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Abstract—In Software Defined Networks (SDNs), flows usually
request to be processed by a service chain (an ordered set of
virtualized network services). SDN-enabled networks manage the
routing and processing of flows by a large number of associated
finer-granularity rules. These rules are maintained by switches
in their local hardware such as Ternary Content Addressable
Memories (TCAMs), which support high-speed parallel lookup
on wildcard patterns. However, the capacity of hardware switches
is limited to thousands because of their high requirements for
cost and power. In order to avoid much slower matching by
using software switches or even packet loss, we can group flows
so that all matching rules can be placed in hardware switches.
In such a grouping, all flows in each group match only one
rule and will be forwarded to the same routing path, instead of
each flow matching one rule. This will result in a longer delay
because of processing by the longer newly-grouped service chain.
In this paper, we efficiently group flows to minimize the total cost
while satisfying the capacity constraint of the forwarding tables
in hardware switches. We first prove the submodularity of our
objective function and propose a corresponding performance-
guaranteed solution. Additionally, we design an efficient heuristic
solution based on the classic k-means algorithm. Furthermore,
we include discussions on dynamic network situations (insertion,
deletion, and update of flows) and an alternative objective. We
also conduct real experiments on our testbed to indicate the prac-
ticality of our motivation. Extensive simulations are conducted
to evaluate the performance of our proposed algorithms.

Index Terms—TCAM, grouping, rule, submodular, k-means.

I. INTRODUCTION

The role of modern networks has transformed to provide
various types of network services (such as security, per-
formance optimization, cross-protocol inter-operability, and
value-added services) beyond providing basic connectivity ser-
vices. Nowadays, network services usually requires multiple
network functions, also called middleboxes, to be chained
together in some order, which is known as the service chain
[1, 2]. For example, in operator networks [3], data centers
[4, 5], mobile networks [6], and enterprise networks [7],
network operators often require traffic to pass the service
chain: Firewall, IDS, and proxy in the sequence order [8–
10]. Network Function Virtualization (NFV) helps in imple-
menting network functions on regular hardwares as software
middleboxes, which are deployed at switch-connected servers
[11, 12]. These middleboxes add tags in packet headers to
track their processing states. The tagging scheme is lightweight
and effective even without switch modification [13]. In the
flow table at each switch, forwarding rules define how to
process the received flows based on requested policies [14]. In
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Fig. 1: An illustrating example (f1 requires A→ B → C, f2

requires A→ C, and f3 requires A→ D → C).

order to enforce service chains with these tag-augmented rules,
there are more forwarding actions (to switches or middleboxes
deployed at its connected server), which dramatically enlarges
the number of forwarding rules in switches.

For modern switches, there are two types: hardware-based
and software-based switches [15]. In hardware switches,
Ternary Content Addressable Memory (TCAM) enables fast
lookups with flexible wildcard rule patterns. The cost and
power requirements of TCAM limit the number of rules that
a hardware switch can support. In general, a TCAM enabled
switch can store only 5000 rules [16]. Software switches
form a classic cache and main memory pair that stores and
processes rules together. They have a large rule capacity but
match rules much more slowly than hardware ones, which
incurs a longer delay by a higher magnitude. In a Software
Defined Network (SDN) that has a large number of active
flows, SDN allows control applications to install forwarding
policies for routing flows in a finer granularity at underlying
switches [17], resulting in flow tables at TCAM hardware
being easily overflowed. What makes things worse is that SDN
also enables traffic routing optimization in terms of device
costs, total throughput, load balancing, etc., and at the same
time satisfies correct traversal of service chain for each flow,
which results in a flooding number of necessary rules that need
to be installed in switches. In order to reduce the network
overall delay, efficiently utilizing the forwarding table entries
in TCAM hardware becomes more important [18].

In this paper, we propose to control the number of forward-
ing rules using service chain grouping. Service chain grouping
combines selected service chains in a directed graph and per-
forms topological sorting [19] to generate a new service chain.
All corresponding flows in each group serve as a new flow
and get processed by the same newly-grouped service chain,



which reduces the number of forwarding rules in a coarser
routing granularity. We can apply the tagging technology to tag
each packet’s header for all flows in one group with a unique
rule ID [20]. The tagging scheme is lightweight and augments
only tens lines of code to middleboxes [13]. The hardware
does not need to be changed, either. Then we use the ID as
one attribute for matching the forwarding rules in switches.
The grouping tagging action will be done once and only once
when the flow comes out of source. After that, all flows in
the same group act as a new flow and the rule matching will
have no difference without the grouping. So the overhead
is low. However, grouping flows together generates longer
service chains, which will incur a larger overall transmission
delay. The tag attached to the packets of a flow also indicates
whether the packets will be processed by a NF or not. For
example, if a packet is not tagged with decrypter but it travels
the decrypter, it will not be processed by decrypter. However,
because of increased hop the delay will increase little bit. It is
a trade of between the delay increased by overloaded switch
and increased hops. We have added this clear explanation in
this revision. If there are more flows to be grouped together as
one flow, we will have fewer flows, which means fewer rules in
switches but longer newly-grouped service chains, resulting in
a larger overall flow transmission delay. Then there is a trade-
off between the total number of service chains (or groups)
and the average length of service chains in newly generated
groups, also the overall end-to-end delay of all flows.

We illustrate our problem in a toy network with five
switches (circles) S1, S2, S3, S4, and S5 in Fig. 1. Four kinds
of middleboxes A,B,C, and D, shown in squares, are placed
in the network. We use→ to represent the dependency relation
between two middleboxes in a service chain. For example,
A → B means A needs to be processed before B. There
are three flows f1, f2, and f3 in the network, each of whose
path is in a different shaped, directed line. f1 requires the
service chain of A → B → C, f2 requires the service chain
of A→ C, and f3 requires the service chain of A→ D → C.
Then we use the forwarding table of switch S1 as a motivating
example. According to the service chain requests, f1 needs to
be processed by middleboxes B and C while f2 and f3 only
need to be processed by middlebox C at S1. There are 7
rules in S1 to implement the forwarding policies of all flows,
which include 3 for f1, 2 for f2, and 2 for f3 in order to
differentiate each state of each flow. However, if we merge
the service chains of f1 and f3 and serve them as a new flow
f4, the number of rules is reduced to 5. f1 and f3 use the same
3 rule entries in the forwarding table of S1, but at the expense
of f3 being processed by an extra middlebox B. Both their
service chains are extended to A→ D → B → C, resulting in
a larger end-to-end delay. If we group all their service chains
into one, the total number of rules will be reduced to 4. This
indicates the tradeoff between the number of forwarding rules
and the average length of service chains.

In this paper, we aim at efficiently grouping service chains
with the minimum total cost (traffic rate times service chain
length) while the total number of service chains is limited
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Fig. 2: A motivating example, where f(r) represents a flow f
with the traffic rate r.

to the capacity of forwarding tables in TCAMs. We first
formulate our problem mathematically. Then we prove the
submodularity of our cost function and propose a correspond-
ing solution with an approximation ratio. Besides that, we
adjust the k-means method to solve our problem with intuitive
insights. Additionally, we include discussions about service
chain updates, load balancing, and the extended model for
actual end-to-end delay. We use real-world data to verify the
trade-off between the total number of service chains and the
actual end-to-end delay, where the number of rules can exceed
the capacity of TCAMs. Extensive simulations are conducted
to evaluate the performance of our proposed algorithms in
various scenarios.

The remainder of this paper is organized as follows. Section
II describes the model and formulates the problem. Section III
introduces our algorithms based on the submodular property
of our objective function. In Section IV, we provide alternative
solutions based on the k-means algorithm. We include several
discussions in Section V. Section VI includes the experiments.
Section VII surveys related works. Finally, Section VII con-
cludes the paper.

II. MODEL AND FORMULATION

In this section, we talk about our motivation, network
model, problem formulation, and the problem hardness.

A. Motivation

SDN enables a centralized controller to install fine-grained
forwarding rules into the forwarding table of each underlying
switches in data plane, consisting of hardware switches and
software switches. The Ternary Content Addressable Mem-
ory (TCAM) allows fast lookups with flexible wildcard rule
patterns. However, the cost and power requirements limit
the number of rules that the hardware switches can support.
In other words, the capacity of forwarding tables is quite
restricted. Software switches form a classic cache and main
memory pair that stores and processes rules together. They
have a large rule capacity but match rules much more slowly
than hardware ones, which incurs a longer delay by a higher
magnitude. In this paper, we propose to reduce the number
of forwarding entries, restricted by the capacity of TCAM



switches, by grouping service chains in order to avoid this
kind of performance degradation.

We use a motivating example, shown in Fig. 2, to illustrate
the service chain grouping with different constraints. We are
given five flows f1, f2, f3, f4, and f5, whose traffic rates are
3, 2, 1, 6, and 4, respectively. Squares with different letters
are different kinds of middleboxes. We use directed arrows
to represent the dependency relationships (processing order)
among middleboxes. The required service chain by each flow
is shown in Fig. 2(a). For example, f1 needs to be processed
by middlebox A first, then middlebox B, and finally middlebox
C. Our objective is to minimize the total cost, which is the sum
of each grouped service chain length times the total traffic rate
to be processed by that service chain. If we are only allowed
to have three chains, the optimal grouping strategy is shown in
Fig. 2(b). The service chains of f1, f2, and f3 are merged into
one grouped service chain by using one topological order of
all middleboxes based on their dependency relations in each
chain. The length of the newly grouped chain is 6 and the total
traffic rate of these three flows is 3+2+1 = 6. Then the cost
of the newly grouped service chain is 6 · 6 = 36. The service
chains of the other two flows do not need to be merged and
remain as a single service chain in the final result. The total
cost is 6 · 6 + 3 · 6 + 2 · 4 = 62.

If we are only allowed to have two chains, the optimal
grouping strategy is shown in Fig. 2(c). The total cost is
3 · 6 + 6 · 10 = 78, which is larger than that with three
chains. This is because with a smaller number of service
chains, more flows need to be assigned to one group with
a more likely longer service chain. It makes the cost for each
flow increase, resulting in a larger total cost. Fig. 2(d) shows
another grouping strategy with a total cost of 9 ·5+7 ·5 = 80,
which is larger than that of Fig. 2(c). It is not optimal for our
objective of the total cost. However, the length of its longest
grouped chain is 5, which is shorter than that in Fig. 2(c).
Additionally, its largest total traffic rate of all grouped service
chains is 9, while the value is 10 in Fig. 2(c). As a result,
Fig. 2(d) has a more balancing distribution of traffic rate,
making it less likely to violate the link capacity constraint.
This illustrates that the grouping problem is not trivial with
different constraints and objectives.

B. Network Model

We are given a set of unsplittable flows F = {f} because
flow splitting may not be feasible for applications that are sen-
sitive to TCP packet ordering (e.g. video applications). Note
that split flows can be treated as multiple unsplittable flows.
For the network function load balancer, it usally redistributes
the traffic load of one flow into different routes, where we
directly treat the flow as several independent flows from the
source. We use f to denote a single flow that has an initial
traffic rate of rf , and a requested service chain of Cf , which
is an ordered set of middleboxes. We reduce the number of
forwarding rules by service chain grouping. We need to group
several requested service chains into one as a newly grouped

Symbols Definitions

f, F a flow and the set of all flows

rf , Cf f ’s traffic rate and its requested service chain

G,Ω a service chain after grouping and the set of all G

XG
f indicator of service chain Cf assigned to G

cost(G) the cost function of a service chain G

TABLE I: Symbols and Definitions.

service chain G. Here we introduce the definition of service
chain grouping.

Definition 1: Service chain grouping: the grouping proce-
dure of multiple service chains forms a new service chain
including all distinct middleboxes of these chains, which are
sorted in a topological order.

We define G as a service chain after grouping, which is
either a newly grouped service chain or an original requested
service chain that is not grouped with other chains. The length
of a service chain G is denoted as |G|, which is the total
number of middleboxes in G. (We use | · | to denote the
cardinality of a set.) The union set of all service chains
after grouping is defined as Ω, i.e., Ω = {G}. We introduce
an indicator value XG

f to indicate whether Cf is assigned
(grouped) to G. If yes, XG

f = 1; otherwise, XG
f = 0. The

cost of a service chain G, cost(G), is defined as follows:
Definition 2: Cost function: is the length of the newly-

grouped service chain G times the total traffic rate of each
flow f that is assigned to the group chain G, i.e., XG

f = 1,
which satisfies cost(G) = |G| ·

∑
XG

f =1 rf .
We are given a pre-determined parameter k as the allowed

total number of service chains after the service chain grouping.
This constraint comes from the capacity of the forwarding
table entries in hardware switches. The value of k can be
slightly larger than the capacity of forwarding tables because
TCAMs can reduce the number of rules by wildcard matching.
The value can be adjusted in the real network environment. If
the value of k is much higher than the capacity, then because of
the overwhelming flow table, the matching takes a longer time
and the delay increases dramatically. This parameter limits
the total number of service chains after grouping to no more
than k, meaning |Ω| ≤ k. Here we need to mention that the
deployment issue of multiple VNF instances of the same type
is out of scope of this paper, which has been studied by a lot
of research [21].

C. Problem Hardness

Theorem 1: It is NP-hard to check whether there is a
feasible service chain grouping with a constraint that the total
number of service chains is no more than k.

Proof: First, we draw the dependency graph, denoted as P ,
of all requested service chains {Cf |∀f ∈ F}. If there are
no cycles or no more than k cycles in the generated directed
graph, the service chain grouping is definitely feasible because
we can break each cycle and make each into a separate new
service chain, resulting in a total number no more than k. If
there are more than k cycles or cycles that intertwine with



each other, we prove that it is NP-hard to check its feasibility.
Simply speaking, it is NP-hard to check whether it is possible
to break all cycles by cutting off no more than k edges [22].
Specifically, we can apply the method proposed in [23] to find
all Strong Connected Components (SCCs). Suppose there is
one SCC in the directed graph P and the general collection of
cycles (elements) is U . In total, N service chains involve in
P and the ith service chain (i = 1, ..., n) is able to break the
set Si ⊆ U . The goal is to break all the cycles by removing
k− 1 service chains. We consider each cycle is an element in
the set cover problem. The union set is the set of all cycles.
Each set in the set cover problem is the set of all the cycles
removing one service chain that can break the cycle. So we
reduce the original problem to the so-called set cover, an NP-
hard problem that covers all elements by selecting k− 1 sets.
�

Since SDN rules match with packets against specified
header fields, forwarding ambiguity arises when a packet goes
through a switch more than once, each time toward a different
next hop. Flows always ask for network function service,
which further enlarges the number of rules dramatically. Net-
work functions (NFs) such as firewalls, deep packet inspection,
content caches, WAN load-balancers, etc. are provided by
specialized network devices called middleboxes. They are
widely deployed in various networking scenarios including
broadband access networks, enterprise networks, backbone
networks, data centers, and cloud computing environments
[24]. Typically, network flows go through several NFs in a
specific order to meet the required processing. This forwarding
ambiguity is further exacerbated by middleboxes like NAT.
Without their modification strategies as a priori, it is hard to
pre-configure rules for modified packets. Stateful processing
against forwarding ambiguity requires middleboxes to tag
packet headers [13]. The tagging scheme is lightweight and
augments only tens lines of code to middleboxes. With the
limited number of the forwarding table in a switch, we have
to efficiently utilize each rule in order to route more flows.
We also implement a motivating experiment in a real testbed
in order to show that the matching speed increases a lot when
the number of rules exceeds the capacity of the forwarding
table in a switch.

D. Problem Formulation
Based on the above network model, we formulate our ser-

vice chain grouping problem in this paper as an optimization
problem with an objective of minimizing the total cost of all
service chains after grouping as follows:

min
∑

G∈Ω
cost(G) (1)

s.t. cost(G) = |G| ·
∑

XG
f =1

rf (2)

|Ω| ≤ k (3)

Cf ⊆ G if XG
f = 1, ∀f ∈ F (4)∑

G∈Ω
XG

f = 1 ∀f ∈ F (5)

XG
f = {0, 1} ∀f ∈ F,G ∈ Ω (6)

Eq. (1) is our objective: minimizing the total cost of all
service chains after grouping. In Eq. (2), the cost of each
service chain G equals the chain length times the sum of all
assigned flows’ traffic rates, whose requested service chain
is grouped to G. Eq. (3) ensures the total number of service
chains after grouping is no more than the given threshold k.
Eq. (4) states that a flow f ’s requested service chain Cf is a
subset of its assigned service chain G when XG

f = 1. Eq. (5)
requires that each flow f ’s requested service chain be assigned
to one and only one service chain after grouping. Eq. (6) shows
that the indicator value XG

f can only be 0 or 1, ∀f ∈ F .

III. SOLUTIONS

In this section, we propose two different solutions. Although
the general service chain grouping problem is proven NP-
hard, in the real world, the length of a requested service
chain is always less than 10 and the orders among different
middleboxes are always fixed [25]. For example, an IPSec
decryptor is usually placed before a NAT gateway [26]. It
illustrates that the service grouping is usually feasible with an
appropriate value of k.

A. Submodular Solution

In this subsection, we first prove the submodular property of
our objective function and then we propose one corresponding
solution. We prove that this solution has an approximation
ratio for the case without the requirement of load balanc-
ing. Before proposing our solution, we introduce an extra
definition, called marginal increment, in order to prove the
submodularity of the cost function of a service chain, cost(G).

Definition 3 (marginal increment): The marginal increment,
denoted as ∆costG(f) = cost(G ∪ Cf ) − cost(G), indicates
the increased cost when the service chain Cf of flow f is
assigned into the service chain G.

Next, we analyze the property of the cost function cost(G).
A function f is submodular if and only if ∀S ⊆ T ⊆ N, ∀e ∈
N \T , fT (e) ≤ fS(e). Then we prove that ∀f ∈ F , if XG

f = 0
and G ⊆ G′, the submodular property holds, i.e., cost(G ∪
Cf )− cost(G) ≥ cost(G′ ∪ Cf )− cost(G′).

Theorem 2: cost(G) is a submodular function.
Proof: It is intuitive that cost(G) is a non-decreasing func-

tion, which is monotone. Suppose there are two deployments
G and G′ with G ⊆ G′. It is intuitive that G′ includes all
middleboxes in G and it also satisfies the dependency relations
of all middleboxes in G. As long as the service chain length
increases or remains in G′, it will process no less than the
total traffic rate in G. Then we have cost(G∪Cf )−cost(G) ≥
cost(G′ ∪ Cf )− cost(G′). Thus, cost(G) is submodular. �

Then we solve our grouping problem by proposing our
algorithm in Alg. 1, called Submodular Greedy Solution
(SGS). Line 1 calculates the cost function value of each service
chain. In line 2, we select the k largest values and assign
the corresponding service chain into Ω as a single service
chain G after grouping. Line 3-5 merge the service chain of
an unassigned flow f into one service chain G ∈ Ω with the
smallest marginal increment ∆costG(f) in every loop, until



Algorithm 1 Submodular Greedy Solution (SGS)

In: The set of flows F and threshold k;
Out: The service chain set Ω after grouping;

1: Calculate all flows’ cost function value;
2: Select top k original requested service chains with the

largest cost into Ω;
3: while not all flows have been assigned do
4: Assign one unassigned flow f into one service

chain G ∈ Ω with the smallest marginal increment
∆costG(f);

5: Update G = G ∪ Cf and XG
f = 1.

6: return The service chain set Ω after grouping.

all flows are assigned. Line 7 returns the service chain set Ω
after grouping. The insight of Alg. 1 is to solve the solution
based on the submodularity of our objective function.

For better understanding, we use the same setting in Fig.
2(a) to apply Alg. 1 as an example. Suppose k = 3. The cost
function value of the requested service chain of f1 is |C1|·r1 =
3·3 = 9. Similarly, the cost function values of all service chain
are 9, 6, 4, 18, and 8, respectively. The top 3 largest values are
9, 18, and 8. So the requested service chains of f1, f4, and f5

are assigned as a single service chain in Ω = {G1 = C1, G2 =
C4, G3 = C5}. Then we calculate the marginal increment of
the unassigned flows f2 and f3. Here we take the f2 as an
example. If its service chain is grouped with the service chain
of f1, the service chain is updated as {A → B → C → D}.
The marginal increment is calculated as 4 ·(2+3)−3 ·3 = 11.
Similarly, the marginal increments of f2 with each service
chain in Ω are 11, 30, and 16, respectively. 11 is the smallest,
so we assign C2 into C1 and update G1 = {A → B →
C → D}. Similarly, the smallest marginal increment of C3

is 6 · (5 + 1) − 4 · 5 = 16 with G1, so we assign C3 to G1

and update G1 = {A → B → C → D → E → F}. Then
the returned service chain set is the same as that in Fig. 2(b).
Luckily, the returned set is optimal.

Theorem 3: The total cost of Alg. 1 is at most 1 + 1/e
times of that of the optimal solution.

Proof: Based on the classic set cover submodular problem
[27], the approximation ratio is 1+1/e. Detailed explanations
are omitted here. �

Time complexity: The time complexity of our proposed Alg.
1 is O(|F | ·max{k, log |F |}). Initially, it takes O(|F |) time to
calculate the cost function values of all flows in line 1. Line 2
takes O(|F | log |F |) to sort all the values and constant time to
select the top k largest values. Then there are |F |−k loops in
lines 3-5. In each loop, it takes O(k) to calculate the marginal
increment with each service chain in Ω and O(k) time to find
the smallest marginal increment among k service chains in
Ω. Then the total time complexity is O(|F | + |F | log |F | +
(|F | − k) · k). As k ≤ |F |, the time complexity is O(|F | ·
max{k, log |F |}).

Algorithm 2 Greedy k-means Method (GKM)

In: The set of flows F and threshold k;
Out: The service chain set Ω after grouping;

1: Randomly select k service chains into Ω;
2: for every flow f with

∑
G∈Ω XG

f = 0 do
3: Assign the flow f into the service chain G ∈ Ω with

the smallest length increment of the service chain after
grouping;

4: Update G = G ∪ Cf and XG
f = 1.

5: return The service chain set Ω after grouping.

B. Greedy Solution

In this subsection, we apply the k-means method [28] to
solve our grouping problem and propose the algorithm in
Alg. 2, called Greedy k-means Method (GKM). In line 1, we
initiate the grouped service chain set Ω by randomly selecting
k service chains of flows from F . Lines 2-3 merge one service
chain of a flow f with the smallest length increment every
loop, until the total number of chains in Ω is no more than k.
Line 4 updates the service chain information. Line 5 returns
the grouped chain set Ω. The insight of Alg. 2 is to apply the
flow management technology in SDN to group flows based on
the similarity among their requested service chains.

For better understanding, we also use the same setting in
Fig. 2(a) to apply Alg. 2 as an example. Suppose k = 3.
Suppose Ω = {G1 = C1, G2 = C2, G3 = C3} after
random selection. Then for flow f4, the length increments
with G1, G2, and G3 are 2, 3, and 2. Then we can assign
C4 to G1. Similarly, we assign C5 to G2. Then the returned
service chain set is {G1 = {A → B → C → F →
G}, G2 = {A → C → D → E}, G3 = C3}. The total
cost of the set is 5 · (3 + 6) + 4 · (2 + 4) + 4 · 1 = 73,
which is much larger than that of the optimal solution. If
Ω = {G1 = C1, G2 = C4, G3 = C5} after random selection,
the returned service chain set is the same as that in Fig. 2(b),
which is optimal. It illustrates that the initial random selection
of Ω matters a lot.

Time complexity: The time complexity of Alg. 2 is O(|F |k).
Line 1 takes O(k) time to initialize Ω. Lines 2-4 have O(|F |−
k) loops. In each loop, it takes O(k) time to calculate the
length increment and O(k) time to find the smallest length.
Then the total time complexity of our proposed Alg. 2 is O(k+
(|F | − k) · k) = O(|F |k).

IV. SOME DISCUSSIONS

In this section, we include some discussion to make our
work more comprehensive. First, we consider the dynamic
network situations including insertion, deletion and update of
service chains. Next, we consider an alternative objective of
load balancing among service chains and propose an efficient
solution. Last but not least, we conduct real experiments on
our testbed to show the practicality of our objective function.



Algorithm 3 Updating Grouping Strategy (UGS)

In: Sets of vertices V , edges E, original flows F , current
chains Ω, threshold k, and changed flow f ;

Out: The grouping chain set Ω;

1: if f is a newly-arrived flow then
2: Assign f to the chain with the minimum ∆costG(f);
3: else if f finishes its transmission then
4: Delete f ’s private middleboxes and update the grouped

chain set;
5: if |Ω| ≤ k then
6: Select the service chain with the largest cost value

and assign it as a new grouped chain;
7: else if Cf has been changed then
8: Delete the previous Cf from Ω and reassign the new

Cf to the chain with the minimum ∆costG(f);
9: Update Ω;

10: return The updated service chain set Ω.

A. Insertion, Deletion and Update

To maximize the data center network utilization, the SDN
control plane needs to frequently update the data plane via flow
changing as the network conditions change dynamically [29].
With the development of SDNs [30], there are many causes
for a network update: (1) changes in security policies [31]
(e.g., traffic from one sub-network may have to be rerouted
via a firewall before entering another sub-network); (2) traffic
engineering in the network [32] (to minimize the maximal link
load, an operator may decide to reroute parts of the traffic
along different links); (3) network maintenance works [33]
(e.g., in order to replace a faulty router, it may be necessary to
temporarily reroute traffic); and (4) reactions to link failures
[34] (e.g., fast network update mechanisms are required to
react quickly to link failures and determine a failover path).
When network update happens, there is always rule changing.
In order to handle flows in an online manner, we also generate
solutions for inserting, deleting, and updating the service
chains in the grouped set Ω. Here we need to mention that the
insertion and deletion of service chains can be treated as two
special cases of the update case, which are also included in the
solution for service chain update. All the following proposed
algorithms are extended from the above Alg. 1 based on the
submodularity of our objective function.

For the service chain update case, we propose our algorithm
in Alg. 3, called Updating Grouping Strategy (UGS). Lines
1-2 handle the service chain insertion case if there is a newly-
arrived flow. We assign the new flow f to the service chain
with the minimum marginal increment. Lines 3-6 handle the
service chain deletion case if a flow finishes its transmission.
We delete the unused middleboxes in the grouped service chain
in order to shorten the chain. If the deleted service chain serves
as one grouped chain in Ω, then after deletion, we are allowed
to delete one grouped chain with the largest cost value and
assign it to one new chain in Ω alone. Lines 7-8 handle the
service chain update case if the requested service chain of a
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Fig. 3: Update procedure.
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Fig. 4: Insertion procedure.

flow is changed. Line 9 updates the grouped service chain set
Ω. The updated Ω is returned in line 10.

For better understanding, we first include an update exam-
ple, shown in Fig. 3, to apply the Alg. 3. The previous service
chain setting is the same in Fig. 2(a) and the current Ω is as
shown in Fig. 2(b). If C2 changes from {A → C → D} to
{A→ C → E} in Fig. 3(a), we first delete all of f2’s private
middleboxes (for this example, there are no private middle-
boxes). Next, we reassign the new C2 to G3 = {C → E}
with the minimum marginal increment of 24 while the values
with G1 and G2 are 36 and 31. The updated service chain set
is shown in Fig. 3(b), which is also optimal after the update.

Then we include one example of insertion in Fig. 4. Com-
pared to Fig. 2(a), there is one new flow f6, with a traffic rate
of 4 and the requested service chain C6 = {B → C → F →
G}, shown in Fig. 4(a). The values of the marginal increment
with each grouped service chain in Fig. 2(b) are 34, 22, and
32, respectively. The minimum value is 22, so we assign f6

to G2. The returned service chain set is shown in Fig. 4(b).
We also find out that the returned set is optimal.

Next, we delete the flow f4. As G2 = C4, if f4 is deleted,
we are allowed to assign one service chain as G2. The largest
cost value among all the remaining grouped flows is 3 · 3 = 9
of f1 that is assigned to G1 with f2 and f3 together (f5 is not
grouped). So we update G1 = {A → C → D → E → F}
and G2 = {A → B → C}. The returned grouped service
chain set is shown in Fig. 5(a).

Time complexity: The time complexity of Alg. 3 is O(|F |).
For the insertion, the time complexity is O(k) in order to
calculate the marginal increment and select the minimum one.
For the deletion, it takes a constant time to delete a service
chain and takes O(|F |) to calculate the cost values of all flows
and select the largest one. For the update, it takes a constant
time to delete the old service chain and O(k) to reassign,
which is exactly the same procedure of the insertion. To sum
up, the time complexity of Alg. 3 is O(|F |).

B. Grouping for Load Balance

Load balancing refers to balancing the total traffic rate
among all service chains. Here we need to mention that
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Fig. 5: Deletion procedure and load balancing.

Algorithm 4 Load Balancing Method (LBM)

In: Sets of vertices V , edges E, flows F and threshold k;
Out: The grouping chain set Ω;

1: Select top k flows with the largest traffic rate into Ω;
2: for every flow f with

∑
G∈Ω XG

f = 0 do
3: Assign the flow f into the grouped service chain G ∈ Ω

with smallest increment of the total traffic rate.
4: return The service chain set Ω after grouping.

the load balancing can also serve as the objective of our
problem, which can be represented as min maxG

∑
XG

f =1 rf .
Load balancing mainly limits the largest traffic load of a single
service chain. It is also an extremely measurement index in
today’s network. This is because when the traffic is heavily
unbalanced, the bandwidth resource of links is more likely
to be not enough, resulting in an unexpected transmission
delay because of link congestion. So we take this important
index into consideration and propose the solution, called Load
Balancing Method (LBM), in Alg. 4. In line 1, we initiate
the grouped service chain set Ω with flows having the top k
largest traffic rate. Lines 2-3 arrange an unassigned flow f to
the grouped service chain with the smallest total traffic rate
in each loop until all flows are assigned. Line 4 returns the
grouped chain set Ω.

With the objective of load balancing, we continue to use the
same setting in Fig. 2(a). The top 3 flows with the largest traffic
rate are f1, f4, and f5. So the initialized grouped service chain
set is Ω = {G1 = C1, G2, C4, G3 = C5}. For the unassigned
flow f2, we assign it to G1, which has the minimum total
traffic rate as 3. Then its total traffic rate is 3 + 2 = 5. Next
for the unassigned flow f3, we assign it to G3, which has the
minimum total traffic rate as 4. Then its total traffic rate is
4 + 1 = 5. The returned grouped service chain is shown in
Fig. 5(b). The largest total traffic rate is 6 for G2.

Time complexity: The time complexity of our proposed Alg.
4 is O(max{|F | log |F |, |F |k}). It takes O(|F | log |F |) to sort
the traffic rate of all flows and select the top k. We need to
keep a min-heap for k elements, which takes O(k log k). Then
we have O(|F | − k) loops. In each loop, it takes O(k) time
to select the minimum value from the min-heap. So the total
time complexity of Alg. 4 is O(max{|F | log |F |, |F |k}).

C. Converting Cost Function to Actual End-to-end Delay

We conduct real experiments to show the practicability of
our motivation as well as our objective in our testbed. First
we test the estimated time of single link transmission and rule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

Gateway & Controller

SDN Switch

Internet

Switch

Control network link

Data network link

(a) Testbed topology.

0 2000 4000 6000 8000 10000 12000
#rules

0

0.5

1

1.5

2

A
vg

 tr
an

sm
is

si
on

 ti
m

e/
m

s

(b) Average transmission time.

Fig. 6: Matching speed on the number of rules.

matching in a real system. Then we show that our objective
function in this paper is an abstract model of actual end-to-end
network delay.

Fig. 6 shows the average transmission time of a 64-byte
packet with different number of rules in a switch in our SDN
testbed. Our testbed is a four-layered perfect tree topology with
16 Dell servers and seven Pica8 P-3297 SDN switches, shown
in Fig. 6(a). The capacity of the forwarding table in TCAM
in a P-3297 SDN switch is 5000 (rules). We have a Dell
3248 PowerEdge server as our controller, which is running
a OpenDaylight platform. We constantly send background
traffic among all servers, of which the source and destination
are randomly generated. Each packet has an identical size
of 64 bytes. The number of forwarding rules in the root
switch (the one connected to the controller) increases with
a stride of 1000. We record the average transmission time
(in milliseconds) of a single packet, whose path is 6-hop
length (pass 6 links), on the increment of forwarding rules.
As the transfer time on the links of a packet is too short
(in a light speed), we use the average transmission time
as the matching time inside a TCAM switch. The result is
shown in Fig. 6(b). The time has a sharp increment when the
number of rules is 5000. It indicates that when the number of
rules is more than the capacity of TCAM, the matching time
increases enormously. The results of less than 5000 rules verify
the nearly-constant matching time of the TCAM forwarding
table, which is around 0.2 milliseconds. When the number
of rules is more than 5000, the matching time increases in a
relatively steady way. The result demonstrates that the system
performance will be seriously degraded when the total number
of rules is more than the capacity of TCAM in a switch. This
illustrates that we have to ensure the number of rules to be
within the capacity of the forwarding tables.

We use delay1 and delay2 to denote the average delays



Total delay (ms) TCAM matching Software matching

Before grouping 0.68 3.04
After grouping 1.12 5.32

TABLE II: Time for transmission and processing.

of flows, whose matching rules are placed in slow software
and fast TCAM switches, respectively. Additionally, delay′

is denoted as the average uniform delay of all flows after
their service chains are grouped and all rules can be placed in
TCAMs. Then the decrement of the delay can be calculated as
#exceed rules·delay1+capacity ·delay2−capacity ·delay′.
Here we use a detailed calculation to show that the grouping
of rules will decrease the average end-to-end delay. There
are usually less than 10 hops in a routing path of a flow.
[25] mentions that the total number of middleboxes in a
service chain is usually 3 to 5. The average processing time
of a packet by a middlebox is around 0.1 ms [35] and the
average transmission delay (including the rule matching and
link transmission time) is 0.03ms within the TCAM capacity
of the forwarding table and 0.33 ms beyond that capacity,
obtained from Fig. 6.

We assume the average length of service chains is 4 before
grouping, and 7 after grouping. The length of flow routing
paths is usually proportional to the length of its required
service chain, which is set as 2 here. The total estimated end-
to-end delay of different switch matching is calculated in Tab.
II. Here we take two results in the table as an examples. We
assume the average length of service chains is 4 before group-
ing, and 7 after grouping. The total delay for TCAM before
grouping is calculated as the sum of link transmission delay,
4·2·0.03 = 0.24ms (the service chain length is 4, path length is
4∗2), and middlebox processing delay, 4 ·0.1 = 0.4ms, whose
sum is 0.68ms. The total delay for software matching after
grouping is 7·2·0.33+7·0.1 = 5.32ms. If we have 15000 rules
before grouping and 5000 after grouping, the total decrement
of the overall delay can be estimated as (10000 ·3.04 + 5000 ·
0.68 − 15000 · 1.12)/(10000 · 3.04 + 5000 · 0.68) = 50.2%,
which is a huge benefit. It demonstrates that the total delay is
decreased by service chain grouping though flows may have a
longer merged service chain to get processed. If the increment
of path length is proportional to the increment of the service
chain length, we can convert our cost objective function into
the overall delay by adding a multiplier.

V. EVALUATION

Simulations are conducted and numerical evaluations are
presented to demonstrate the efficiency of our solutions. After
we present the network and flow settings, the results are shown
from different perspectives to provide insightful conclusions.

A. Settings

We use real data from either trustworthy sources or our
testbed mentioned above and implement our simulations in
MATLAB. The requested service chain and traffic rate of
every flow are known in advance. We adopt the flow size

distribution of the Facebook data center. The dataset contains
flows of 10-minute packet traces of three different node types:
a web-server rack, a single cache follower, and a Hadoop node
[36]. More than 92% of flows are less than 12 Mbps in the
dataset. Therefore, we set the traffic rates ranging from 0.1
to 12 Mbps with a granularity of 0.5 Mbps in this paper. We
generate 20 different kinds of VNFs, each of which has a
distinct label. The lengths of the requested service chains of
flows are taken randomly between 3 and 10. The types of
the VNFs are randomly selected from the generated 20 kinds.
When the number of flows is the variable, it ranges from 9000
to 14000 with a granularity of 1000. As for the range of group
number k, we choose from 2500 to 5000 with a granularity of
500. The default values of the number of flows and k are 10000
and 5000, respectively. We keep the default value of k as 5000,
because it’s slightly larger than the capacity of Pica8 P-3297
switch. The value of k even larger than 5000 may increase the
delay because of overwhelming the TCAM capacity. We use
0.1 ms as the processing time for a middlebox. This processing
time is used in [35] and verified in our testbed. The average
processing and transmission (1-hop) time for the Firewall in
our testbed is around 0.15 ms. We set 0.03 ms and 0.33 ms as
the single-hop transmission time within and beyond the rule
capacity limit k, which is obtained from our testbed evaluation
result (see in Fig. 6). In our testbed, we have a small amount
of flows for two reasons. Firstly, when the number of flows
and data rate is higher, the delay increases due to queuing
of the packets in SDN switches and the NICs. We wanted
to avoid queuing delays as much as possible. Secondly, each
of the links are 1Gbps, and it’s hard to generate a heavily
used link with a lot of flows as the number of servers in our
small datacenter is limited. We agree with the reviewer that
the performance will be low if we use the metrics of a testbed
with a large number of flows. The runtime of the algorithm is
dominated by k-means clustering algorithm which runs pretty
fast in our machines. That is why we do evaluate the actual
runtime of our algorithm.

B. Comparison Algorithms and Performance Metrics

We include one benchmark scheme in our simulations,
called Largest Similarity Grouping (LSG). In LSG two service
chains having the largest number of similar VNFs are merged
together and a new service chain is formed. This merging
continues until the total number of chains is no more than
k. We proposed four algorithms in this paper. Alg. 4 LBM
is for the objective of load balancing. For the objective of
minimizing the total cost, Alg. 1 SGS is the greedy solution
using submodularity and Alg. 2 GKM is the solution based
on k-means method. Alg. UGS is for updating service chains.

The variables include the number of flows and the group
number k. The performance metrics include the total cost (our
objective), the largest cost (our alternative objective of load
balancing), the largest total traffic of a single grouped chain
among all chains and the overall delay. The overall delay is
calculated as the sum of delay among all flows. Our proposed
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Fig. 7: Changing number of rules.
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Fig. 8: Changing k.

four algorithms have excellent performances on all metrics,
especially their designed objective.

C. Results of Initialization

In this subsection, we show the simulation results of group-
ing initialization. We conduct simulations on two variables:
the number of flows and the value of k, respectively.

Changing the number of flows: Fig. 7 shows the results
of changing the number of rules from 2000 to 7000. From
Fig. 7 (a), we can see that our Alg. SGS has the lowest
total cost for all the number of rules while our Alg. GKM
has the second lowest total cost. Here it is worth mentioning
that the execution time of Alg. GKM is less than half of
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Fig. 9: Update rules.

that of running Alg. SGS. This is because Alg. SGS needs
to find the minimum value in each round, which is a little
bit time-consuming. It demonstrates the trade-off between the
performance and the efficiency of our proposed algorithms.
We also test the estimated end-to-end delay using the constants
of proportion and single hop delay. It shows that the overall
delay is reduced by at least 36.7% compared with that before
grouping. Fig. 7(b) shows the cost of the maximum single
grouped chain, which is also the objective of load balancing.
Alg. LBM has the best performance with the minimum cost,
which illustrates its effectiveness. In Fig. 7(c), on average, the
maximum length of our Alg. LBM is 16.5% less than that of
Alg. SGS and 19.1% less than that of Alg. GKM. As for the
maximum cost of a single grouped chain, shown in Fig. 7(d),
Alg. LSG still has the worst performance because of its largest
overall delay. This indicates that it is not enough to consider
only the similarity of chains.

Changing k: Fig. 8 shows the results of changing k from
1000 to 3500. When the number of k is 5000, the performance
of the algorithms is similar to that in Fig. 7 when the number
of flows is 10000. Fig. 8(a) shows the total cost, which is our
objective in this paper. Alg. SGS has the best performance with
the minimum total cost, which illustrates its effectiveness on
the total cost. Additionally, it also performs outstandingly on
the other three metrics. As for the maximum cost of a single
grouped chain, shown in Fig. 8(b), Alg. LBM still has the
best performance over all k values while Alg. GKM and Alg.
LSG have worse performances than in Fig. 7(b). It indicates
that the influence of k is much larger than that of the number
of flows. From Fig. 8(c), on average, the largest traffic of our
Alg. LBM is 16.5% less than that of Alg. SGS and 19.1% less
than that of Alg. LSG. Fig. 8(d) shows that Alg. LSG has the
largest delay among all others.



D. Results of Update

In this subsection, we conduct simulations on updating
flows, including their traffic rate and requested service chains.
We update the flows randomly. As the algorithm handles
updates of flows one by one, we do not need to update
the flows in burst. We include another benchmark algorithm,
called Unchanged. It retains all allocated groups of original
flows but updates the newly-grouped service chains. Fig. 9
shows the results of changing the number of updated rules
from 2500 to 5000. Fig. 9(a) shows the result of the total cost.
When the number of changed rules increases, the increment
of the total cost of all algorithms becomes smaller. This is
because all grouped chains become longer and include more
middleboxes. Changed flows have less impact on the total cost.
In Fig. 9(b), the maximum cost of a single grouped service
chain becomes larger because more flows are changed and
bigger changes of the grouped service chains are made. As
for the maximum cost of a single grouped chain, shown in
Fig. 9(c), Alg. Unchangeable still has the worst performance.
This indicates that it is not enough to consider only the
similarity of chains instead of both similarity and traffic. Fig.
9(d) shows the overall delay for all flows. Alg. UGS has
the best performance with the minimum total delay, which
illustrates its effectiveness. However, Alg. UGS needs to find
the minimum value in each round, which is a little bit more
time-consuming than Alg. GKM. It demonstrates the trade-off
between the performance and the efficiency of our proposed
algorithms.

In summary, our proposed four algorithms have excellent
performances on all metrics, especially their designed objec-
tives. The simulated results illustrate the importance of not
only the traffic of each grouped service chain, but also the
length of the service chain. We demonstrate the necessity
of grouping service chains in order to save the number of
rules in switches. Additionally, we demonstrate the trade-
off between the performance and the time-efficiency of our
proposed algorithms.

VI. RELATED WORK

Service Chain: The research related to service chains have
become more and more popular in recent years. Rost et al.
[37] prove the NP-completeness and inapproximability of the
service chain deployment under different constraint settings,
extended from the virtual network embedding problem. [38]
initiates the study of approximation algorithms and proposes
a performance-guaranteed solution under the offline setting
(given multiple flows), based on randomized rounding of
Linear Programming, to maximize the total profit of satisfied
flows. [39] aims to maximize the number of requests for each
service chain and proposes a systematic way of VNF deploy-
ment to tune the proper link and server resource usages. [40]
proposes a context-free language to formalize the chaining
of middleboxes and describes the VNF resource allocation
problem as a mixed integer quadratically constrained program.
Rami et al. [41] locate VNFs in a way that minimizes both new
VNF setup costs and the distance cost between VNF instances

and the flows’ paths; they provide near optimal approximation
algorithms to guarantee a theoretically proven performance.

Flow Routing and Service Chain Deployment: The main
challenges of our deployment problem lie in the selection of
middleboxes locations and the allocation of each deployed
middlebox of each service chain [11]. The vertex capacity
constraint complicates the deployment, since flows have to be
fully processed before reaching their destinations. Intuitively,
if the VNF instances are deployed at most overlapping nodes
along their routing paths, the processing volume is more likely
to be used up, while flows with destinations far from the
service chain may not be processed; if too far from their over-
lapping node the opportunity of sharing the processing volume
of an instance is scarce so that some will be wasted and more
middleboxes are needed 8. The service chain with multiple
middleboxes makes the flow processing order problem even
more complicated. This is because different flows on each
middlebox of the service chain have various processing times.
A flow cannot start (finish) being processed in a middlebox
of a service chain, before its starting (finishing) time of its
previous middlebox plus the transmission delay between these
two middleboxes. Additionally, the link transmission delay
between the locations of deployed middleboxes is necessarily
taken into consideration, which further complicates the de-
ployment problem.

Forwarding Table: In the flow table at each switch, forward-
ing rules define how to process the received flows based on
requested policies. These rules are stored in TCAMs. TCAM
enables fast lookups in switches with flexible wildcard rule
patterns. However, the cost and power requirements limit the
number of rules the switches can support to several thousands
or tens of thousands [16]. In a network that has a large
number of active flows, flow tables at switches can be easily
overflowed, which could cause blocking of new flows or
eviction of entries of some active flows [42]. The eviction
of active rules, however, can severely degrade the network
performance and overload the SDN controller, which is the last
thing we want to happen. As a result, efficiently utilizing the
forwarding table entries becomes extremely important. Instead
of evicting rules, we can group flows by using tag. However,
high performance network requirements are becoming more
and more intense [43]. For example, data centers usually
claim that packet loss rates are around 2% [44], while the
requirements for wide area networks (WANs) and carrier-grade
networks are higher [45].

Rule Coding: Most works on saving forwarding entries pay
attention to the rule coding policies in TCAMs [46–48]. [46]
formulates the problem as an abstract optimization problem
based on two-level logic minimization, and proposes an exact
solution and a number of heuristics. Rottenstreich et al. in
[47] find a limited-size classifier that can correctly classify a
high portion of the traffic so that it can be implemented in
commodity switches with classification modules of a given
size. [48] introduces an optimal algorithm that minimizes
the number of rules needed to represent a weighted traffic
distribution and proposes more efficient solutions to approach



the exact distribution. However, there is little work related to
enforcing service chains with limited capacities of forwarding
tables in switches. Since SDN rules match with packets against
specified header fields, forwarding ambiguity arises when a
packet goes through a switch more than once, each time
toward a different next hop [13]. This forwarding ambiguity
is further exacerbated by middleboxes like NAT. Without their
modification strategies as a priori, it is hard to pre-configure
rules for modified packets. Bu et al. in [49] initially propose
a simple tag-augmented forwarding rule routing strategy, but
they focus on avoiding attacks instead of reducing the total
number of forwarding rules.

VII. CONCLUSION

Forwarding rules are preferred to be inserted in high-speed
matching TCAMs instead of slow-matching software switches.
However, the capacity of TCAM is only thousands due to
its high requirements for cost and power. In order to reduce
rule matching delay, we need to effectively utilize rule entries
in TCAM by grouping flows, where all flows in each group
serve as a new flow to get processed by a longer merged
service chain. Though more flows can have a faster rule
matching time, it results in grouped flows detouring on a
longer path and being processed by more middleboxes. In
this paper, we aim at efficiently grouping flows with the
minimum total cost while satisfying the capacity constraint
of the forwarding tables. We first prove the submodularity of
our objective function and propose corresponding solutions
with an approximation ratio. Additionally, we also apply the
k-means method to solve our problem with intuitive insights.
We include extra discussion on several aspects. Extensive
simulations are conducted to evaluate the performance of our
proposed algorithms in various scenarios. For future work, we
will scale up our testbed and conduct more large-scale and
general experiments.
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