vehicles,
without jeopardizing the privacy of benign vehicles. To guarantee
that the construction is transparent to the delay in vehicle ad
hoc networks, we propose an enhanced scheme wherein the
attack detection frequency is tunable to any system requirements.
Further, we define an untraceability model, and show that our
scheme achieves untraceability through rigorous security proof.
Finally, we conduct extensive experiments to validate the efficacy
and efficiency of our schemes.

Index Terms—Vehicle cloud computing, untraceability, attack
detection, tunable detection frequency, secret sharing.

I. INTRODUCTION

Vehicle Ad-hoc Networks (VANETs) have the potential

benefits of improving drivers’ experience, and reducing the

traffic accidents [1]. Meanwhile, cloud computing possesses

the merits of strong computational capability, easy access, and

flexible resource management. With the advantages of both

VANETs and cloud computing, the Vehicle Cloud Comput-

ing(VCC) is adopted to enhance the efficiency of VANET

services, e.g., Urban Surveillance Service and Vehicular Traffic

Management [2]. By collecting data from a large number

of vehicles, the cloud can generate a very consistent view

of traffic conditions in different geographical areas. Based

on these data, the cloud can help provide efficient trajectory

planning for first responders and emergency services, and

prevent road congestion.

However, if the security and privacy issues are not addressed

adequately prior to the large scale deployment of the VCC, the

potential vulnerabilities will outweigh its perceived benefits.

There are some research works concerned with security and

privacy issues in VANETs [3], [4], [5], [6], [7]. Unfortunately,

they are not applicable in the VCC due to the specific problems

there, e.g., how to adopt the advantages of the cloud to smartly

detect the potential attacks. Existing works [2], [8], [9], [10]

focus on introducing new applications and conceptions for the

VCC. However, none of them propose a concrete security and

privacy solution.

As a matter of fact, the cloud in the VCC would be a

double-edged sword. Specifically, by making full use of the

capability of the cloud in a positive way, we can enjoy both a

pleasant driver experience and strong security. However, when

the cloud has malicious intentions, the vehicles would suffer

from the threat of privacy leakage. Therefore, how to make

full use of the strong capability of the cloud, while preventing

it from knowing the privacy of vehicles is a very challenging

problem.

In this paper, we aim to propose a scheme that can smartly

detect the potential attacks launched by malicious vehicles in

the VCC, while preserving benign vehicles’ privacy. First of

all, we propose a distributed secret key distribution scheme,

where multiple authorities are involved to distribute keys

independently. Then, we systematically construct a novel

protocol that enables the cloud to smartly detect numerous

potential attacks originating from malicious vehicles, without

jeopardizing the privacy of benign vehicles. Meanwhile, our

scheme is constructed to ensure the privacy of even the revoked

vehicles. But, for forensic concerns, the trusted authority (TA)

can easily track the revoked vehicles. To guarantee that the

construction is transparent to the delay in vehicle ad hoc

networks, we propose an enhanced scheme wherein the attack

detection frequency is tunable to any system requirements.

Further, we define an untraceability model, and show that

our scheme achieves untraceability through rigorous security

proof. Finally, we conduct extensive experiments to validate

the efficacy and efficiency of our schemes.

Our main contributions are summarized as follows:

• To the best of our knowledge, the proposed framework is

the first attempt aiming to provide a highly scalable and

secure framework for the Vehicle Cloud Computing.

• We systematically construct a novel protocol for the VCC

to smartly detect numerous potential attacks originating

from malicious vehicles, without jeopardizing the privacy

of benign vehicles.

• We design a flexible scheme which detects potential

attacks with a tunable detection frequency. Such a flex-

ible design facilitates the scheme to tune the detection

frequency according to system requirement.

• We give rigorous security analysis and conduct extensive

experiments to demonstrate the efficacy and efficiency of

our proposed solution.

2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing

and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress

978-1-5090-2771-2/16 $31.00 © 2016 IEEE

DOI 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.46

245

The rest of this paper is organized as follows. Section II

presents the related work. Section III formulates the prob-

lem. Section IV demonstrates the main secure construction-

s. Section V presents the security proof of the proposed

constructions. Section VI shows a tunable detect frequency

construction. Section VII demonstrates the efficiency of our

proposed scheme. In Section VIII, we conclude the paper.

II. RELATED WORK

A. Vehicle Cloud Computing

Vehicle cloud computing(VCC), which takes full advantage

of cloud computing to serve the drivers in vehicle networks,

will have a remarkable impact on both traffic management

and road safety [11], [12], [13]. Kumar et al. [8] designed

Carcel, a cloud-assisted system for autonomous driving. With

the cloud gathering sensor data from both vehicles and road-

side infrastructures, Carcel helps autonomous vehicles detect

obstacles on the street, and plan paths when unexpected events

occur. In [9], Wang et al. defined a three-level architecture

for vehicle cloud, and presented novel and real time vehicle

cloud services. Gerla [2] proposed two vital applications of

the vehicle cloud including the urban sensing, and efficient

traffic management. In [10], Yan et al. outlined the security and

privacy challenges that are specific to vehicle cloud computing.

B. Security and Privacy in VANETs

It is widely accepted that securing the vehicle ad hoc

networks while preserving the privacy of drivers is very

challenging [3]. Lu et al. [4] presented a novel and efficient

conditional privacy preservation (ECPP) protocol to make the

communications among vehicles secure. Studer et al. [5] pro-

posed an efficient key management system called Temporary

Anonymous Certified Keys (TACKs). Zhou et al. [6] proposed

a lightweight and scalable protocol to detect the sybil attacks.

Lin [7] presented a Local Sybil Resistance (LSR) scheme to

defend against the zero-day sybil attack in a privacy preserving

vehicle peer-to-peer network (VPNET).

C. Secret Sharing-based Schemes

Shamir [14] and Blakley [15], introduced the concept of

secret sharing, where any t or more secret shares can be used

to reconstruct the secret. Nonetheless, with less than t valid

shares, the secret cannot be reconstructed. Based on secret

sharing schemes, a lot of excellent works have been pro-

posed. Boneh and Franklin [16] introduced a fully functional

identity-based encryption scheme (IBE). The Attribute-Based

Encryption (ABE) was first introduced by Sahai and Waters

[17]. The ABE associates the private keys and ciphertexts

with a set of attributes. A user is able to decrypt a cipher-

text only if he has enough attributes. Goyal et al. [18]

proposed Key-Policy Attribute-Based Encryption (KP-ABE),

and Bethencourt et al. [19] introduced the Ciphertext-Policy

Attribute-Based Encryption (CP-ABE).

������

���� 	��� � ���������� 	����� ������

Fig. 1: System model of the vehicle cloud computing.

III. PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, four entities are involved in the VCC:

they are the trusted authorities (TAs), the cloud, the roadside

units (RSU), and the vehicles. The TAs are responsible for

distributing secret keys to registering vehicles, safeguarding

the RSUs, and identifying and revoking malicious vehicles.

The RSUs are deployed in different areas. They are responsible

for broadcasting messages for a specific area, and act as

relays between the vehicles and the cloud. The cloud accepts

traffic data from the RSUs, with its high computation and

communication capability, the cloud will announce important

traffic information, provide efficient route planning, and detect

the potential attacks. The vehicles will receive their secret keys

from a TA upon registration. The vehicle drivers will submit

the traffic data to the cloud, which facilitates the cloud to

obtain a global view of the traffic condition, in return, the

cloud will help these vehicles make the best decisions.

B. Threat Model

We assume the TAs are trusted, they are responsible for

distributing secret keys to registering vehicles, safeguarding

the RSUs, and identifying and revoking malicious vehicles.

Additionally, we assume the RSUs are trusted, we explain it

from two aspects. First, the RSUs are safeguarded by the TAs.

Second, due to the high mobility of vehicles, each RSU can

only collect a small local data of a vehicle in a very short time.

With the limited local data, there is little incentive for them

to behave dishonestly. However, the cloud is not trusted. Here

we treat it as ‘curious but honest’ [20]. Specifically, the cloud

will follow our protocol to help detect the potential attacks

occurring in the VANETs, but it is very curious and trying

to deduce sensitive data from the vehicles’ submitted data.

Vehicles in the network are also not trusted, and they will

try to launch attacks to benefit themselves, e.g., to pass an

intersection without congestion, the attacker would launch a

sybil attack to deceive others as if there are a lot of vehicles

in that intersection. Further, we assume the vehicles would

not collude with the cloud to either obtain or reveal sensitive

information of other vehicles. We will explore the collusion

cases in our future work.

246

C. Design goals

1) The cloud can smartly detect potential attacks, while the

TAs can identify and revoke probable attackers.

2) The frequency of attack detection should be tunable, i.e.,

the detection scheme should be robust to variations of network

conditions.

3) The scheme should preserve the privacy of participating

vehicles. Specifically, the cloud should not deduce any sensi-

tive data from the event report, or be able to track a specific

vehicle.

D. Untraceability Model

In the VCC model, how to enable the cloud to detect

attacks without compromising users’ privacy (especially for

the traceability) is vital and challenging. Before we introduce

our formal constructions, we give the following untraceability

game.

Setup: The challenger generates the public keys and private

keys, and sends the public keys to the adversary A.

Phase 1:A queries the event report of event mi for polynomial

times. The challenger keeps a list l, which is initially empty, to

record the query. If mi is recorded in l, he selects an unused ID

j to generate an event report; otherwise, he randomly selects

an ID j to generate the event report. After each generation,

the challenger adds a pair < j,mi > in l.

Challenge: A submits two events m0 and m1 to the chal-

lenger. The challenger flips a coin μ to determine whether he

uses the same ID’s secret key to generate the event report for

m0 and m1, i.e., if μ = 0, he uses the same ID’s secret key to

generate an event report ; otherwise, he uses two different IDs.

Then the challenger selects the IDs j0 and j1(if the challenger

uses the same ID, then j0 = j1), where the pair < m0, j0 >,

and < m1, j1 > are not recorded in l, to generate the event

reports. After the generation, the challenger adds < m0, j0 >,

and < m1, j1 > to l. Finally, the challenger returns two event

reports to A.

Phase 2: Phase 1 is repeated.

Guess: A outputs a guess μ′ for μ.

A is said to win the game if he can correctly identify

whether the two event reports are generated with the same ID’s

secret key. The advantage of A is defined as Pr[μ = μ′]−1/2.

Definition 1. An event report scheme is said to achieve
untraceability if all probabilistic polynomial time adversaries
have at most a negligible advantage ε to win the above
untraceability game.

E. Bilinear Map

Let G and G1 denote two cyclic groups with a prime order

p. Let g be the generator of G, and e be the bilinear map

e : G×G→ G1. The bilinear map e will have the following

three properties:1) Bilinear: ∀a, b ∈ Z
∗
p, e(ga, gb) = e(g, g)ab.

2) Non-degenerate: e(g, g) �= 1. 3) Computable: bilinear map

e : G×G→ G1 can be efficiently computed.

IV. SECURE CONSTRUCTIONS

In this section, we elaborate on the secure construction.

We first illustrate how to achieve a distributed secret key

distribution. Then we show how to generate the event report,

how to verify an event report, and how the cloud smartly

detects probable attacks without revealing the privacy of

vehicles. Finally, we demonstrate how to identify and revoke

attackers.

A. Distributed secret key distribution

Assume a vehicle V i
j under the administration of TAi

submits the registration request, TAi will distribute the secret

keys with the following two steps:

1) TAi prepares his secret keys (ai, bi, ci, ki1, ki2, si),
two keyed hash functions (e.g., HMAC − SHA1), Hki1(x),
Hki2(x), and a secret key distribution function F (x) = si +∑
k∈[1,α−1]

βi,k · xk, where βi,k denotes the coefficient of F (x).

TAi further publishes the public keys (gci , gsi).

2) The vehicle V i
j with ID j submits a registration request

to the authority TAi, TAi returns two keyed secret hash

functions Hki1(x), Hki2(x), V
i
j ’s secret ID sdij = gai·j+b, and

V i
j ’s secret key skij = F (e(g, g)ai·j). Note that, to compute

the secret key skij , we use e(g, g)ai·j to substitute x in the

distribution function F (x), instead of using the real ID j or

secret ID sdij . After registration, the authority TAi records the

entry (j, sdij , sk
i
j) in his secret key table.

B. Event Report

Given an event m, a vehicle’s secret data, including the real

ID j, the secret ID sdij , the secret key skij , two keyed hash

functions, Hki1(x), Hki2(x), and the public key of the trusted

authority who administrates the vehicle. The vehicle V i
j will

generate the event report E ij for m with the following three

steps.

1) The vehicle computes four secret data items, where

vsj0 = e(g, sdij · gj·Hki1
(m)) = e(g, g)ai·j+bi+j·Hki1

(m),

vsj1 = gj·Hki2
(m)+ci·Hki1

(m), vsj2 = gHki1
(m)/Hki2

(m),

vsj3 = e(g, g)sk
i
j ·Hki1

(m)/Hki2
(m). These secret data will be

used to help the cloud detect probable attacks.

2) The vehicle embeds some secret data in the event report,

so that once the event report is modified by attackers, the

cloud can detect it. Meanwhile, these data will help detect

some attacks, e.g., fabrication attacks. Specifically, the vehicle

first generates three random parameters: rj1, rj2, rj3, then it

computes two intermediate parameters: vtj1 = grj1·m, vtj2 =
gci·Hki1

(m)−rj1 . Third, the vehicle embeds the following

four parameters: δ = m⊕vsj0⊕vsj1⊕vsj2⊕vsj3⊕vtj1⊕vtj2,

vsj4 = j ·Hki2(m)+rj1, vsj5 = rj1 ·m+rj2 ·δ, vsj6 = grj2 ,

vsj7 = grj3·sk
i
j .

3) The vehicle concatenates all these computed data E ij =
m||vsj0||vsj1||vsj2||vsj3||δ||vsj4||vsj5 ||vsj6||vsj7, and sub-

mits the event report E ij .

247

C. Event Verification

Upon receiving an event report from the RSU, the cloud

will first verify its correctness with the following three steps.

1) The cloud computes < vt′j1, vt′j2 > based on the data

extracted from E ij , where vt′j1 = gvsj5/
(
(vsj6)

δ
)
, and vt′j2 =

vsj1/g
vsj4 . This procedure is the reverse process of computing

the secret < vtj1, vtj2 > in the event report.

2) The cloud computes the item δ′ based on vt′j1,

vt′j2, and the data extracted from E ij , where δ′ =
m⊕vsj0⊕vsj1⊕vsj2⊕vsj3⊕vt′j1⊕vt

′
j2.

3) Finally, the cloud compares the computed δ′ with the δ
extracted from E ij . If they are equal, the cloud accepts the event

report E ij . Otherwise, he will reject it, i.e., the event report is

modified by attacks, and cannot be used for further functions.

D. Attacks Detection

Before the cloud performs the attack detection, it first

divides these event report into groups, i.e., the homogeneous

events are grouped together. This is essential for a common

baseline to detect attacks. For each group, the cloud server

detects a probable attack with the same method. For easy

description, we describe the attack detection method in one

group. The key idea of our scheme is to gather α homogeneous

event reports in the group, and use them to reconstruct a

predefined data. If these α event reports are generated by α
different and benign vehicles, we can easily reconstruct the

predefined data; otherwise, we cannot reconstruct that data,

i.e., a probable attack is detected. The attack detection method

is illustrated with the following three steps.

1) The cloud computes four items:

t0 =
vsj0
vsj′0

= e(g, g)ai(j−j′)+(j−j′)·Hki1
(m)

t1 =
vsj1
vsj′1

= g(j−j′)·Hki2
(m)

t2 = e (t1, vsj2) = e(g, g)
(j−j′)·Hki1

(m)

ϕj

ϕj′
= t0/t2 = e(g, g)ai(j−j′)

2) The cloud computes the lagrange coefficient

Δϕj ,Ω(0) =
∏

ϕj′∈Ω,
ϕj′ �=ϕj

−ϕj′

ϕj − ϕj′
=

∏
ϕj′∈Ω,
ϕj′ �=ϕj

1

1− ϕj/ϕj′
(1)

3) The cloud detects whether e(gsi , vsj2) can be recon-

structed with the following equation.

∏
ϕj∈Ω

(vsj3)
Δϕj,Ω

(0)

=
∏

ϕj∈Ω

(
e(g, g)

ski
j ·Hki1

(m)/Hki2
(m)

)Δϕj,Ω
(0)

= e(g, g)

∑

ϕj∈Ω

ski
j ·Δϕj,Ω

(0)·Hki1
(m)/Hki2

(m)

= e(g, g)si·Hki1
(m)/Hki2

(m) = e(gsi , vsj2)

(2)

As we can see, for the same event m, if α vehicles’

homogeneous event reports can be used to reconstruct the data

e(gsi , vsj2), then no attack is detected; otherwise, there would

be an attack.

E. Attacks Detection Analysis

In this subsection, we give the following examples to show

how attacks are detected by our proposed methods.

1) Sybil Attack Detection: A malicious vehicle launches a

sybil attack by sending the same event with multiple event

reports, as if these event reports come from different vehicles.

In our scheme, the cloud checks α event reports each time,

since each vehicle only has one lawful secret share, if these

event reports come from α different and lawful vehicles, then

the pre-defined data can be reconstructed; otherwise, the sybil

attack can be detected.

2) Fabrication Attack Detection: A malicious vehicle

would also fabricate another vehicle to submit a false event re-

port. Now we describe how our scheme detects the fabrication

attack.

From our previous illustration, we observe that, a vehicle,

say V i
j′ , would successfully forge < vsj0, vsj1, vsj2, vsj3 >

of another vehicle in the same group, say V i
j . The process is

described as follows:

1) V i
j′ intercepts V i

j ’s event report E ij , and extracts

< m, vsj0, vsj1, vsj2, vsj3 >.

2) V i
j′ computes

< Hki1
(m), Hki2

(m), gci·Hki1
(m), gHki1

(m)/Hki2
(m) >.

3) Based on the above data, V i
j′ can easily obtain

< sdij · gj , gj , e(g, g)sk
i
j > of V i

j .

4) Now V i
j′ can fabricate < vsj0, vsj1, vsj2, vsj3 > of V i

j′

for another event based on the above computation results.

However, this fabrication attack would not succeed. This

is because a successful fabrication also needs to forge other

secret data, e.g., vsj4. Without knowing V i
j ’s secret ID, i.e.,

j, V i
j′ cannot forge vsj4. As a result, this fabrication attack

can be easily detected by the event verification algorithm.

3) Injection Attack Detection: To launch a successful in-

jection attack, the attackers have to forge the data items

< vsj0, vsj1, vsj3, vsj4, vsj5 >. Without knowing the secret

keys of the vehicles, the injection attack cannot succeed.

4) Replay Attack Detection: Attackers would launch a

replay attack by repeating the previous event reports. Our

scheme defends against the replay attack from two aspects.

First, we embed the time in the event report E , if the attacker

simply repeats an outdated event report, it would be easily

detected since it would cause the time to be inconsistent.

Second, the cloud stores all data within time t, if the attacker

repeats an event report where t is still valid, the cloud would

easily detect the replay attack by searching its copy.

F. Attackers Identification

Once an attack is detected, the cloud would send the α
suspicious vehicles’ data to the corresponding TA. With the

secret keys, the TA can soon find the attackers who launch

the attack. The identification is achieved by the TA with the

following steps.

1) Computes the gci·Hki1
(m), and Hki2(m).

2) Compute gj , where gj =
(
vsj1/g

ci·Hki1
(m)

)1/Hki2
(m)

3) Compute sdij = (gj)a · gb

248

4) Search sdij from the TA’s secret table, find the entry

< j, sdij , sk
i
j >, and further check whether this vehicle’s secret

data are correctly generated.

G. Attackers Revocation

When the TA identifies a specific vehicle to be the attacker,

say V i
j , he broadcasts the data gsk

i
j , which is based on

the secret key skij of V i
j , to all the RSUs and vehicles to

inform them not to accept or relay the revoked vehicles’

data. The method of identifying the revoked data can also

be efficiently achieved. Specifically, when an event report

is received, the revoked vehicle’s event report can be easily

detected if e(gsk
i
j , vsj2) = vsj3 holds. When a RSU receives

the revoked data gsk
i
j , he will store it in his memory. Once

a revoked vehicle still injects data, the RSU can detect it and

refuse to relay this vehicle’s data to the cloud.

We note that during the revocation process, the TA only

needs to announce gsk
i
j to the public, where the secret key of

the revoked vehicle is still preserved. Additionally, we do not

announce the ID of the revoked vehicle, this design preserves

the privacy of vehicle even if it is revoked. However, for

forensic concerns, the TA can easily track the revoked vehicles.

V. SECURITY PROOF

In this section, we formulate the security goals achieved by

our scheme, and present the detailed security proof.

Theorem 1. If a probabilistic polynomial-time adversary can
break our scheme in the untraceability game, then we can
construct a simulator B to break the DMBDH (Decisional
Modified Bilinear Diffie-Hellman) game [17] with a non-
negligible advantage.

Proof. Assume a probabilistic polynomial-time adversary A
has a non-negligible advantage ε against our scheme in the

untraceability game. Then we can build a simulator B that

plays the DMBDH game with advantage ε/4. The challenger

flips a fair coin γ outside of B’s view. If γ = 0, he sends

(A,B,C, Z) = (ga, gb, gc, e(g, g)
ab
c) to B; otherwise he sends

(A,B,C, Z) = (ga, gb, gc, e(g, g)z) to B, where a, b, c, z ∈
Zp, are randomly generated. The goal of B is to guess γ’ for

γ by interacting with A and playing the following game.

Setup: The simulator B sends the public keys (gci , gsi), i ∈
[1, N] to A.

Phase 1: The adversary A queries the event report for event

mi for polynomial times. B keeps a list l, which is initially

empty, to record the query. If mi is recorded in l, he selects

an unused ID j to generate event report E ij ; otherwise, he

randomly selects an ID j to generate the event report E ij . After

each generation, B adds a pair < j,mi > to l.
Challenge: The adversary A submits two events m0 and m1

to B. B flips a coin μ to determine whether he uses the same

ID’s secret key to generate the event report for m0 and m1,

i.e., if μ = 0, he uses the same ID’s secret key to generate an

event report for m0 and m1; otherwise he uses two different

IDs to generate the event reports. Then B selects the IDs j0
and j1(if B uses the same ID, then j0 = j1), where the pair

< m0, j0 >, and < m1, j1 > are not recorded in l, to generate

the event reports. Now we describe the generation in two cases.

The intuition behind the following assignments is that, if we

use the same vehicle j’s secret data to generate event reports

for m0, and m1, we implicitly set the secret key skij = c
a ,

Hki1(m0) = r1b, Hki1(m1) = (r1−r2)·r6 ·b, vs03/vs13 = Z.

Case 1: B sets μ = 0, then B uses j’s secret data to generate

the event reports for m0 and m1. B first generates random

tuples (r1, r2, r3, r4, r5, r6, r7, r8, r9).

For m0, B simulates the event report as follows,

vs00 = e(g, sdij ·Br1·j) = e(g, g)ai·j+bi+j·r1·b,

vs01 = gj·r2 ·Bci·r1 = gj·r2+ci·r1·b,

vs02 = Br1/r2 = gb·(r1/r2),
vs03 = Zr1/r2 , vt01 = gr3·m, vt02 = Br1·ci = gci·r1·b−r3 ,

δ = m0 ⊕ vs00 ⊕ vs01 ⊕ vs02 ⊕ vs03 ⊕ vt01 ⊕ vt02,

vs04 = j · r2 + r3, vs05 = r3 ·m+ r4 · δ, vs06 = gr4 ,

vs07 = Ar5 = ga·r5 = gr
′
5·ac , where gr

′
5 = Cr5 = gc·r5 ,

E i0 = m0||vs00||vs01||vs02||vs03||δ||vs04||vs05 ||vs06||vs07.

For m1, B simulates the event report as follows,

vs10 = e(g, sdij ·B(r1−r2)·r6·j) = e(g, g)ai·j+bi+j·(r1−r2)·r6·b,

vs11 = gj·(r2·r6) ·Bci·((r1−r2)·r6) = gj·(r2·r6)+ci·((r1−r2)·r6)·b,

vs12 = B(r1−r2)/r2 = gb·(r1−r2)/r2 , vs13 = Z(r1−r2)/r2 ,

vt11 = gr7·m, vt12 = B((r1−r2)·r6)·ci = gci·((r1−r2)·r6)·b−r7 ,

δ = m1 ⊕ vs10 ⊕ vs11 ⊕ vs12 ⊕ vs13 ⊕ vt11 ⊕ vt12,

vs14 = j · (r2 · r6) + r7, vs15 = r7 ·m+ r8 · δ, vs16 = gr8 ,

vs17 = Ar9 = ga·r9 = gr
′
9·ac , where gr

′
9 = Cr9 = gc·r9 ,

E i1 = m1||vs10||vs11||vs12||vs13||δ||vs14||vs15 ||vs16||vs17.

Case 2: B sets μ = 1, then B uses j0’s secret data to

generate the event reports for m0, and j1’s secret data to

generate the event report for m1. In case 2, B uses the similar

method to generate the event report, the only difference is

that, when generating vs03, and vs13, B randomly chooses

z0, z1 ∈ Zp, and sets vs03 = e(g, g)z0 , and vs13 = e(g, g)z1 .

After the generation, B adds < m0, j0 >, < m1, j1 > to l.
Finally, B returns generated event reports to the adversary.

Phase 2: Phase 1 is repeated.

Guess: A outputs its guess μ′ ∈ {0, 1} for μ. If μ′ = μ = 0,

B outputs γ′ = 0 to indicate that it is given a DMBDH tuple;

otherwise, B outputs γ′ = 1.

As shown above, B’s method of generating the event reports

is the same with that of our scheme.

In the case that γ = 1, the adversary gains no information

about μ, therefore, Pr[γ′ = γ|γ = 1] = 1
2 .

In the case that γ = 0, μ = 1, the adversary also gains no

information about μ, thus, Pr[γ′ = γ|γ = 0, μ = 1] = 1
2 .

In the case that γ = μ = 0, the adversary can compute

vs03/vs13 = Z, if Z is equal to e(g, g)
ab
c , then the two event

reports come from the same vehicle, i.e., the vehicle is tracked

by the adversary. Since the adversary advantage is ε, therefore,

Pr[γ′ = γ|γ = μ = 0] = 1
2 + ε.

The overall advantage of B in the DMBDH game is
1
2 Pr[γ

′ = γ|γ = 1] + 1
4 Pr[γ

′ = γ|γ = 0, μ = 1] + 1
4 Pr[γ

′ =
γ|γ = μ = 0]− 1

2 = ε
4

249

� � � � � � � 	
 ��
�

�

�

�

	

��

��

��

��

�
�
�
��

��
�
�
��
��

��
�
�
��
�

������ �� ��� !�� �× ����

α = 20

α = 40

α = 60

(a)

�� �� �� �� �� �� �� 	�
� ���
�

�

�

�

�

�

�

�
�
�
��

��
�
�
��
��

��
�
�
��
�

α

���� ��� !��
���� ��� !��
���� ��� !��

(b)

� � � � � � � 	
 ��
�

��

��

��

��

��

��
�"
!�
�

�
 �

��
��

"�
��
��
�
��

������ �� "��������

���� ��� !��# α$��
���� ��� !��# α$��
���� ��� !��# α$��

(c)

Fig. 2: Time cost of vehicle registration.

VI. TUNABLE DETECTION FREQUENCY

In the aforementioned sections, we introduce how to perfor-

m secure construction to detect the probable attacks launched

by the malicious vehicles, without compromising the privacy

of benign vehicles. From the analysis, we know that, once the

number of homogeneous vehicles(the vehicles report the same

event and belong to the same TA) is less than the threshold

α, the cloud cannot reconstruct the secret. An alternative way

is to wait until α data are gathered; however, this will cause

some delay for attack detection. In this section, we introduce

the enhanced secure construction, which achieves a tunable

detection frequency without being affected by the delay in the

VANETs.

The key idea of the enhanced construction is to pre-set

α − 1 decoy items in the RSU (under the safeguard of its

accompanied TA), when a RSU finds that the number of

homogeneous vehicles is less than the threshold α, he will

pad some event reports with the decoy items, so that the

number of homogeneous vehicles would be greater than α−1.

From the viewpoint of the cloud server, he would not know

whether an event report is generated by the vehicles or RSU.

Therefore, the cloud can use the aforementioned method to

detect probable attacks.

A. Distributing Keys for Decoy Items

To enable the cloud to detect probable attacks timely, we

propose to pre-set some decoy items on the RSUs (under the

safeguard of their accompanied TA). On one hand, the newly-

introduced decoy items should help achieve timely detection,

on the other hand, these decoy items should not be used to

break the privacy of vehicles. Tab. I shows the keys generated

by an authority TAi.

B. Enhanced Event Report

Compared with the aforementioned event report, we only

need to redesign the following four data items, i.e., vsj3 =

e(g, g)sk
i
j ·Hki2

(m), vsj4 = gdi·Hki1
(m), vsj5 = gHki2

(m),

vsj6 = gci·Hki1
(m)−di·Hki2

(m). These data would help the

RSUs generate a lively event report with the decoy items.

C. Event Report with Decoy Data

Before a RSU submits its collected data to the cloud,

the RSU will first check whether the number of vehicles in

TABLE I: Keys generated during the key distribution

TAi’s secret keys ai, bi, ci, di, ki1, ki2, si
TAi’s public keys gci , gdi , gsi

V i
j ’s secret data j, sdij = gai·j+b;

skij = F (e(g, g)ai·j)
V i
j ’s keyed hash function Hki1

(x), Hki2
(x)

RSUs’ decoy items pd0 = e(g, g)ai·ri,l+bi ;

pd1 = gri,l/di ;
pd2 = ri,l + di;
pd3 = F (e(g, g)ai·ri,l) + di

each group is greater than α. Assume only α′ homogeneous

vehicles submit event reports, where 0 < α′ < α, the RSU

would generate α−α′ lively event reports with α−α′ decoy

items. For the lth decoy data, the RSU reconstructs a lively

event report with the following steps:

1) The RSU extracts < m, vsj2, vsj4, vsj5, vsj6 > from

the vehicle V i
j ’s event report E ij , and sets vsl2 = vsj2, vsl4 =

vsj4, vsl5 = vsj5, vsl6 = vsj6.

2) With the decoy items and the extracted data, the RSU

computes vsl0 = pd0 ·e(pd1, vsj4) = e(g, g)a·ri,l+ri,l·Hki1
(m),

vsl1 = vspd2

j5 · vsj6, and vsl3 = e(g, vsj5)
pd3/e(gd, vsj5) =

e(g, g)sk
i
l ·Hki2

(m), where skil = F (e(g, g)ai·ri,l).
3) The RSU computes four items, where vtl1 =

grl1·(pd2−pd3), δ = m⊕vsl0⊕vsl1⊕vsl3⊕vsl4⊕vsl5⊕vsl6⊕vtl1,

vsl7 = rl1 · (pd2 − pd3) ·m+ δ · rl2, vsl8 = grl2 .

4) Finally, The RSU outputs the event report E ij . As we can

see, from the viewpoint of the cloud, there is no difference

between the event reports generated by vehicles and those

generated with the decoy items.

D. Enhanced Event Verification

The cloud verifies the event report with a similar method

described in Section IV.

E. Attacks Detection

From the cloud’s viewpoint, there is no difference between

the event report generated by vehicles and those generated

with the decoy items. Therefore, the cloud will use the similar

methods described in Section IV to detect probable attacks.

250

� 	
 � � � � � ��
�

��	

���

��

���

�

��	

���

��

���

	

������������������×����

�
�

��
��

�!
��

��
"�

 �
!�

��
��

���
�#

��
��

���
� $%

$$%

(a) Vehicles

�� 	�
� �� �� � �� �� �� ���
�

	

�

�

��

&�!��������������'�(��#���!���#

�
�

��
��

�!
��

��
"�

 �
!�

��
'�

(�
���

�

��!���#�
�!���#�
��!���#�

(b) RSU

� 	
 � � � � � ��
�

�

	

�

�

����������!���#�

�
�

��
��

�!
��

��
"�

 �
!�

��
'�

(�
���

�

�����'�(��#���!���#
	����'�(��#���!���#
�����'�(��#���!���#

(c) RSU

Fig. 3: Time cost of generating event reports.

� � � � � � � 	
 ��
�

�

�

�

	

��

��

�
�
�
��

��
��

"�
�
�
��
�

������ �� ������ %�� ��� !�

&���� ' ��� ��� !��
(&���� ' ��� ��� !��
&���� ' ��� ��� !��
(&���� ' ��� ��� !��
&���� ' ��� ��� !��
(&���� ' ��� ��� !��

(a) Verification cost

��� ��� ��� ��� ��� ��� ��� 	��
�� ����
�

�

�

�

	

��

��

��

��

�	

�
�
�
��

��
��

"�
�
�
��
�

������ �� ��� !��

&���� ' � ����� %�� ��� !�
(&���� ' � ����� %�� ��� !�
&���� ' � ������ %�� ��� !�
(&���� ' � ������ %�� ��� !�
&���� ' � ������ %�� ��� !�
(&���� ' � ������ %�� ��� !�

(b) Verification cost

�)� �)� �)� �)� �)� �)� �)� �)	 �)
 �)�
�

�

�

�

�

�

�

�

	

�
�
�
��
�

*��� ��� ���+��� �

*� �� ��� ,����� ��!"�
-� ������ ��� ���
*�!"� ,����� �� ���

(c) Tunable detection frequency

Fig. 4: Time cost of operation.

Specifically, the cloud will check whether the e(gsi , vsj5) can

be reconstructed to determine whether an attack is occurred.

∏
ϕj∈Ω

(vsj3)
Δϕj,Ω

(0)
=

∏
ϕj∈Ω

(
e(g, g)

ski
j ·Hki2

(m)
)Δϕj,Ω

(0)

= e(g, g)

∑

ϕj∈Ω

ski
j ·Δϕj,Ω

(0)·Hki2
(m)

= e(gsi , vsj5)
(3)

VII. PERFORMANCE EVALUATION

A. Evaluation Settings

The experiment programs are coded using the Python pro-

gramming language on a PC with 3.4GHZ Intel Core CPU

and 16GB memory. We adopt the cryptographic framework

and settings proposed in [21], and implement all necessary

routines for authorities to generate secret keys during vehicle

registration, for vehicles to report messages, for cloud to detect

probable attacks, and for the trusted authority to identify the

attackers.

B. Evaluation Results

Fig. 2 shows the time cost of vehicle registration. From

Fig. 2 (a) and (b), we observe that, the more vehicles that

are required to be registered, the more time that is spent on

registration. Meanwhile, the degree of the distribution function

F , i.e., α, has little impact for the registration cost. Fig. 2 (c)

shows that, the more authorities are involved, the more total

time is spent by these authorities.

Fig. 3 depicts the time cost of event report generation.

Fig. 3(a) shows the time cost of generating event reports for

vehicles. We observe that, the enhanced event report requires

a bit more time. The fundamental reason is that, the enhanced

event report requires the vehicle to generate more data items to

help the RSU generate decoy items. Figs. 3(b) and (c) show the

time cost of generating decoy items for RSUs. As we can see,

as the average number of decoys in each group and number

of groups increase, the time cost of generating decoys would

increase correspondingly.

Fig. 4(a) and (b) demonstrate the time cost of event ver-

ification. We observe that, with the number of vehicles, and

the number of events per vehicle increase, the time cost of the

verification algorithm and the enhanced verification algorithm

increases. The reason here is clear: with vehicles submitting

more events, the cloud has to spend more time on conducting

the verification.

In Fig. 4 (c), for a easy understanding, we set λ = 20,

i.e., the ratio that vehicles get through a RSU is 25, ρi =
0.1, i.e., vehicles registered with a specific authority occupies

10% of vehicles getting through the RSU, and α = 20, i.e.,

the cloud needs to collect 20 homogeneous vehicles’ data to

conduct a detection. From the figure, we observe that, without

decoys, when the detection frequency increases, the detection

would suffer from serious delay. Conversely, if we introduce

the decoys, there is no detection delay at the expense of a

small decoy cost for the RSU. We can also see that, as the

detection frequency increases, the reconstruction cost remains

nearly the same, which demonstrates that our design adapts

to a tunable detection frequency without being affected by the

delay.

Fig. 5 illustrates the time cost of detecting and identifying

attackers. Fig. 5(a) shows that, as the degree of distribution

251

α

Ti
m

e
of

 re
co

ns
tru

ct
io

n
(s

)

(a) Detection cost

α

α

α

Number of reconstruction rounds

Ti
m

e
of

 re
co

ns
tru

ct
io

n
(s

)

(b) Detection cost

α

α

α

Number of identification rounds

Ti
m

e
of

 id
en

tif
ic

at
io

n
(s

)

(c) Identification cost
α

Ti
m

e
of

 id
en

tif
ic

at
io

n
(s

)

(d) Identification cost

Fig. 5: Time cost of detecting and identifying attackers.

function, α, increases, the time cost of reconstructing the pre-

defined secret would increase quadratically. The fundamental

reason for this is that, during the process of reconstructing

the secret, we need to conduct O(α2) computations. Since

we often assign a small α in real applications, the value of

α would not affect the performance of the whole scheme.

Fig. 5(c) and (d) demonstrate the time cost of identifying

the attackers. As we can see, as the number of identification

rounds and α increase, the identifying cost would accordingly

increase linearly.

VIII. CONCLUSION

In this paper, for the first time, we design a privacy preserv-

ing attack detection scheme in the vehicle cloud computing.

First, we propose involving multiple authorities to distribute

keys independently. This design will adapt our scheme to

many registration scenarios. Then we present the details of

secure constructions, which enable the cloud to smartly detect

many potential attacks without compromising the privacy of

vehicles. Meanwhile, our constructions preserve the privacy of

vehicles even if they are revoked, but for forensic concerns, the

TA can easily track the revoked vehicles. We also investigate

the time delays in the vehicle network, and propose a corre-

sponding construction to detect potential attacks with a tunable

detection frequency. We further define an untraceability model,

and show that our scheme achieves untraceability through

rigorous security proof. Finally, we conduct extensive experi-

ments to validate the efficacy and efficiency of our scheme.

ACKNOWLEDGMENT

This work is supported in part by the National Natural Sci-

ence Foundation of China (Project No. 61472125, 61173038).

REFERENCES

[1] S. Ezell, “Explaining international it application leadership: Intelligent
transportation systems,” The Information Technology & Information
Foundation, 2010.

[2] M. Gerla, “Vehicular cloud computing,” in Ad Hoc Networking Work-
shop (Med-Hoc-Net), 2012 The 11th Annual Mediterranean. IEEE,
2012, pp. 152–155.

[3] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger,
M. Raya, Z. Ma, F. Kargl, A. Kung, and J.-P. Hubaux, “Secure vehicu-
lar communication systems: design and architecture,” Communications
Magazine, IEEE, vol. 46, no. 11, pp. 100–109, 2008.

[4] R. Lu, X. Lin, H. Zhu, P.-H. Ho, and X. Shen, “Ecpp: Efficient condition-
al privacy preservation protocol for secure vehicular communications,” in
INFOCOM 2008. The 27th Conference on Computer Communications.
IEEE. IEEE, 2008.

[5] A. Studer, E. Shi, F. Bai, and A. Perrig, “Tacking together efficient
authentication, revocation, and privacy in vanets,” in Sensor, Mesh and
Ad Hoc Communications and Networks, 2009. SECON’09. 6th Annual
IEEE Communications Society Conference on. IEEE, 2009, pp. 1–9.

[6] T. Zhou, R. R. Choudhury, P. Ning, and K. Chakrabarty, “P2dapłsybil
attacks detection in vehicular ad hoc networks,” Selected Areas in
Communications, IEEE Journal on, vol. 29, no. 3, pp. 582–594, 2011.

[7] X. Lin, “Lsr: mitigating zero-day sybil vulnerability in privacy-
preserving vehicular peer-to-peer networks,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 31, no. 9, pp. 237–246, 2013.

[8] S. Kumar, S. Gollakota, and D. Katabi, “A cloud-assisted design for
autonomous driving,” in Proceedings of the first edition of the MCC
workshop on Mobile cloud computing. ACM, 2012, pp. 41–46.

[9] J. Wang, J. Cho, S. Lee, and T. Ma, “Real time services for future cloud
computing enabled vehicle networks,” in Wireless Communications and
Signal Processing (WCSP), 2011 International Conference on. IEEE,
2011, pp. 1–5.

[10] G. Yan, D. Wen, S. Olariu, and M. C. Weigle, “Security challenges in
vehicular cloud computing,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 14, no. 1, pp. 284–294, 2013.

[11] M. Abuelela and S. Olariu, “Taking vanet to the clouds,” in Proceedings
of the 8th International Conference on Advances in Mobile Computing
and Multimedia. ACM, 2010, pp. 6–13.

[12] S. Olariu, T. Hristov, and G. Yan, “The next paradigm shift: from
vehicular networks to vehicular clouds,” Mobile ad hoc networking:
cutting edge directions. 2nd ed. NJ, USA: John Wiley & Sons, Inc.,
Hoboken, 2013.

[13] S. Olariu, I. Khalil, and M. Abuelela, “Taking vanet to the clouds,”
International Journal of Pervasive Computing and Communications,
vol. 7, no. 1, pp. 7–21, 2011.

[14] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[15] G. R. Blakley, “Safeguarding cryptographic keys,” in Managing Require-
ments Knowledge, International Workshop on. IEEE Computer Society,
1899, pp. 313–313.

[16] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Advances in Cryptology-CRYPTO 2001. Springer, 2001,
pp. 213–229.

[17] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances
in Cryptology–EUROCRYPT 2005. Springer, 2005, pp. 457–473.

[18] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings
of the 13th ACM conference on Computer and communications security.
Acm, 2006, pp. 89–98.

[19] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Security and Privacy, 2007. SP’07. IEEE Sympo-
sium on. IEEE, 2007, pp. 321–334.

[20] B. Wang, W. Song, W. Lou, and Y. T. Hou, “Inverted index based
multi-keyword public-key searchable encryption with strong privacy
guarantee,” in INFOCOM, 2015 Proceedings IEEE. Hong Kong: IEEE,
2015, pp. 2092–2110.

[21] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: a framework for rapidly proto-
typing cryptosystems,” Journal of Cryptographic Engineering, vol. 3,
no. 2, pp. 111–128, 2013.

252

