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Event-based social networks (EBSNs) connect online and offline lives. They allow online users
with similar interests to get together in real life. Attendance prediction for activities in EBSNs
has attracted a lot of attention and several factors have been studied. However, the prediction
accuracy is not very good for some special activities, such as outdoor activities. Moreover, a very
important factor, the weather, hasn’t been well exploited. In this work, we strive to understand how
the weather factor impacts activity attendance, and we explore it to improve attendance prediction
from the organizer’s view. First, we classify activities into two categories: the outdoor and the
indoor activities. We study the different ways that weather factors may impact these two kinds of
activities. We also introduce a new factor of event duration. By integrating the above factors with
user interest and user-event distance, we build a model of attendance prediction with the weather
named GBT-W, based on the Gradient Boosting Tree. Furthermore, we develop a platform to
help event organizers estimate the possible number of activity attendance with different settings
(e.g., different weather, location, etc), so as to effectively plan their events. We conduct extensive
experiments and the results show that our method has a better prediction performance on both
the outdoor and the indoor activities, which validates the reasonability of considering weather and
duration.
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Fig. 1. Example of meetup.com about a real event.

1 INTRODUCTION

Event-based social networks (EBSNs) are becoming more and more popular in recent years.
Examples include “douban.com [1], ” “meetup. com [2], ” “Plancast.com [3]” and so on.
These social networks connect the offline world and the online world [14]. In EBSNs, the
organizers can create a group with some particular hobby and regularly organize off-line
activities (also called events) [17, 45]. Given a created social event, users may express their
intent to join by online check-in [18, 44]. People can join one or more groups according to
their own preferences, and regularly participate in some activities according to their own
needs [30, 49]. Users in EBSNs can communicate online, as well as comment and upload
photos like other social networks, which in turn enables similar people to communicate
face-to-face in real life [51]. Moreover, online discussion and evaluation of the user’s activities
will also facilitate the development of future activities [19]. Many scholars have done a lot of
researches on EBSNs. In this paper, we study attendance prediction for activities in EBSNs,
from the organizers’ view. In particular, we deeply study and exploit the effects of weather,
which are usually being neglected in existing work.

Organizers have a lot of things to think about when preparing to hold an event. For
example, organizers need to consider the location, the time, the content, and the description
of the event. In general, the more the organizer plans and prepares for the event, the higher
the quality and the popularity of the event. As a result, users who participate in the event
will have a better experience [20, 53].

Many factors may impact users’ attendance in an activity. Fig. 1 shows some key elements
of an activity on the Meetup.com site.

∙ Location: the place where the activity will be held, which is usually a place where
there is a large population.

∙ Time: the start time and the end time of the activity. The duration of the activity
often depends the type of activity.

∙ Attendants: users who show their wishes to join the activity.
∙ Organizer: the person who organizes the activities and is responsible for the offline
events.

∙ State: status of the activity.
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Based on the elements of the activity, combined with user information, such as hobbies,
activity history and home address, we can roughly predict whether a particular user will
participate in this activity. However, many factors can affect the presence of users. Apart
from the activity itself, there are several external factors that can impact user behaviors [13].
Among them, the weather is an important one. As we may know, the weather is inextricably
linked to people’s mood, and the mood will inevitably affect their behaviors [52]. However,
we study several EBSNs and find that organizers usually do not show the weather conditions
associated with the event when presenting their activity plans (as shown in Fig. 1). In
literature, many researches on attendance prediction focus more on various attributes of
the activity itself and the profiles of users for personalized event recommendation from the
user’s point of view. They also neglect external factors, including the weather, which leads
to a poor prediction for specific activities (e.g., the outdoor activities) [34].

Our motivation. Based on the above analysis, we try to study the effects of weather
factors and explore them to improve attendance predictions from the perspective of the
organizers. Event organizers may need to estimate the number of attendances in two typical
scenarios: one is for initiating an event (e.g. announce the event); the other is adjusting the
event (e.g., one or two days before the event or even several hours before the event). We try
to provide a comprehensive prediction of different attendance numbers in different settings
(including different weather conditions). Based on this, the organizer can plan or adjust the
event more flexibly.

Our contribution. In this paper, we classify activities as outdoor or indoor, and we study
the different effects of weather factors on these two kinds of activities. We also identify several
other factors including user interests, user-event distance, and duration for comprehensive
prediction. The main contributions of this paper can be summarized as follows.

∙ We deeply study the impact of weather on user attendance. We distinguish the direct
and indirect impacts of fine-grained weather factors such as temperature, humidity,
and wind force.

∙ We identify several features and build a model of the attendance prediction with weather
based on a gradient descent decision tree (called GBT-W ) from the organizer’s view.
It comprehensively integrates the internal factors of users and events, as well as the
external factors of weather and distance.

∙ We collect the data in real EBSNs and gather the corresponding weather data to test
our method extensively. The results validate the effectiveness of our work.

∙ Based on the prediction model, we develop a simple event hosting platform for orga-
nizers. It can recommend top-𝑘 choices (e.g., the time, the location, and the weather)
for an event.

In Section 2, we review the related work. In Section 3, we formally define the problem and
introduce our dataset. We identify all possible features/factors in Section 4 and describe
the proposed attendance prediction model in Section 5. Next, we conduct experiments and
analysis in Section 6. We build a simple event recommendation application for organizers
and describe how to apply our work in practice in Section 7. Finally, we sum up our work
and discuss some future directions in Section 8.

2 RELATED WORK

This section gives a brief introduction to the related works, focusing on three main research
areas: EBSNs, activity recommendation, and attendance prediction.
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Research on EBSNs. Many researches qualitatively study the characteristics of EBSNs
through data analysis. Liu et al. [26] presented a comprehensive introduction to EBSN
in five aspects, which has drawn increasing attention to EBSNs. Han et al. [15] analyzed
the behavior of online users’ participation in offline activities using the Douban dataset,
which checks the relevance of several factors and whether the user participates in the
activity. Xu et al. [39] conducted intensive analysis to study the characteristics and user
behaviors in real activities, which focuses more on the interaction between social networks
and activities, including the preservation or change of social networks and the creativity
and diversity of activities. She et al. [32] analyzed the deficiencies of existing EBSNs in
the activity arrangement, and proposed a more intelligent EBSN platform that provides
personalized event planning for each participant. Zhang et al. [48] study the group dynamics
in EBSNs. The above articles introduce the three main bodies of organizers, activities, and
users in EBSNs, which leads to related research on activity recommendation and attendance
prediction in this field.

Activity recommendation. Liu et al. [26] were the first to propose the issue of activity
recommendation and illustrate the main challenge of the cold-start problem. Macedo et al.
[28] considered the related background of a user’s participation in an activity, including
temporal, spatial, content, and membership, assuming that these are all positive effects.
Aliannejadi et al. [6] utilized user tags to match location keywords and used many machine
learning methods to make personalized recommendations for the location of the event. Wang
et al. [37] focused more on the social influence of event organizers and team members in the
event recommendation system. Liu et al. [27] analyzed the existing method mismatch with
EBSNs, and proposed a Bayesian latent factor model, which can jointly formulate some
types of data for friend recommendation to better participate in offline events and enhance
user experience. Tu et al. [35] improved the effectiveness of the activity recommendation
by finding suitable friends for the user and appropriately referring to the opinions of the
friends. However, most of the current research is based on user-centered activities, and there
are few studies from the perspective of the organizer. Our paper aims to address this issue.

Attendance prediction. Attendance prediction is similar to activity recommendation
but the perspective is different. Liu et al. [25] described the relationship between the success
of an event and the group, classifying social groups according to the four characteristics:
group, members, activities, and structure. Jiang et al. [17] analyzed event participants for a
single organizer based on semantic information, geographical information, and social network
information. Feng et al. [10] studied the selection of influential organizers for influence
maximization. Zhang et al. [50] discussed the probability of users’ participation in one
certain activity in the future by considering the time, space, and content of activities. Du
et al. [9] divided the impact factors into three aspects: activity content preference, time
space, and social influence. Zhang et al. [46] paid more attention to the attributes of user
participation in the event, such as preferences and the influence of the user. Lu et al. [34]
combined multiple factors such as time, space, background, activity content, users themselves,
and mutual influence. Wu et al. [38] proposed a model to explore the dynamic nature of
personal presence over time based on LSTM.

Existing works on attendance prediction usually exploit multiple factors of activities and
users, such as spatio-temporal factors [9], the context of event [34, 46], social influence
[10], and so on. In the prediction algorithm, existing research has used Singular Value
Decomposition (SVD) [9], Logistic Regression [46], Naive Bayes [46], Classification and
Regression Tree (CART) [34]. In this paper, we try to incorporate two new factors: the
internal factor of event duration and the external factor of weather conditions. We divide
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Table 1. Notations

Notation Explanation

𝐶𝑒 the category of event 𝑒
𝐻𝑢 the set of all the events that a user 𝑢 has attended
𝐷𝐼 comfort index
𝑇 the average temperature of one day
𝐹 the relative humidity of one day
𝐿𝑢

𝑒 the duration of event 𝑒 for which user 𝑢 attends
𝑉𝑒 the weekend feature of event 𝑒
𝐼𝑢𝑒 the interest degree of user 𝑢 on event 𝑒
𝐷𝑢

𝑒 the distance feature between user 𝑢 and event 𝑒
𝑃𝑢
𝑒 the duration feature of user 𝑢 attending event 𝑒

events into outdoor events and indoor events to deeply study the effects of weather on
attendance.

3 PROBLEM STATEMENT

In this section, we first formulate the activity attendance prediction problem, and then
present our solution framework. The notations are shown in Table 1.

3.1 The activity attendance prediction problem

In EBSNs, the organizers hold a series of activities/events, {e1, e2, e3, . . . , e𝑚}, each of
which has a set of participants, {u1, u2, u3, . . . , u𝑛}. The activities can be classified into
many categories {c1, c2, c3, . . . , c𝑘}. Given a set of users and a future event 𝑒, the tasks
of activity attendance prediction are to (1) predict whether a user will attend or not by
exploiting all possible features including the weather impact, user interests, and duration;
(2) provide the possible attendance numbers according to different settings for organizers,
including different dates, locations, weather conditions and so on. The main challenges are
listed as follows:

∙ There are many kinds of factors. Among them, the weather factor has not been deeply
studied in previous research. We want to deeply study the different roles that weather
conditions play in activity attendance for different types of activities.

∙ Since there are more users who do not participate in the event than those who do, the
selection of negative samples is especially important for the prediction model. Thus,
we need to carefully select the negative samples.

3.2 Solution Overview and Data set

Solution overview. Keeping the attendance prediction for organizers in mind, we focus on
exploiting the weather factor and several other factors to build a comprehensive prediction
model. Our solution has three main steps: (1) Feature extraction; (2) Sample filtering; and
(3) Model building.

We first study several key factors affecting attendance, including weather conditions,
interests, home-event distance, and duration. We analyze the different ways in which these
factors affect different types of activities. The framework of our solution is shown in Fig. 2.
It has three steps.

∙ Step 1: process the activity feature and measure the effects of weather.
∙ Step 2: select the samples for building model.
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Fig. 2. System framework.

∙ Step 3: build the prediction model with the above processed feature vectors based on
Gradient-Boosting trees (GBT ).

GBT algorithm has been validated to be very effective in dealing with classification problems.
To serve event organizers, we also use our model to create a simple application to help event
holders better plan an event.

Dataset. The dataset we use is collected from a popular EBSN: 𝑀𝑒𝑒𝑡𝑢𝑝.𝑐𝑜𝑚. It is
collected through the Meetup API from the two cities of London and New York from January
2018 to January 2019, including some information about public events such as participants,
duration, topic, and time of events. There are a total of 257,249 users and 146,636 events.
There are 63,320 events held in London and 83,316 events held in New York. Among them,
the number of outdoor events in London and New York are 6,750 and 9,702, respectively. The
details of the dataset are shown in Table 2. There are 32 categories in our dataset, as shown
in Table 3. We can see that the outdoor activities (e.g., 𝑜𝑢𝑡𝑑𝑜𝑜𝑟/𝑎𝑑𝑣𝑒𝑛𝑡𝑢𝑟𝑒 and 𝑠𝑝𝑜𝑟𝑡𝑠)
occupy a large portion in daily activities. Besides that, we also collect the corresponding
weather data from 𝑡𝑖𝑎𝑛𝑞𝑖.2345.𝑐𝑜𝑚 [4], including the temperature, the weather type (e.g.,
rainy or sunny), the wind force and the humidity, in London and New York. We will use
these data for feature modeling and attendance prediction.

4 FEATURE MODELING

In this section, we first analyze the factors that affect the attendance with our dataset. Then
we classify the activities, and take into account the different effects on various activities.

4.1 Factors Analysis

We exploit all possible factors affecting attendance through the collected dataset, including
user interests, user-event distance, duration, and the weather factor.

4.1.1 User Interest. Users may have many different hobbies, and various hobbies may
encourage them to participate in more activities. We count the number of activity categories
that users in the dataset participated in, as shown in Fig. 3. We can see that over 40% of
users participate in more than one category of events. Most people prefer to enjoy many
categories of events. So, the willingness of users to participate in the event is strongly related
to whether the user is interested in the topic of the event.
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Table 2. Statistics of dataset

Indicators London New York
Number of events 63,320 83,316
Number of users 130,558 126,691

Number of outdoor events 6,750 9,072
Number of indoor events 56,570 74,244

Number of outdoor events in the first quarter 1,697 2,584
Number of indoor events in the first quarter 15,368 21,839

Number of outdoor events in the second quarter 2,038 2,738
Number of indoor events in the second quarter 14,269 20,283
Number of outdoor events in the third quarter 1,706 2,301
Number of indoor events in the third quarter 13,694 16,798
Number of outdoor events in the forth quarter 1,310 1,450
Number of indoor events in the forth quarter 13,238 15,322

Number of User-event pairs 639,789 575,686

Table 3. Activity categories in Meetup

socializing singles language/ethnic identity
tech outdoors/adventure sports/recreation
fitness new age/spirituality dancing

movies/film games religion/beliefs
LGBT writing fashion/beauty

pets/animals parents/family book clubs
paranormal sci-fi/fantasy photography

supportmovements/politics community/environment hobbies/crafts
music fine arts/culture education/learning

career/business health/wellbeing movements/politics
new age/spirituality food/drink
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Fig. 3. The number of users that attend more than one category of events.

We use “user interest” to represent user’s preference for a certain type of activity. The
interest degree of user 𝑢 on event 𝑒, 𝐼𝑢𝑒 is calculated by the following formula:

𝐼𝑢𝑒 =
𝑁𝑢

𝐶𝑒

𝑁𝐻𝑢
.

𝑁𝑢
𝐶𝑒

= |{𝑒𝑖 ∈ 𝐶𝑒 ∩ 𝑒𝑖 ∈ 𝐻𝑢)}|
(1)
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Fig. 4. Distribution of home-event distance vs. the probability of event participation.

In Eq. (1), 𝑁𝑢
𝐶𝑒

is the number of events that user 𝑢 participates in and belongs to 𝐶𝑒; 𝑁𝐻𝑢

is the number of activities that 𝑢 has attended.

4.1.2 User-Event Distance. In real life, if a user is interested in an event, he may attend
the activity. However, if his location is too far from the event location, he may abandon his
attending plan [33]. The location of the event is especially important in social networks [21].
Therefore, we define the user-event distance to account for this phenomenon. We analyze
our dataset from the aspect of the attendance probability with respect to the home-event
distance in Fig. 4.

It indicates a power-law distribution: in other words, most users attend nearby events and
are less likely to attend events that are far away [34]. Based on this analysis, we define the
feature of distance 𝐷𝑢

𝑒 for users as:

𝐷𝑢
𝑒 = 𝑧 * 𝑑(𝑢, 𝑒)𝑏, (2)

where 𝑑(𝑢, 𝑒) is the distance between user 𝑢’s home location and event 𝑒’s location, 𝑧 and 𝑏
are coefficients that can be learned via curves fitting. In our paper, 𝑧=0.382, 𝑏=-0.843 in
New York and 𝑧=0.390, 𝑏= -0.887 in London.

4.1.3 Duration. Duration is an important feature of the activity [7]. We often participate
in activities during our free time. Therefore, duration may be a feature that users will pay
attention to. Especially for outdoor activities, weather conditions and the event duration
are very important to users’ willingness to attend. For example, an event of writing com-
munication may last for an hour, a movie watching activity lasts two to three hours, and a
concert may last longer.
We analyze the dataset for the duration (shown as in Fig. 5(a)). It indicates that the

average duration of different types of activities is quite different. Among them, “game” or
“culture” activities usually have a longer duration, which take more than 7 hours, “Religious”
activities or “learning” activities have a relatively shorter duration, usually 1-2 hours. Then,
we deeply study the category 𝑠𝑜𝑐𝑖𝑎𝑙𝑖𝑧𝑖𝑛𝑔. We find that the duration of different events is
also quite different. As shown in Fig. 5(b), 90% events take 2-5 hours. Few of them last
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Fig. 5. The duration statistic in our data set.
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Fig. 6. Average duration of events in weekdays and weekends.

shorter or longer. Therefore, we use a method to determine the duration of one kind of
activity. The duration of user 𝑢 on event 𝑒, 𝑃𝑢

𝑒 is calculated as follows.

𝑃𝑢
𝑒 =

𝐿𝑢
𝑒 *𝑁𝑢

𝐶𝑒∑︀
𝑒𝑖∈𝐶𝑒

𝐿𝑢
𝑒𝑖

(3)

In Eq. 3, 𝐶𝑒 is the category of event 𝑒, and 𝐿𝑢
𝑒 is defined as the duration of 𝑢 on the event 𝑒.

We first calculate the average duration of the activities that the user 𝑢 attends and that
belong to category 𝐶𝑒, and then compute the ratio between it and duration of the activity 𝑒.

Meanwhile, the existence of the weekend will also affect people’s willingness to attend the
event. Users may prefer to participate in activities that allow them to enjoy their vacation.
Fig. 6 shows that in both two cities, the average duration of the events are longer on the
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Fig. 7. The number of attendance with respect to different weather conditions

Table 4. The sample records of weather in our dataset.

Time Temperature Weather Wind Force Humidity

2018-03-01 -1∘C/-4∘ Cloudy Snow East Wind 4 46%
2018-03-02 1∘C/-1∘ Overcast Snow East-northeast Wind 4 32%
2018-03-03 -1∘C/-1∘ Moderate Snow East Wind 5 53%
2018-03-04 3∘C/3∘ Sleet Rainy East Wind 3 26%

weekend. Therefore, we define 𝑉𝑒 as the weekend feature of event 𝑒. If the event 𝑒 is held at
the weekend, we set 𝑉𝑒 as 1, otherwise we set 𝑉𝑒 as 0.

4.1.4 Weather Factor. Bad weather has a great impact on urban traffic [36]. Meanwhile,
many activities can be affected by the weather [16]. We collect the weather data corresponding
to our activity data, so as to investigate whether the weather has an impact on user attendance,
and if so, how it affects the user’s willingness to attend. Table 4 shows a sample of weather
data in our dataset. Its main attributes include the date, the temperature, the weather, the
wind force, and the relative humidity. First, we count the number of user attendance in
different weather conditions. As shown in Fig. 7, for different weather conditions there are
significant differences in the number of attendees. Therefore, we can say that the weather
does have an impact on the willingness of users to attend an event.

Next, we will explore how weather conditions affect people’s attendance willingness. Before
this, we need to quantify the weather data to facilitate the calculation in our model. In
this article, we propose two methods: frequency based indexing and human comfort based
indexing, as follows.

Frequency based indexing. Before indexing, we first process the temperature attribute.
According to Jiwei et al. [23] , while mood state is not sensitive to temperature, it is
significantly sensitive to temperature change. That is, a dramatic change in temperature
will make people feel uncomfortable. Therefore, we first calculate the temperature changes.
Next, we define the index rules as follows:
(1) Count the occurrence times of each case according to attributes, and sort it in

descending order according to the number of times;
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(2) Assign 0 to the most frequent occurrences and 1 to the second most frequent occurrence,
so on and so forth.

Taking Table 4 for example, if the value of a temperature appears the most times (e.g., -1
in Table 4), then the temperature will be assigned the index 0. Similarly, for the weather
type, the most frequent type will be assigned index 0, the second most frequent type with
index 1, so on and so forth. Finally, a record in the data may be represented with “2018-03-01
0 1 0 5” after processing. The temperature, the weather, the wind direction and the humidity
we process are denoted as 𝑊1, 𝑊2, 𝑊3, and 𝑊4 respectively.

Human comfort based indexing. We use the human comfort index 𝐷𝐼 to measure
people’s feelings about the weather conditions. It reflects the body’s comfort with the
environment in a certain temperature, humidity condition, and wind speed, with different
combinations of temperature and relative humidity. Through investigation, we select an
existing method that is frequently used by the meteorological administration [31]. The index
of human comfort index 𝐷𝐼 is calculated as follows:

𝐷𝐼 = 1.8𝑇 − 0.55(1.8𝑇 − 26)(1− 𝐹 )− 3.2
√︀

𝑊𝑠 + 32, (4)

where 𝑇 is the average temperature, 𝐹 is the relative humidity, and 𝑊𝑠 is the wind speed.
Generally, the range of 𝐷𝐼 is 0-90. When the value is too high or too low, humans will feel
uncomfortable. For example, when the temperature is 24∘C, the relative humidity is 50%,
and the average wind speed is 0.4 m/s, people will feel comfortable. In this case, the value
of 𝐷𝐼 is 69. When the temperature is 10∘C, the relative humidity is 95% and the average
wind speed is 4 m/s, people will feel slightly cold and a little uncomfortable. In this case,
the value of 𝐷𝐼 is 43. Fig. 8 displays the change of 𝐷𝐼 over time in details. We can observe
the weather characteristics of the two cities very well. The range of 𝐷𝐼 in New York is larger
due to there being four distinct seasons, while that range in London is more concentrated
due to there being less weather change over time.
In this subsection, we quantify the weather data in two ways. These two processing

methods will be applied to two types of activities. The frequency based indexing treats each
attribute as an independent feature. We will study the impact of each attribute on outdoor
activities. The human comfort based indexing combines multiple attributes together. We
will study its effect on indoor activities. We will deeply study the effects of the weather
factor on different activities in the following part.

4.2 The impacts of weather on different events

The impact of weather on different kinds of activities may be different. For outdoor activities,
a bad weather may directly affect the activities; for indoor activities, the bad weather may
indirectly affect people’s willingness to participate in activities, and make it harder to arrive
at the location of events [41]. Therefore, in order to better differentiate the effects of weather
factors on different activities, we first classify the activities into indoor events and outdoor
events. The common outdoor events and indoor events are listed in Table 5. Meanwhile,
we classify the impacts of weather factors on activities, which are divided into direct and
indirect impacts.

Direct Impact. For outdoor activities, weather factors have a direct impact. Therefore,
in the treatment of outdoor activities, we use the weather factors directly as a feature vector.

Indirect Impact. The impact of weather data on indoor activities cannot be neglected.
For example, bad weather makes it more difficult for users to travel [22]. Even if the distance
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Table 5. Common activity classification

Categories of outdoor events Categories of indoor events

Outdoor/adventure Film
Environmental Protection Fitness
Outdoor Photography Culture/Writing

Car/Bicycle Fashion/Clothing
Sports Women

0

2

4

6

8

91

 NewYork

D_
I/
10

Time

(a)

0

2

4

6

8

91

 London

D_
I/
10

Time

(b)

Fig. 8. 𝐷𝐼 of everday in New York and London.

from the user to the event venue is not very far, users may feel unwilling to go to the
destination and give up the participation [8]. This is because the uncomfortable weather has
increased our subjective distance to the event destination, exceeding the actual user-event
distance. This is a dimension of psychological distance, which is called spatial distance [42].
It is related to the actual distance as well as other factors [5]. The attendance probability of
indoor events is indirectly influenced by the changed distance factor.

Next, we define the way that human comfortableness affects the subjective distance. When
the human comfortableness index is too high or too low, people will be comfortable and they
will not be very satisfied with the weather conditions. In this case, their subjective distance
will be longer than the actual distance, and a longer distance will reduce the possibility of
participation. The subjective distance 𝐷𝑢

𝑠 is calculated as follows.

𝐷𝑢
𝑠 = ln(|⌊𝐷𝐼/10⌋ − 6|+ e)𝛽 *𝐷𝑢

𝑒 , (5)

where 𝐷𝑢
𝑒 is the actual distance, that is, the user-event distance defined in Section 4.1.2.

e is a natural constant, i.e., e ≈ 2.71828 When 𝐷𝐼 is too low or too high, people will be
uncomfortable. We use 𝐷𝐼/10− 6 to reflect the impact of comfortableness. 𝛽 represents the
extent to which the weather affects the distance. We will discuss the effects of 𝛽 in details in
the experiment.
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5 ATTENDANCE PREDICTION: THE GBT-W MODEL

In this section, we establish the prediction model GBT-W for activity attendance from the
view of organizers. We model attendance prediction as a binary classification problem. We
first select positive and negative samples, then we propose the prediction model based on
the Gradient Boosting Tree.

5.1 Sample Selection

When establishing a classification model, we need a certain number of positive and negative
samples [24]. We can easily use the users who take part in activities as positive samples
(denoted as 𝑈𝑝𝑜𝑠). The main difficulty lies in the selection of negative samples (U𝑛𝑒𝑔). In
a large group of users, the number of users who do not participate in an activity is much
larger than the number of those who do. Therefore, in order to avoid data imbalance, it is
very important to select proper negative samples.

We can solve the data imbalance by random sampling that selects the negative samples
with the same quantity as that of positive samples. However, random sampling neglects
the fact that there are many different types of users who do not participate in an event
[12]. Some people may not want to go for special reasons. Most people are actually unaware
of such activities. If we select these people to build negative samples, it will have a great
side impact on the prediction model. Therefore, we must pick out the right users who can
accurately influence the attendance prediction, filtering out those who are unrelated.
We first filter out unrelated users by user interest and user-event distance. Users have a

low probability of participating in activities that are very far away. Meanwhile, if someone
doesn’t like a certain type of activity, then his relevance to the activity will be very low.
Based on the two phenomena, we introduce two thresholds to filter samples [40]. They are
the threshold of the interest (denoted as 𝑇1) and the threshold of distance (denoted as 𝑇2).
The two thresholds are used to select users with appropriate interest or user-event distance.

Next, we construct the set of negative samples (denoted as 𝑈𝑛𝑒𝑔). We first generate the
initial sample set from all users who do not participate in event 𝑒, and whose interest is
larger than 𝑇1 or whose distance is smaller than 𝑇2, as follows.

𝑈𝑐𝑎 = {𝑢 /∈ 𝑈𝑒 : (𝐼
𝑢
𝑒 > 𝑇1) ∪ (𝐷𝑢

𝑒 < 𝑇2)} (6)

𝑈𝑛𝑒𝑔 = 𝑆𝑎𝑚𝑝𝑙𝑒(𝑈𝑐𝑎), (7)

where 𝑢 /∈ 𝑈𝑒 represents users who do not participate in event 𝑒. 𝑈𝑛𝑒𝑔 is generated by
random sampling of 𝑈𝑐𝑎. Then we mix 𝑈𝑝𝑜𝑠 and 𝑈𝑛𝑒𝑔 as the training sets and build model
GBT-W based on the gradient descent decision tree [47].

5.2 Attendance Prediction Model

With the generated positive and negative samples, we can build the attendance prediction
model GBT-W .
Preliminary: Gradient-Boosting trees (GBT ) is used to predict attendance. GBT

algorithm has been validated to be very effective in dealing with classification problems, and
achieves a higher accuracy than other methods [43]. GBT uses a weak classifier to train on
the basis of the residual after each classification [11]. The GBT gets the results of multiple
iterations and takes the weighted average value. Moreover, GBT uses another iterator to
enhance the performance [29].
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Prediction method. In order to better integrate the weather factor to improve the
attendance prediction, we treat the indoor and outdoor activities separately. For the outdoor
events, we use the processed weather data to fuse the feature. For the indoor events, we
use the temperature and relative humidity to calculate the human comfortableness. The
details are shown in Algorithm 1. We use the extracted feature vectors in combination with
the Gradient-Boosting trees to make prediction. For each candidate user, we can use our
algorithm to predict whether he will attend the event 𝑒. We sum up all the number of users
whose prediction result is 1 (i.e., attendance) as the total attendance number of the event 𝑒.

ALGORITHM 1: GBT-W : Attendance prediction with weather based on the GBT

Input: a set of test users 𝑈 , an event 𝑒, multiple different possible weather data of 𝑒
Output: Prediction Result 𝑅 (an array of binary values, each element is for a user) for different

weather conditions
1 Let 𝑅𝑒

𝑢 be the prediction result (a binary value) of a user 𝑢, indicating whether he will attend the
event 𝑒, 1 for yes and 0 for no.

2 for each weather condition of 𝑒 do
3 for each 𝑢 in 𝑈 do
4 Calculate the interest degree 𝐼𝑢𝑒 by Eq.1.

5 Calculate feature of distance 𝐷𝑢
𝑒 by Eq.2.

6 Calculate feature of duration 𝑃𝑢
𝑒 by Eq.3.

7 Qualify weather data (temperature, weather type, wind force and humidity): 𝑊1, 𝑊2, 𝑊3,
𝑊4.

8 if 𝑒 is outdoor event then
9 𝐹𝑢

𝑒 =𝐼𝑢𝑒 +𝐷𝑢
𝑒+𝑃𝑢

𝑒 +𝑉𝑒+𝑊1+𝑊2+𝑊3+𝑊4;

10 end

11 if 𝑒 is an indoor event then
12 Calculate human comfort index 𝐷𝐼 by Eq.4.

13 Calculate actual distance 𝐷𝑢
𝑠 by Eq.5.

14 𝐷𝑢
𝑒 = 𝐷𝑢

𝑠 .

15 𝐹𝑢
𝑒 =𝐼𝑢𝑒 +𝐷𝑢

𝑒+𝑃𝑢
𝑒 +𝑉𝑒.

16 end

17 Precision result 𝑅𝑒
𝑢 = 𝑀𝑂𝐷𝐸𝐿𝐺𝐵𝑇 (𝐹

𝑢
𝑒 ).

18 end

19 return 𝑅.

20 end

Organizers often do not get accurate weather conditions when planning an event. Therefore,
in Algorithm 1, we take multiple different weather conditions as the input, and our algorithm
can predict the user’s attendance at events under different weather conditions. This allows
event organizers to adjust their event plans in time according to the weather changes.

In Algorithm 1, we treat indoor and outdoor activities separately. For the outdoor events
(lines 8-10), we use the processed weather data to fuse the feature. For the indoor events
(lines 11-16), we only use the temperature and relative humidity to calculate the human
comfortableness. 𝐹𝑢

𝑒 is the fusion feature about all aspects of processed features. For outdoor
events (line 9), we combine the features of user interest 𝐼𝑢𝑒 , distance feature 𝐷𝑢

𝑒 , duration
feature 𝑃𝑢

𝑒 , weekend feature 𝑉𝑒, weather feature 𝑊1, 𝑊2, 𝑊3, and 𝑊4 to obtain the fusion
feature. For indoor events (line 15), we combine the features of user interest 𝐼𝑢𝑒 , distance
feature 𝐷𝑢

𝑒 , duration feature 𝑃𝑢
𝑒 , and weekend feature 𝑉𝑒 to obtain the fusion feature. When
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we get all the feature vectors for prediction, we sort them by the starting time of activities.
We use the earliest 80% to train the model and use the next 20% as the testing set.

We also build some other models for comparison in experiments. We build the model
GBT-1 by removing feature 𝑃𝑢

𝑒 in 𝐹𝑢
𝑒 , the model GBT-2 by not distinguishing between

outdoor and indoor activities, the model GBT-3 by not distinguishing activities, the model
GBT-4 by removing feature 𝐼𝑢𝑒 in 𝐹𝑢

𝑒 , and the model GBT-5 by removing feature 𝐷𝑢
𝑒 in

𝐹𝑢
𝑒 .
For a future event 𝑒, event organizers may not get the exact weather conditions when

planning events. Our model can provide multiple predictions with multiple weather conditions
for the organizers, so that they can conduct more comprehensive planning. Moreover, as the
time gets closer to the event date, organizers can use our model to adjust their plans, so as
to make the event more successful and attract more people to participate.

6 EXPERIMENTS

In this section, we evaluate the proposed GBT-W model with the crawled real EBSNs data
set as described in Section 3.2. We test the performance of our model from several aspects
and compare it with other existing methods. Our experimental environment is Hadoop 2.6.0,
Spark 1.6.0, Python 3.6.4. We use five-fold cross-validation and our experimental classifier
training takes about 42 minutes.

6.1 Experimental settings

Evaluation Metrics. We compare these methods based on two common metrics of precision
and recall.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑁𝑇𝑃

𝑁𝑇𝑃+𝑁𝐹𝑃
,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑁𝑇𝑃

𝑁𝑇𝑃+𝑁𝐹𝑁
.

(8)

in which 𝑁𝑇𝑃 is the number of attendances whose both actual and the predicted results
are positive (i.e., attendance). 𝑁𝐹𝑃 represents the number of users whose actual result is
absence but whose prediction result is attendance. 𝑁𝐹𝑁 is the number of users whose actual
result is attendance and the prediction result is absence.

Baseline models. It is worth noting that, it is difficult to conduct fair comparison with
other attendance prediction models which exploit other factors. However, their prediction
models are generally based on typical classifiers including Singular Value Decomposition[9],
Decision Tree [34], etc. Therefore, we compare with different classifiers in our experiments.
To examine the effectiveness of our method, we compare it with the following models:

∙ GBT-1 : It models all features apart from duration. It is used to validate the impact
of duration on event attendance.

∙ GBT-2 : It does not distinguish between outdoor activities and indoor activities, and
the weather data is processed in the same way as outdoor activities. It is used to test
the impact of different weather factor treatments on event attendance.

∙ GBT-3 : It does not use the thresholds mentioned in Section 5 to select the negative
samples. It selects all users that haven’t attended the event as the negative samples.
It is used to check the effects of different negative sample selection methods on event
attendance.

∙ GBT-4 : It models all features apart from user interest. It is used to check the impact
of user interest on event attendance.

∙ GBT-5 : It models all features apart from user-event distance. It is used to validate
the impact of the distance on event attendance.
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Fig. 9. Prediction Performance with different 𝛽 in New York.

∙ SVD-MFN : It combines user preferences, distance factors, and puts feature vectors
into a matrix to predict individual attendance by using Singular Value Decomposition
(SVD).

∙ DT-W : It models all features with the decision tree algorithm.
∙ RT-W : It models all features with the random forest algorithm.
∙ GBT-W : It is our proposed attendance prediction model. Our GBT-W model
combines user interest, user-event distance, weather data, and event duration to
conduct the prediction with decision tree based on gradient boosting.

Among the above baselines, GBT-1 , GBT-2 , GBT-3 , GBT-4 , GBT-5 are used to
test the effects of different components or features of our work. SVD-MFN , DT-W ,
RT-W are used to test classifiers.

6.2 The effects of Parameter 𝛽

In this section, we study the impact of parameter 𝛽. When our model predicts the attendance
of users in indoor activities, we study the changes in human psychology caused by weather
factors. We propose to use the human comfort index to measure people’s feelings about
weather conditions, and to differentiate actual user-event distance and subjective distance
of user psychology. The parameter 𝛽 shown in Eq. 5 indicates how the subjective distance
in our psychology is affected by the actual distance and the comfort index. The prediction
performance with different 𝛽 values in two cities are shown in Fig. 9 and Fig. 10, respectively.

GBT-W achieves the best results when 𝛽 is 1.4 in New York and 0.8 in London. When
its value is too large or too small, the performance of the model drops quickly. We analyze
the reason and find that if it is too large, our model will exaggerate the influence of weather
factors on people’s psychology, and the subjective distance we obtain will be much larger
than the actual distance. If 𝛽 is too small, the proportion of the influence of weather factors
becomes extremely small, which also reduces the performance. Meanwhile, we can see that
the best 𝛽 of the two cities are different. The value of 𝛽 in New York is larger than that in
London. It indicates that users in New York may be affected more by bad weather, resulting
in lower willingness to participate in the event. The possible reason may be that the weather
in London is more erratic, indirectly causing users in London to endure bad weather. In
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Fig. 10. Prediction Performance with different 𝛽 in London.

contrast, in New York, where the four seasons are distinct, people have little tolerance for
bad weather.

6.3 Performance analysis

We conduct comparison with baseline models in terms of precision and recall.
Overall performance. The results of New York and London are shown in Fig. 11 and

Fig. 12, respectively. It shows that our GBT-W model has good performance, whose
precision and recall reach over 80% in both New York and London. Moreover, GBT-W
can even reach more than 85% in both cities, whose precision and recall are 8.9% and 9.1%
higher than that of SVD-MFN respectively in New York; the improvements are 14.8%
and 13.6% in London. It validates that considering the duration and weather factors in the
prediction helps improve the accuracy.
Meanwhile, we observe that the performance of GBT-4 (neglect interest) and GBT-5

(neglect distance) are much worse, which indicates that the interest and the distance have
very important impact on attendance prediction. DT-W and RT-W have a little worse
performance, whose precision is 2% and 1.3% lower than taht of GBT-W . It indicates that
the GBT algorithm is more suitable for our prediction model.

Moreover, the overall performance in London is not as good as that in New York. There
is a possible reason: The weather in London is more uncertain, which may influence the
performance of the model and increase the uncertainty. Meanwhile, the uncertainty of
weather in London may make users care more about the duration of the event, especially
those who participate in outdoor activities. Therefore, the performance differences between
GBT-1 and GBT-W in London are bigger than that in New York, since GBT-1 neglects
the duration.
In the following part, we will compare GBT-1 , GBT-2 , GBT-3 with the integrated

GBT-W model, to check the effects of our model components.
The effects of considering duration. Our research integrates one factor : activity

duration. The model GBT-1 builds the prediction model without the factor of duration.
Fig. 11 and Fig. 12 show that, in both New York and London, GBT-W has a better
performance than that of GBT-1 , which is 6.6% and 7.5% higher in precision and recall
respectively on average. It indicates the necessity of considering the duration. Moreover, the
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Fig. 11. Overall Performance in New York.

differences between the two models in the outdoor events are bigger than the changes in
the indoor events, which is 6% and 3% higher in outdoor and indoor events respectively on
average. It may be because compared with indoor activities, users pay more attention to the
duration when they participate in outdoor activities.

The effects of processing weather data. GBT-2 treats the weather data in all
events the same as for outdoor events, neglecting the difference between indoor and outdoor
events. From the results in Fig. 11 and Fig. 12, we can see that for outdoor events in both
cities, the performances of GBT-2 and GBT-W are the same. This is because they process
weather data in outdoor events the same way. As for the indoor activities, GBT-W performs
better than GBT-2 , whose average performance is 5% and 6.1% higher in precision and
recall, respectively. It indicates the necessity of differentiating the impacts of weather on
different activities (i.e., the outdoor and the indoor activities).

The effects of generating negative samples. As mentioned before, we select negative
samples by the two thresholds of user interest and user-event distance. The model GBT-3
doesn’t utilize the thresholds to select negative samples. Fig. 11 and Fig. 12 show that
GBT-W has much better performance than GBT-3 in the indoor activities. It reaches
5.5% and 5.32% higher than GBT-3 in precision and recall respectively in London, and
6.3% and 7.4% in New York. Meanwhile, for outdoor events, the improvements of GBT-W
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Fig. 12. Overall Performance in London.

over GBT-3 are 5.1% and 3.4% in precision and recall in London, and 6.1% and 6.5%
in New York, respectively. It indicates that utilizing the two thresholds helps improve the
prediction accuracy. Moreover, the improvement of outdoor events is a bit lower than that
of indoor events. It may be because there are fewer records of outdoor events than indoor
events.

6.4 Deep analysis by quarter

Generally, the weather is different in different quarters. In order to test the performance
of our prediction model in different quarters, we divide the experimental data into four
quarters according to the event starting time, and sort by the time. Then we select the
earliest 80% in these four quarters to train the model and use the next 20% as the testing
set. The results are shown in Fig. 13 and Fig. 14 for New York and London, respectively.

Performance in different quarters. Overall, the prediction performance in New York
is better than that of London, which is 3.2% higher than London. The possible reason is
that the climate characteristics of the two cities are different. Compared with London, New
York has more regular climate change and four distinct seasons. This feature can improve
prediction performance.
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Fig. 13. Performance in different quarters in New York.
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Fig. 14. Performance in different quarters in London.
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We also find that in New York, the performance of outdoor activities decreases first and
then rises with the change of the quarters. One possible reason for this is the four distinct
seasons in New York, where temperatures gradually increase over time, making users may
pay more attention to the effects of low or high temperatures on their participation in the
first and the third quarters. Meanwhile, there is no significant trend for indoor activities
in New York like there is for outdoor activities. The reason is that the temperature in the
second or the third quarter is relatively comfortable and thus it does not have much impact
on the user’s travel to indoor events.

Performance in London (as shown in Fig. 13) is very different from that in New York (as
shown in Fig. 14). In the four quarters, the performance of outdoor activities has gradually
decreased significantly. This may be due to London’s climate characteristics. Unlike the
distinct seasons in New York, London is like spring all the year round; but London has
more rainy weather. Excessive rainy weather and climate change can have a large impact on
users’ participation in outdoor activities, and this random situation leads to a decline in
predictive performance. However, the performance of indoor activities has not declined very
quickly, which may be due to the fact that the changing weather has less impact on users’
participation in indoor activities.

6.5 Performance for different kinds of users.

The frequencies with which users use social networks are quite different. Therefore, users
can be divided into active users and inactive users [9]. In our dataset, the average number of
activity attendances for users is 5. The details of active users and inactive users are shown
in Fig. 15. In New York, about 6% of people participate in activities more than 10 times,
and the number of participants between 5 and 10 is 20.4 percent. 73.6% of users participate
in fewer than 5 events. Meanwhile, in London, about 2.5% of people participate in activities
more than 10 times, and the number of participants between 5 and 10 is 13.2%. 84.3% of
users participate in fewer than 5 events.
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Fig. 15. Statistic of the Number of Users Participating in Activities.

Based on the above statistics, we take 5 as a threshold, and we divide users in our dataset
into inactive users and active users. The prediction results of the two users sets are shown
in Fig. 16. The proposed GBT-W model achieves higher precision for both active users
and inactive users. It validates the effectiveness of considering the weather factor. Moreover,
it is a bit strange that the performance of inactive users is better than that of active users.
We analyze the reason and find that it may be because the number of inactive users is more
than that of active users.
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Fig. 16. Performance for different kinds of users in New York and London.

6.6 Summary of experiments

We conducted intensive experiments to validate the effectiveness of the proposed attendance
prediction model and test the effects of several key features. Our main findings are summarized
as follows:
1. Considering the weather factors in attendance prediction can improve the prediction

performance, however the impact of the weather on attendance varies in different cities and
for different activity classifications.

2. It is necessary to consider the duration of the event and the selection of negative samples
in attendance prediction, which can improve the performance of the prediction.

3. Our model has good prediction performance for both active and inactive users.
4. Different from existing attendance prediction models, our work in this paper focus on

deeply study the impact of weather on event attendance of different activities, and exploit it
for enhancing attendance prediction from the view of organizers. Intensive data analyses
and experiments validate the effects of weather, as well as the effectiveness of our prediction
model.
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7 APPLICATION OF OUR MODEL FOR EVENT ORGANIZER

In this section, we discuss how our model can help organizers to hold a popular event.
Event organizers only need to propose the type of activities they are preparing, as well as
several options for the event time and the event venue. Our attendance prediction model
can integrate possible factors (e.g. the weather) to predict the number of attendances
and recommend top-k settings for the organizers. We implement a demo to illustrate the
application, as shown in Fig. 17.

Fig. 17. The demo of activity attendance prediction and recommendation.

It can be seen from Fig. 17 that our method can recommend several candidate settings
according to the choices of the organizer, and provide the number of possible attendees to
the organizers. This process is somewhat different from traditional activity recommendation,
which recommends personalized activities based on the target participant’s information.
Our work is able to provide the organizers with top-k settings for preparing activities and
provide possible attendance numbers with respect to different settings.

Discussion. It is worth discussing more deeply that: if there is no accurate weather
information, then how can our model work? First of all, our model can provide multiple
choices according to different settings (including different weather). Second, we crawl more
data to check the creation time and starting time of the events in our event data for London
and New York. We calculate the proportion of the interval days with [0,5], [6,10], [11,15],
[16,20], [21,25], [26,30], and more than 30, as shown in Fig. 18.

It indicates that about 30% of events are held within half a month after the events were
created, about 38% are held within 20 days, about 45% within 25 days, and about 50%
within 30 days. In this case, organizers can check the weather forecast to estimate the
weather conditions of the event day when publishing the event. For other cases in which an
event is published many days or even weeks before the event day, the organizer can refer to
several possible choices by our prediction and make a full consideration. Moreover, he can
also adjust some details when the date is closer. Furthermore, thanks to the development
and new research in weather forecast, people can expect more accurate weather information
for longer time before the event. Therefore, we would say that weather information may
limit a little of our prediction model.
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 >30

Fig. 18. Time interval (days) between event being created and event day.

8 CONCLUSION AND FUTURE WORK

In this paper, we study the effects of the weather factor in activity attendance prediction for
organizers in EBSNs. We build an attendance prediction model by extracting and combining
the internal and external factors of events, including users’ interest, user-event distance, the
duration of the event, and the weather factor. We extensively study the impact of weather
on different types of indoor and outdoor activities. Experimental results in our collected
real dataset validate the effectiveness of our method. We also develop a demo to show how
our work can help the organizers hold activities.
In future work, we will improve our model to update the prediction according to the

possible evolution/update of weather or other factors. We are also interested in studying
more factors that impact the attendance of activities. We will further consider the internal
connections among those factors, such as the air pressure in the environment and the traffic
factors. We would also like to apply our method into more EBSNs.
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