
1

Flow Scheduling of Service Chain Processing in
a NFV-based Network

Yang Chen, Student Member, IEEE, and Jie Wu, Fellow, IEEE

Abstract—Network Function Virtualization (NFV) is changing the way we implement the network functions from expensive hardware to
software middleboxes, called Virtual Network Functions (VNFs). Flows always request to be processed by several middleboxes in a
specific order, which is known as a service chain. Most researches study the middlebox placement problem and few of them pay
attention to the flow scheduling of a deployed service chain, resulting in poor control of flow completion times. However, the flow
completion time is an extreme metric to evaluate the performance of a network. Therefore, we focus on the service chain scheduling
problem. We aim to minimize the flow completion time in two aspects: the longest completion time (makespan) and the average
completion time. First, a transmission and processing delay model is proposed to formulate the communication latency behaviour of
flows being processed by middleboxes. When there are only two middleboxes in the service chain, we propose one optimal solution for
each aspect, respectively. For a service chain with an arbitrary length, we prove the NP-hardness of our problem in both aspects and
two corresponding heuristic algorithms are designed, which are extended from our proposed optimal solutions for a service chain with
a length of two. Real testbed experiments and extensive simulations are conducted to evaluate the performance of our proposed
algorithms in various scenarios.

Index Terms—Middlebox, transmission delay, processing time, service chain.

F

1 INTRODUCTION

The role of modern networks has transformed to provide
various types of network services (such as security, per-
formance optimization, cross-protocol interoperability, and
value-added services) beyond providing basic connectivity
services. Realizing such network services usually requires
multiple network functions, also called middleboxes, to
be chained together in some order, which is known as
the service chain [1]. For example, in operator networks
[2], data centers [3], mobile networks [4], and enterprise
networks [5], network operators often require traffic to
pass the service chain: NAT, Firewall, and IDS in the se-
quence order [6], which is shown in Fig. 1. Virtual Network
Functions (VNFs) become the modern implementation of
network functions as the replacement of expensive tradi-
tional hardwares[7]. These middleboxes are executed on
switch-connected servers. Middleboxes play an increasingly
important role in modern networks [8]. As Software De-
fined Networking (SDN) emerges, so does a tendency to
incorporate SDN and NFV in concerted ecosystems [9, 10].
With the intense requirement of high performance networks,
SDN manoeuvres through NFV traffic and schedules flows
to be processed by middleboxes [11]. However, most current
works focus on the VNF deployment and pay little attention
to flow scheduling (order of flows to be processed by a ser-
vice chain), resulting in poor control of the flow completion
time.

The flow completion time is important to evaluating the
performance of the network, which is highly demanded
nowadays [12]. The service chain with multiple middle-

• Yang Chen and Jie Wu are with Center for Networked Computing, Temple
University, USA. E-mail: {yang.chen, jiewu}@temple.edu.

d

d'...
m1 m2 m3

d1

...

d2s

s'

f

f'

Fig. 1: An illustrating example.

boxes makes the flow processing order problem more com-
plicated. This is because different flows on each middlebox
of the service chain have various processing times. A flow
cannot start (or finish) being processed in a middlebox of a
service chain before its starting (or finishing) time of its pre-
vious middlebox plus the transmission delay between these
two middleboxes. Additionally, the link transmission delay
between the locations of deployed middleboxes is necessary
to take into consideration, which further complicates our
problem.

We illustrate the importance of the flow processing order
in an example, shown in Fig. 1. Circles denote the switches
and rectangles denote middleboxes deployed on switch-
connected servers. Suppose there are three middleboxes
m1,m2, and m3 in the service chain and two flows f
(source s, destination d, and the dash-line path) and f ′

(source s′, destination d′, and the dot-line path) request to
be processed by the service chain. We omit the drawings
of servers and switches with no middlebox deployed. The
processing time of each flow on each middlebox is shown

2

`````````̀Flows
Middleboxes

m1 m2 m3

f 3 4 6
f ′ 4 2 2

TABLE 1: Processing times.

in the Tab. 1. The transmission delay between m1 and m2

is d1 = 1 and the transmission delay between m2 and m3

is d2 = 2. Because of the transmission delay between two
middleboxes, a flow cannot start (or finish) being processed
in the middlebox mi, before its starting (or finishing) time
of the middlebox mi−1 plus the transmission delay between
these two middleboxes. It means that f ′ is “delayed” to be
processed on m2 and m3 by the processing on m1. More
specifically, the completion time of f ′ in middlebox m2

cannot be less than the completion time of f ′ in middlebox
m1 plus the delay d1, which is 4+1 = 5. The same situation
occurs to the completion time of f ′ in middlebox m3, which
is 5 + 2 = 7. This illustrates that the processing times of
f ′ in middleboxes m2 and m3 are longer than the given
processing times of m2 and m3, because of the transmission
delays. Thus, if flow f is scheduled before flow f ′, the
makespan is 11, which is shown in Fig. 2(a). If flow f ′

is scheduled before flow f , the makespan is 14, which is
shown in Fig. 2(b). The difference comes from the constraint
of the completion times between adjacent middleboxes in
the service chain.

In this paper, we aim at minimizing the total time of
transmission delay and processing delay in two aspects:
makespan (the longest completion time) and the average
completion time (the total completion time of all flows di-
vided by the number of flows). We build a flow transmission
time and processing delay model to formulate its latency
behavior and control the flow processing sequence in the
network. We are given a deployed service chain with the
processing times of flows and transmission delays between
middleboxes. We propose two optimal solutions when there
are only two services in the service chain. With a service
chain of an arbitrary length, two heuristic algorithms are
designed with insights. Extensive simulations and exper-
iments are conducted to evaluate the performance of our
proposed algorithms in various scenarios.

The remainder of this paper is organized as follows.
Section 2 surveys related works. Section 3 describes the
model and formulates the problem. Section 4 introduces our
optimal algorithms to arrange flows for a service chain with
only two middleboxes. In Section 5, we handle cases with
an arbitrary number of middleboxes in a service chain and
propose two heuristic algorithms with insights. Section 6 in-
cludes the testbed experiments. Simulations are conducted
in Section 7. Section 8 concludes the paper.

2 RELATED WORK

Most researches on the middlebox problem focus on effi-
ciently deploying a chain of middlebox instances whose
middleboxes conform to a strict serving sequence as a
totally-ordered set [13]. Rost et al. [14] prove the NP-
completeness and inapproximability of the service chain

d1

fm1

m2

m3

d2

m1

m2

m3

d2

f

f 

f 

d1 d1 d2

f

. .. .. ... .. .. .. .. ... . . . .

f '

.

f '

f '

f '

f '

f '

f 

. .

(a) f before f ′.

d1

fm1

m2

m3

d2

m1

m2

m3

d2

f

f 

f 

d1 d1 d2

f

. .. .. ... .. .. .. .. ... . . . .

f '

.

f '

f '

f '

f '

f '

f 

. .

(b) f ′ before f .

Fig. 2: Different scheduling orders.

deployment under different constraint settings, extended
from the virtual network embedding problem. [15] initi-
ates the study of approximation algorithms and proposes
a performance-guaranteed solution under the offline set-
ting (given multiple flows), based on randomized rounding
of Linear Programming, to maximize the total profit of
satisfied flows. In [16], they propose a context-free lan-
guage to formalize the chaining of network functions and
describe the middlebox resource allocation problem as a
mixed integer quadratically constrained program. Rami et
al. [17] locate middleboxes in a way that minimizes both the
new middlebox setup cost and the distance cost between
flows’ paths and middleboxes and provide near optimal
approximation algorithms to guarantee a placement with
a theoretical-proven performance. Flowtag [10] uses SDN
to support service chaining by redefining certain packet
header fields as tags to track flows. Both [18] and [19] aim
to maximize the number of requests for each service chain.
[18] proposes a systematic way to tune the proper link and
server resource usages in the joint problem of middlebox
placement and path selection. Li et al. [19] present the design
and implementation of NFV-RT, a system that dynamically
provisions resources in an NFV environment to provide
timing guarantees so that the assigned flows meet their
deadlines. Stratos [20] is proposed as a controllable and
scalable framework for the efficient deployment of virtual
middleboxes. OpenNF [21] enforces the functions of NFV
with SDN, and provides a rich set of NFV/SDN APIs (move,
copy, share, etc.) for software middleboxes management,
which makes it feasible to dynamically schedule the middle-
boxes according to the changing traffic. ClickOS [22] is put
forward to improve the running efficiency of virtual mid-
dleboxes by optimizing the underlying Virtual Machines.
ClickOS can launch the middlebox software within about
30ms, which makes it possible for dynamic deployment
(addition, deletion, etc.) of middleboxes based on online
changing traffic. [23] studies the joint optimization on func-
tions mapping and preemptive scheduling in NVF, with
the objective to minimize the total completion time. [24]
considers different user-level SLAs, such as latency and
cost, while scheduling such services. Their aim is to reduce
overall turnaround time for the complete end-to-end service
in service function chains and reduce the total traffic gener-
ated with a novel fair weighted affinity-based scheduling
heuristic to solve this problem. However, both these works
do not include a performance-guaranteed solution.

However, many data center applications are sensitive
to latency. One source of latency is network conges-
tion as throughput-intensive applications cause queuing at
switches that delays traffic from latency-sensitive applica-



3

m2
p2j

d1
m1
p1j

(a) Two ordered services.

m1 mi m(i+1)
di

... ... m(2i)
p1j pij pi+1j p2ij

(b) Multiple ordered services.

Fig. 3: A service chain.

tions. Existing techniques to combat the queuing problem
are to prioritize flows such that packets from latency-
sensitive flows can jump the queue [25], to centrally sched-
ule all flows for every server so that no flow has to queue
[26], or to pace end host packets to achieve guaranteed
bandwidth for guaranteed queuing [27]. These techniques
assume the shortest path forwarding. Today’s data center
fabrics have rich path-redundancy in nature, so non-shortest
paths can be exploited to use path redundancy and spare
capacity for mitigating network congestion [28]. As policy
rules chaining can effectively shape the network traffic
(packets need to follow policy paths), they can be chained
over non-shortest paths to mitigate congestion-led queuing
since propagation delay on physical links is predictable and
smaller than queueing delay [29]. [30] proposes an online
orchestration framework for cross-edge service function
chaining, which aims to maximize the holistic cost efficiency,
via jointly optimizing the resource provisioning and traffic
routing on-the-fly. [31] propose an online algorithm for the
dynamic service chain deployment problem with an objec-
tive of minimizing the cost for provisioning VNF instances
on the go, and provide a bandit-based online learning
algorithm to place the VNF instances which minimizes the
congestion. However, both these papers do not consider the
processing delay incurred by the VNFs.

Our paper is motivated by the classic flow shop problem
[32]. In the flow shop problem, it assumes that all phases are
set up in series and that jobs have to follow the same route
to be executed. Our problem resembles the flow shop, but
there is transmission delay between every two phases. [33]
provides an optimal solution for minimizing the makespan
with only two phases in a flow shop problem. It also proves
that the general flow shop problem with k phases (k > 2) is
NP-complete. In contrast to the makespan objective, results
with regard to the average completion time objective are
much harder to obtain. Minimizing the average completion
time with two phases is already strongly NP-hard. Almost
all existing works focus on heuristic algorithms [34, 35].
Zheng et al. in [36] provide an optimal solution when all
jobs can be paired, which is restrictive. Furthermore, all
above works assume that there is no transmission delay
between phases. In this paper, we include the transmission
delay between phases, which is different from the classic
flow shop problem. And we aim at minimizing the total
time of transmission delay and processing delay in both two
aspects: makespan and the average completion time.

3 MODEL AND FORMULATION

In this section, we first propose our network model and then
formulate our problem.

3.1 Network Model
Before formulating the problem, we first present our model
of the directed network, G = (V,E), where V = {v} is
a set of vertices (i.e., switches) and E = {e} is a set of
directed edges (i.e., links). We use v to denote a single
vertex, and evv′ as the edge from vertex v to vertex v′.
Middleboxes are deployed in the network. A service chain
is an ordered middlebox set, where each flow needs to be
processed in a fixed order. We are given a set of unsplittable
flows F = {fj}, because flow splitting may not be feasible
for applications that are sensitive to TCP packet ordering
(e.g. video applications). Additionally, split flows can be
treated as multiple unsplittable flows. We use fj to denote
a single flow j and pji to denote the processing time of fj
on a middlebox mi. The completion time of flow fj on a
middlebox mj is represented as Cj

i . We denote Cj as the
completion time of flow fj across all the middleboxes in
its service chain and all the links in its path. When flows are
transmitting through edges, there are delays. We assume the
delay between two middleboxes mi and mi+1 in a service
chain is di, which is identical for all flows. In this paper,
we only consider the deterministic processing behavior of
packets in the queuing model [37], whose processing time
of each flow f is a constant.

To analyze processing behaviors of flows in middle-
boxes, a queuing model is employed in [38], and we extend
it in this paper. Furthermore, the serving behavior in our
queuing model would be more complex, as we would
consider various middleboxes for different network func-
tions. Therefore, we adopt two queuing models according
to different processing behaviors of packets: deterministic
model and exponential model [37]. In the deterministic
model, the processing time of a single flow j on a middlebox
mi, denoted by pji , is a fixed constant given value. In the
exponential model, it follows the exponential distribution
with a rate λji [39]. The expected processing time is 1/λji .

3.2 Problem Formulation
In this paper, we schedule flows to be processed by a service
chain. We have two different objectives: (1) minimize the
makespan; (2) minimize the average completion time. The
definitions are as follows:
Definition 1. The makespan Cmax is defined as

maxfj∈F (C
j), ∀f ∈ F , equivalent to the completion

time of the last flow to finish being processed by the
last middlebox in the service chain.

Definition 2. The average completion time is defined as
1
|F |

∑
fj∈F C

j , which is the total completion time of all
flows divided by the number of flows. (| · | denotes the
set cardinality)

We formulate our problem as follows:

min Cmax or
1

|F |
∑
fj∈F

Cj (1)

4 A SERVICE CHAIN WITH TWO MIDDLEBOXES

In this section, we study the case of the service chain that
only includes two middleboxes, which is shown in Fig. 3(a).
The processing time of flow fj on middlebox 1 is pj1 and its
processing time on middlebox 2 is pj2.



4

Algorithm 1 Two Set Order Schedule (TSOS)

In: Flow processing times pj1 and pj2, ∀fj ∈ F and the
transmission delay d;

Out: The flow scheduling order;

1: Calculate the value of pj2 − p
j
1, ∀fj ∈ F ;

2: Sort flows in decreasing order of pj2 − p
j
1;

3: return The flow scheduling order.

fi fj

fi fj

m1
m2

(a) A pair.
d

fi fj

fi fj

m1
m2

d
(b) A pair with a delay.

Fig. 4: Pairing flows.

4.1 Minimizing the makespan

To minimize the makespan, we propose an optimal algo-
rithm, called Two Set Order Schedule (TSOS), in Alg. 1.
We are given the processing time of each flow on the two
middleboxes. We need to decide the processing order of all
flows on the service chain with two middleboxes. The order
of flows is returned in line 3. As the sorting of flows costs
|F | log |F |, its time complexity is O(|F | log |F |).
Theorem 1. TSOS algorithm is optimal for scheduling flows

in a service chain with only two middleboxes.

Proof: The shortest makespan is no less than d +
max{

∑
fj∈F p

j
1,
∑

fj∈F p
j
2}. This is because at least all flows

need to be processed by both middleboxes in order and
the transmission delay d is the extra time. We need to
find a schedule that is able to keep at least the second
middlebox busy, which is the bottleneck of the scheduling.
Moreover, we also need to avoid prolonging the processing
time because of the transmission delay. If the completion
time on the second middlebox is larger than the completion
time on the first middlebox plus d, there is no need to
prolong the time and at the same time the second middlebox
keeps busy. Thus, we sort the value of pj2 − p

j
1, ∀fj ∈ F in

increasing order to extend the start time on the second mid-
dlebox. Thus, our algorithm has the least extension of the
completion time of the last flow on the second middlebox,
i.e. the minimum makespan. �

4.2 Minimizing the average completion time

We present a pair-based scheduling policy. For clear presen-
tation, the following definitions are introduced:

Definition 3. Flows fi and fj are a pair, if pi1 = pj2 and
pi2 = pj1.

The definition of pair comes from [36], which is for the
MapReduce optimization [40]. The pair in [36] is shown in
4(a), in which there is no delay between the starting time of
one flow in two stages. However, there is delay between two
middleboxes in a service chain. In this paper, the pair with a
delay is shown in 4(b); there is a delay between the starting
time of one flow in two stages. In order to minimize the

Algorithm 2 Pairwise Schedule (PS)

In: Flow processing times pj1 and pj2, ∀fj ∈ F and the
transmission delay d;

Out: The flow scheduling order;

1: Sort all flows in increasing order of max{pj1, p
j
2};

2: for each subset of flows with the same max{pj1, p
j
2} do

3: Reorder flows by iteratively taking out a pair of flows
of argmaxi(p

j
2 − p

j
1) and argmaxi(p

j
1 − p

j
2);

4: return The flow scheduling order.

2

...

k-11

Processing order
Group

Fig. 5: Multiple flows.

f1m1

m2 f '

d
. .. ... .. ...

f2 F*

F*f1 f2 .
(a) Sequence 1.

m1

m2

d

F*
F* f1

f1 f2

f2

. .. ... .. ... .
(b) Sequence 2.

m1

m2 f '

d
. .. ... .. ... F*

F*

f2

f2f1

f1 .
(c) Sequence 3.

f1m1

m2 f '

m1

m2

d
d
. .. ... .. ...

m1

m2 f '

d
. .. ... .. ...

m1

m2 f '.
d
. .. ... .... .

f2 F*

F*

F*

F*

F*

F*

F*

F*

f1

f1
f1

f1

f1

f1

f1f2

f2
f2

f2

f2

f2

f2

.

.

. .. ... .. ... .

(d) Sequence 4.

Fig. 6: An illustration for the proof of Theorem 2.

average completion time, we propose an optimal algorithm,
called Pairwise Schedule (PS), in Alg. 2. Line 1 sorts flows in
the increasing order of max{pj1, p

j
2}. Lines 2-3 pair flows by

iteratively taking out a pair of flows of argmaxi(p
j
2−p

j
1) and

argmaxi(p
j
1 − p

j
2). The order of flows is returned in line 4.

The processing order is illustrated in Fig. 5. As the sorting of
flows costs |F | log |F |, the time complexity of PS algorithm
is O(|F | log |F |). It works well when a large portion of flows
can be paired. Its optimality is stated as follows:

Theorem 2. The proposed Alg. 2 is optimal for scheduling
flows if all flows can be pairwise executed in the optimal
schedule. For each pair, the flow with pj2 > pj1 executes
before the flow with pj2 < pj1.

Proof: We prove by induction. Let us start with a basic
case, where F only includes two flows that can form a pair
(denoted as f1 and f2). Suppose f1 has p11 < p12 and f2 has
p21 > p22. We have two schedules: schedule one executes f1
before f2, and schedule two executes f2 before f1 . Then,
the flow makespans of f1 and f2 are shown as follows:

Completion time C1 C2

f1 before f2 d+ p12 max(p11 + p21, p
1
2 + p22) + d

f2 before f1 d+ p21 + p12 d+ p22

We have p12 = p21 according to the definition of the
pair. Since f1 is p11 < p12, we have p11 + p21 < p12 + p22.



5

Hence, schedule one has a smaller average flow makespan
by executing the flow with pj1 < pj2 before the flow with
pk1 > pk2 . For induction, let us consider an existing schedule
of S. It executes flows that can form a pair. Let F ∗ denote
a subset of F is are consecutively and pairwise executed
in S. Let τ denote the average flow makespan of F ∗, but
be calculated from the execution time of F ∗. Let t∗ denote
the total processing time of middlebox m1. Since flows in
F ∗ are strongly paired, t∗ is also the total processing time
of middlebox m2. The induction step adds one more pair
of flows to schedule S (i.e. f1 with p11 < p12 and f2 with
p21 > p22). As shown in Fig. 6, there exist four possible
sequences to incorporate f1 and f2 into S: S1 executes f1
and f2 before F ∗; S2 executes f1 and f2 after F ∗; S3 executes
f1 before F ∗, and f2 after F ∗; S4 executes f2 before F ∗

and f1 after F ∗. S1 and S2 execute f1 and f2 in a pairwise
manner, while S3 and S4 execute f1 and f2 in an interwoven
manner. If f1, f2, and F ∗ are scheduled at time t0, then their
flow makespans are:

Time C1 C2 C∗

S1 t0 + p12 + d t0 + p12 + p22 + d t0 + p12 + p22 + τ + d

S2 t0 + p12 + t∗ + d t0 + p12 + p22 + t∗ + d t0 + τ + d

S3 t0 + p12 + d t0 + p12 + p22 + t∗ + d t0 + τ + p12 + d

S4 t0 + p12 + p21 + t∗ + d t0 + p21 + d t0 + p21 + τ + d

It is trivial that S4 is always worse than S3, due to its
underutilization of middlebox m1. Meanwhile, the average
flow completion time of S1, S2, and S3 are shown as follows:

S1 : t0 +

[
|F ∗|·(p11+p21)

]
+

[
p12+(p

1
1+p

2
1)+|F ∗|·τ

]
|F ∗|+ 2

+ d

S2 : t0 +

[
2t∗

]
+

[
p12+(p

1
1+p

2
1)+|F ∗|·τ

]
|F ∗|+ 2

+ d (2)

S3 : t0 +

[
|F ∗|·p12+t∗

]
+

[
p12+(p

1
1+p

2
1)+|F ∗|·τ

]
|F ∗|+ 2

+ d

Here, |F ∗| denotes the number of flows in F ∗. A notable
point is |F ∗| · (p11 + p21) < |F ∗ | · 2p12 according to the
definitions of f1 and f2. We have the following inequal-
ity: |F

∗|·(p1
2+p2

2)+2t∗

2 ≤ |F∗|·2p1
2+2t∗

2 = |F ∗| · p12 + t∗. The
mean of two unequal numbers is always larger than the
smaller one of these two numbers. Therefore, we have:
min{|F ∗|·(p12+p22), 2t∗} ≤ |F ∗| · p12 + t∗. The two equations
indicate that either S1 or S2 has the smallest average flow
makespan. Hence, f1 and f2 should be pairwise executed
when being incorporated into F ∗. By induction, flows that
can form a pair should be pairwise executed in the optimal
schedule. We also conclude that for each pair, the middlebox
m1 is executed before middlebox m2. Therefore, the proof
of the theorem is complete. �

Theorem 3. The proposed Pairwise Schedule algorithm is
optimal when all flows are simultaneously pj2 < pj1 (or
pj2 > pj1 or pj2 = pj1).

Proof: When all flows in F simultaneously have pj1 >
pj2, ∀fj ∈ F , middlebox m2 has almost no impact on
the flow makespan except for transmission delay. This is

because the middlebox m2 is always underutilized for each
flow. At this time, Alg. 2 schedules flows according to their
pj1. It is trivial that flows with shorter processing time pj1
should be executed earlier to minimize the average flow
makespan, since the smaller flows can finish earlier. When
all flows in F are simultaneously pj1 = pj2, ∀fj ∈ F or
pj1 < pj2, ∀fj ∈ F , the scenario is similar, and thus, the
proof is complete. �

We can also construct a new flow set of F ′ from F . Each
pair of flows in F (say fi and fj ) is mapped to a flow in
F ′. The mapped flow in F ′ has map and shuffle workloads
of pi1 + pj1 and pi2 + pj2, respectively. By the definition of
the pair, we have pi1 + pj1 = pi2 + pj2. Therefore, each flow
in F ′ is balanced. Basically, F ′ is constructed by merging
each pair of flows in F . According to Theorem 1 in [36],
when F can be decomposed to pairs of flows, flows that can
form a pair are pairwise executed in the optimal schedule
of F . The optimal schedule for F ′ is the same as the one
for F . While each flow in F ′ is balanced, it is trivial that
flows with lighter workloads should be executed earlier
to minimize the average flow makespan, since the smaller
flows can finish earlier. If a flow with a heavier workload is
executed before a flow with a lighter workload, then a swap
of their execution order always leads to a smaller average
flow makespan. Hence, Alg. 2 is optimal, when F can be
decomposed to pairs of flows or all flows are simultaneously
pj2 < pj1 (or pj2 > pj1 or pj2 = pj1).

A potential problem of Alg. 2 is the flow processing
time granularity when flows cannot be perfectly strongly
paired. Line 3 in Alg. 2 pairs jobs with the same dominant
processing time, i.e., the same max(pj1, p

j
2). If each flow

has a unique dominant processing time, then the pairing
process is skipped and thus becomes useless. To control
the granularity, we additionally introduce a discretization
process before applying Alg. 2. Let δ denote the discretiza-
tion step, and the first and second processing times on the
two middleboxes of each flow being rounded to the nearest
multiple of δ. A larger δ represents a coarser processing time
granularity, with more flows sharing the same dominant
processing time. A smaller δ brings fine-grained processing
time, where fewer flows share the same dominant process-
ing time.

5 A SERVICE CHAIN WITH MULTIPLE MIDDLE-
BOXES

In this section, we study the case in which the service
chain includes more than two middleboxes (multiple mid-
dleboxes), which is shown in Fig. 3(b). We illustrate the
relationship among processing times, delays, and two flows
in Fig. 7.

5.1 NP-hardness

We prove the NP-hardness of scheduling flows in a service
chain with more than two middleboxes.

Theorem 4. Scheduling flows in a service chain with multiple
middleboxes to minimize the makespan is NP-hard even
when there is no transmission delay.



6

d1

fi fj

fi fj

m1
m2

fi fj

fi fj

m3

m4

d2 d3

TABLE 2: Processing times.

m1 m2 m3 m4

f1 1 2 3 4
f2 2 1 3 4
f3 2 2 4 6
f4 1 5 5 3

Fig. 7: Multiple middleboxes in a service chain.

Algorithm 3 Slope Heuristic Algorithm (SHA)

In: Flow processing times pji , ∀fj ∈ F,mi ∈ M and the
transmission delay di ∈ D;

Out: The flow scheduling order;

1: pji = pji + di;
2: Sort flows in decreasing order of Aj = −

∑|M |
i=1(|M | −

(2i− 1))pji ;
3: return The flow scheduling order.

Proof: We prove the NP-hardness of a special case where
no transmission delay exists between any pair of middle-
boxes. In this case, our problem is equivalent to the classic
flow shop problem, which is known to be NP-hard. Thus,
scheduling flows in a service chain with more than two
middleboxes with the minimum makespan is NP-hard. We
prove the NP-hardness from the classic NP-hard problem
3-partition. Given integers a1, ..., a3t, b, under the usual
assumptions, let the number of flows n equal 4t + 1 and
let p01 = 0, p02 = b, p03 = 2b; for flows f1, ...ft−1, we
have pj1 = 2b, pj2 = b, pj3 = 2b; for flow ft, we have
pt1 = 2b, pt2 = 2b, pt3 = 0; for flows ft+1, ...f4t, we have
pj1 = 0, pj2 = aj , p

j
3 = 0. Let z = (2t + 1)b. A makespan of

value z can be obtained if the first t+1 flows are scheduled
according to sequence 0, 1, ..., t. These t + 1 flows then
form a framework, leaving t gaps on middlebox m2. Flows
t + 1, ..., 4t have to be partitioned into t sets of three flows
each and these t sets have to be scheduled in between the
first t + 1 flows. A makespan of value z can be obtained if
and only if 3-PARTITION has a solution. �

It is harder to obtain results of minimizing the average
completion time, which is also NP-hard. In the following,
we propose two heuristic solutions for the different objec-
tives.

5.2 Minimizing the makespan
For more than two middleboxes in the chain, it proves

NP-hard to optimally schedule the flows. We propose an
algorithm, called Slope Heuristic Algorithm (SHA), which is
extended from the TSOS algorithm. The transmission delay
between two adjacent middleboxes are accumulated, shown
in Fig. 7. A slope index is computed for each flow. The slope
index Aj for flow fj is defined as Aj = −

∑|M |
i=1(|M |− (2i−

1))(pji + di). The flows are then sequenced in decreasing
order of the slope index. The insight is extended from the
TSOS algorithm. It is already clear that flows with small
processing times on the first middlebox instance and large
processing times on the second middlebox instance should

be positioned more towards the beginning of the sequence.
Similarly, flows with large processing times on the first mid-
dlebox instance and small processing times on the second
middlebox instance should be positioned more towards the
end of the sequence. The slope index is large if the process-
ing times on the downstream middlebox instances are large
relative to the processing times on the upstream middlebox
instances; the slope index is small if the processing times
on the downstream middlebox instances are relatively small
in comparison with the processing times on the upstream
middlebox instances. We are given the processing times of
each flow on all middleboxes in the service chain as well
as the transmission delay on each link. We need to decide
the processing order of all flows on the service chain. Line 1
handles the link transmission delay as part of the processing
time on the middlebox before that link. Line 2 sorts flows in
the decreasing order ofAj = −

∑|M |
i=1(|M |−(2i−1))(p

j
i+di).

The order of flows is returned in line 4. As the sorting of
flows costs |F | log |F |, the time complexity of SHA is also
O(|F | log |F |).

For better understanding, we use a service chain with
four middleboxes as an example, shown in Fig. 7. The
transmission delays are d1 = 2, d2 = 3, and d3 = 1. There
are four flows, whose processing times are shown in Tab.
2. By applying the SHA algorithm, we calculate each new
processing time value such as p11 = p11 + d1 = 1 + 2 = 3.
Then we calculate the slope index for each flow such as
A1 = −(4− 1) · p11− (4− 3) · p12− (4− 5) · p13− (4− 7) · p14 =
−3·3−5+4+3·4 = 2. Similarly, we getA2 = 0, A3 = 6, and
A4 = −2. Next we sort the slope indices in decreasing order
and return the order as f4, f2, f1, and f3. The makespan is
23.

5.3 Minimizing the average completion time

In order to minimize the average completion time, we
propose a heuristic algorithm, called Pairwise Heuristic
Schedule (PHS), in Alg. 4, which is extended from our PS
algorithm. We are given the processing time of each flow
on each middlebox of the service chain. We need to decide
the processing order of all flows on the service chain. The
insight of the algorithm is to pair flows with the sum of
processing times and transmission delays in each half part
of the service chain. In Alg. 4, lines 1-2 define two metrics
in order to handle the middlebox processing time and the
link transmission delay. Line 3 sorts the flow orders based
on the two metrics. Lines 4-5 pair flows. The order of flows
is returned in line 6. As the sorting of flows costs |F | log |F |,
the time complexity of PHS algorithm is O(|F | log |F |).

For better understanding, we also use a service chain
with four middleboxes as an example, shown in Fig. 7. The
settings are the same as the last subsection. By applying the
PHS algorithm, we calculate Bj

1 and Bj
2 for each flow. For

example,B1
1 = p11+d1+p

1
2+d2 = 1+2+2+3 = 8. Similarly,

we get B1
2 = 8, B2

1 = 8, B2
2 = 8, B3

1 = 9, B3
2 = 11, B4

1 = 11,
and B4

2 = 9. We sort max{Bj
1, B

j
2} in increasing order as

f1, f2, f3, and f4. Next we make f1 and f2 as a pair, and f3
and f4 as a pair. The scheduling order is f1, f2, f3, and f4.
The average completion time is 16.75.



7

Algorithm 4 Pairwise Heuristic Schedule (PHS)

In: Flow processing times pji , ∀fj ∈ F,mi ∈ M and the
transmission delay di ∈ D;

Out: The flow scheduling order;

1: Bj
1 =

∑|M |/2
i=1 (pji + di);

2: Bj
2

∑|M |
i=(|M |/2+1)(p

j
i + di)

3: Sort all flows in increasing order of max{Bj
1, B

j
2};

4: for each subset of flows with the same max{Bj
1, B

j
2} do

5: Reorder flows by iteratively taking out a pair of flows
of argmax(Bj

2 −B
j
1) and argmax(Bj

1 −B
j
2);

6: return The flow scheduling order.

6 TESTBED EVALUATION

We use a combination of experiments and simulations for
performance evaluation. We have built a prototype to vali-
date the solutions in realistic environments, and have also
conducted simulations to obtain performance data in large
scale networks. We present experiment results and extensive
simulation to show the effectiveness of our design.

6.1 Settings
We do realistic transmission experiments on the testbed in
our lab, whose photos are shown in Figure 8. The testbed
contains two Cisco switches (8 ports) and three Pica8 P-3297
switches (48 ports). Each Pica switch connects with two 64
bits Dell Power Edge R210 servers. Each server has 2.4 GHz
CPU and 4 GB memory and is accessible via the connections
offered by the switches. Grnlntrn is the controller, which is
constructed by a Dell Power Edge R210 server and runs with
the open-source SDN controller Ryu [41]. The capacities of
all physical links in our testbed are 1 Gbps.

We pick four network services for the tested service
chain: (1) Load balancer: acts as a reverse proxy and dis-
tributes network or application traffic across a number of
servers. We utilize the virtual port transmission function
of the Pica8 SDN switch. (2) Firewall: monitors incoming
and outgoing network traffic and decides whether to allow
or block specific traffic based on a defined set of security
rules. We utilize the filter configuration function of Pica8
SDN switch. (3) Intrusion Detection System (IDS): monitors
a network or system for malicious activity or policy viola-
tions. We utilize the filter configuration function of the Pica8
SDN switch. (4) Network address translation: remaps one IP
address space into another by modifying network address
information in the IP header of packets while they are in
transit across a traffic routing device. We utilize the routing
configuration of the Pica8 SDN switch. All Pica8 switches
run in Open vSwitch (OVS) Mode. Due to space limitation,
the detailed description is omitted. We change the number
of flows to be served by the same service chain from 2 to 12
with an increment interval of 2. The flow size is randomly
generated between 100 Mb and 200 Mb.

6.2 Comparison algorithms and metrics
Based on our knowledge, the model of our work has not
been studied before. As a result, the following three algo-
rithms are used for comparison:

 

(a) Pica8 P-3297. (b) Rack.

Fig. 8: The views of the testbed.

1) Random: ranks flows randomly.
2) Shortest Processing Time first (SPT): ranks flows by

their sum of processing times on each middlebox in
an increasing order.

3) Longest Processing Time first (LPT): ranks flows by
their sum of processing times on each middlebox in
a decreasing order.

In addition, experiments present Algorithms 1 to 4 as
TSOS, PS, SHA, and PHS, respectively. Two metrics are used
for comparison. The first metric is the makespan, which is the
interval between the starting time of the first flow on the
first middlebox and the finishing time of the last flow on
the last middlebox of the service chain. The second metric is
the average completion time, which is the sum of each flow’s
completion time divided by the number of flows. The com-
pletion time of each flow is the interval between its starting
time on the first middlebox of the service chain and its
ending time on the last middlebox. The times are measured
as the transmission delay of each flow, which is calculated as
the difference between the recorded completion and starting
time.

6.3 Results

We show the results of makespan and the average comple-
tion time in the service chain with only two middleboxes
in Fig. 9. Specifically, Fig. 9(a) uses the bar plot to indicate
the makespans of flows by applying the five algorithms,
while Fig. 9(b) shows the corresponding average completion
times. The increasing tendency of all lines in both figures is
similar, which indicates the correctness of our results since
the average completion time demonstrates the largest flow
completion time (makespan) to some degree. In Fig. 9(a),
our TSOS algorithm performs the best with the smallest
makespan among the five algorithms. Our proposed PS
algorithm for the minimum average completion time ob-
jective has a satisfactory result in terms of the makespan
objective. Although LPT algorithm is optimal for a single
stage flow scheduling [42], its performance is not outstand-
ing, which indicates that simply adding up all processing
times as the ordering metric is not enough. Additionally,
we find out that the difference among the performances of
the five algorithms is not so obvious. It can be explained
that the lower bound of the makespan is the sum of all
processing times of flows in the second middlebox plus
the transmission delay. Moreover, its upper bound is the
sum of the bigger processing time of each flow on the two



8

2 4 6 8 10 12
Number of flows

0

10

20

30

40

50
M

ak
es

pa
n(

se
co

nd
)

Random
SPT
LPT
TSOS
PS

(a) Makespan.

2 4 6 8 10 12
Number of flows

5

10

15

20

25

30

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

(s
ec

on
d)

Random
SPT
LPT
TSOS
PS

(b) Average completion time.

Fig. 9: A service chain with only two middleboxes.

2 4 6 8 10 12
Number of flows

0

10

20

30

40

M
ak

es
pa

n 
(s

ec
on

d)

Random
SPT
LPT
SHA
PHS

(a) Makespan.

2 4 6 8 10 12
Number of flows

16

18

20

22

24

26

28

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

(s
ec

on
d)

Random
SPT
LPT
SHA
PHS

(b) Average completion time.

Fig. 10: A service chain with four middleboxes.

middleboxes plus the transmission delay times the number
of flows. The difference between lower and upper bounds
is not large and is directly proportional to the number of
flows. Thus, the performance differences of algorithms are
not so obvious.

Fig. 9(b) shows the results of the average completion
time in seconds. Though not all flows can be paired, our pro-
posed algorithm PS outperforms others with the minimum
average completion time, especially when the number of
flows is large. It is worth mentioning that SPT algorithm also
has excellent performance. This is because SPT algorithm is
optimal for minimizing the average completion time in a
single middlebox [43]. Algorithms TSOS and LPT have the
largest average completion time since they schedule flows
with the longer processing time first. This results in a larger
completion time for the majority of flows compared to PS
algorithm. When the number of flows is relatively small, the
sequence choices are limited, which makes the sequences
of different algorithms the same. Even though the realistic
transmissions are not completely steady, the results of the
five algorithms are quite similar, indicating the stable state
of our testbed.

We show the results of makespan and the average com-
pletion time in the service chain with six middleboxes in
Fig. 10. Though our proposed algorithms SHA and PHS are
heuristic, they achieve the best performance in terms of the
makespan and the average completion time, respectively.
Comparing this with the results with only two middleboxes
in the service chain in Fig. 9, we find the basic tendencies of
each bar and each line to be similar. In Fig. 10(a), with the
same number of flows, the increment of the makespan is not
proportional to the number of middleboxes. This is because

0 100 200 300 400 500 600 700 800 900 1000

Flow size (Kilobytes)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

(a) Flow size distribution.

0 20 40 60 80 100 120 140

p1
0

20

40

60

80

100

120

140

p2

(b) Processing time distribution.

Fig. 11: An illustration of flow information.

the processing of different flows on different middleboxes
can be done at the same time. In terms of the average
completion time, Fig. 10(b) shows that PHS algorithm has
the lowest average completion time for all situations. When
there are 12 flows, its average completion time is 11.7% less
than the algorithm LPT.

7 SIMULATION EVALUATION

Large-scale simulation experiments are conducted to eval-
uate the performances of our proposed algorithms. After
we present the network and flow settings, the results are
shown from different perspectives to provide insightful
conclusions. The simulation results show that our proposed
optimal and greedy algorithms empirically perform much
better than other algorithms.

7.1 Settings

We conduct simulations based on Facebook Data-center
Network flow distribution [44], which has been widely used
to report the realistic traffic in Facebook’s data centers. The
flow size distribution is shown in Fig. 11(a) based on the
result of [44]. The processing time of each flow on the
middleboxes of the service chain is generalized from the
size distribution. We conduct the flow scheduling on three
service chains. One is with only two middleboxes, another
one is with four middleboxes, and the last one is with six
middleboxes. We use Fig. 11(b) as an example to illustrate
the flow processing time information of the service chain
with only two middleboxes. The transmission delays be-
tween every two middleboxes are randomly chosen ranging
from 1 to 10, which is scaled based on the relationship of
the transmission delay and the flow processing time in our
experiments. We also measure the makespan as well as the
average completion time in the simulations based on the
varied number of flows being served in the same service
chain. The total number of flows ranges from 1,000 to 6,000
with a stride of 1,000.

7.2 Results

We show the simulation results of the makespan and the
average completion time in the service chain with two mid-
dleboxes in Fig. 12. Compared to the experiments in Section
VI, the results are similar while the tendency becomes more
smooth. Since our proposed algorithm TSOS is optimal, it



9

1000 2000 3000 4000 5000 6000
Number of flows

1.2

1.4

1.6

1.8

2

M
ak

es
pa

n
104

Random
SPT
LPT
TSOS
PS

(a) Makespan.

1000 2000 3000 4000 5000 6000
Number of flows

0

5000

10000

15000

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e

Random
SPT
LPT
TSOS
PS

(b) Average completion time.

Fig. 12: A service chain with only two middleboxes.

1000 2000 3000 4000 5000 6000
Number of flows

1.4

1.6

1.8

2

2.2

M
ak

es
pa

n

104

Random
SPT
LPT
SHA
PHS

(a) Makespan.

1000 2000 3000 4000 5000 6000
Number of flows

0

5000

10000

15000

A
ve

ra
ge

 c
om

pl
et

io
n 

tim
e

Random
SPT
LPT
SHA
PHS

(b) Average completion time.

Fig. 13: A service chain with four middleboxes.

achieves the best performance in the makespan, shown in
Fig. 12(a). It is worth mentioning that our proposed PS
algorithm has the second best performance, which indicates
its excellence. In terms of the average completion time,
Fig. 12(b) shows that PS algorithm has the lowest average
completion time for all situations though the results of the
algorithm SPT are similar. This indicates the importance of
the total processing times when we schedule flows aiming at
minimizing the average completion time. Additionally, the
average completion time of PS algorithm is at least 60.1%
less than SPT algorithm’s when there are at least 1,000 flows.

Figs. 13 show the results for a service chain with four
middleboxes. Our proposed algorithm SHA achieves the
best performance in the makespan while the PHS algo-
rithm has lowest average completion time. The performance
difference among algorithms is not obvious. The tradeoff
between the time complexity and the performance makes
our proposed algorithms worthy to apply. Fig. 13(a) shows
the results of the makespan. When there are 3,000 flows,
the increment of the makespan is larger than in Fig. 12(a).
Additionally, when the number of flows changes from 5,000
to 6,000, the makespan of TSOS algorithm increases by
18.8% in Fig. 13(a) while the makespan of SHA algorithm
in Fig. 12(a) only increases the makespan by 14.5%. In Fig.
13(b), the performance of our proposed algorithm SHA is
better than in Fig. 12(b). The average completion times of
PHS and SPT algorithms are again quite close to each other.
The algorithms LPT and SPT always have the reverse perfor-
mances when we minimize the makespan and the average
completion time. Additionally, the average completion time
of PS algorithm is at least 45.1.1% less than SPT algorithm’s
if the number of flows is no less than 2000. It is worth
mentioning that our proposed PS algorithm has the second

1000 2000 3000 4000 5000 6000
Number of flows

1.4

1.6

1.8

2

2.2

M
ak

es
pa

n

104

Random
SPT
LPT
SHA
PHS

(a) Makespan.

1000 2000 3000 4000 5000 6000
Number of flows

0

0.5

1

1.5

2

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e

104
Random
SPT
LPT
SHA
PHS

(b) Average completion time.

Fig. 14: A service chain with six middleboxes.

best performance, which indicates its excellence.
The results for when there are six middleboxes are

shown in Fig. 14. Though our proposed algorithms SHA and
PHS are heuristic, they achieve the best performance in the
makespan and the average completion time, respectively.
The performance difference among algorithms is not obvi-
ous, for reasons similar to that in Section VI(C). However,
as the time complexity of all our proposed algorithms is
low, it is still reasonable to apply our algorithms. Specifi-
cally, Fig. 14(a) shows the results of the makespan. When
there are 3,000 flows, the increment of the makespan is
larger than in Fig. 12(a). Additionally, when the number
of flows changes from 5,000 to 6,000, the makespan of
TSOS algorithm increases by 17.5% in Fig. 14(a) while the
makespan of SHA algorithm in Fig. 12(a) only increases the
makespan by 12.7%. In Fig. 14(b), the performance of our
proposed algorithm SHA is better than in Fig. 12(b). It is
worth mentioning that algorithm Random is not the worst
in all experiments. This is because the two objectives are
conflicting with each other; for example, algorithms LPT
and SPT always have the reverse performances when we
minimize the makespan and the average completion time,
respectively. The average completion times of PHS and SPT
algorithms are again quite close to each other.

To sum up, our proposed four algorithms perform out-
standingly in their corresponding settings. Our simulation
results basically have the same tendency as the testbed
results, indicating the proper selection of the parameter
settings. Small scale experiments in Section 6 verify the
correctness of our proposed algorithms while large scale
simulations in Section 7 demonstrate their effectiveness.
Additionally, we notice that the transmission time of flows
in the testbed is not steady enough, resulting in relatively
fluctuating performance lines. In Section 7, we conduct
simulations with the real flow distribution of Facebook
data centers, which makes our results significantly more
convincing.

8 CONCLUSION

Flows always request to be processed by several middle-
boxes in a specific order, which is known as a service chain.
Most researches study the middlebox placement problem
and few of them pay attention to the flow scheduling of a
deployed service chain, resulting in poor control of the flow
completion times. However, the flow completion time is an
extreme metric to evaluate the performance of a network.



10

Therefore, this paper focuses on the service chain scheduling
problem. In this paper, we focus on the flow scheduling
problem of being served by a service chain in order to
improve the quality of service. We aim at minimizing the
transmission delay and processing delay in two aspects:
makespan and the total completion time. We build a trans-
mission and processing delay model to formulate latency
behaviors and control the flow processing sequence in the
network. We propose two optimal solutions when there
are only two services in the service chain. With a service
chain of an arbitrary length, two heuristic algorithms are
designed with insights. Extensive experiments as well as
large-scale simulations are conducted to evaluate the perfor-
mance of our algorithms in various scenarios. Experiment
and simulation results show that our proposed optimal and
greedy algorithms empirically perform much better than
other algorithms.

In future, we tend to study the flow completion time
among multiple service chains. Additionally, various trans-
mission delay of different flows can also be took considera-
tion in the network model. It is also interesting to formulate
the delay behaviour based on a stochastic model.

9 ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS
1651947, and CNS 1564128.

REFERENCES

[1] M. Ghaznavi, E. Jalalpour, B. Wong, and R. Boutaba,
“Fault tolerance for service function chains,” arXiv preprint
arXiv:2001.03321, 2020.

[2] P. Quinn and T. Nadeau, “Service function chaining prob-
lem statement,” draft-ietf-sfc-problem-statement-07 (work in
progress), 2014.

[3] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma,
“Service function chaining use cases in data centers,” IETF
SFC WG, p. 10, 2015.

[4] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and
J. Uttaro, “Service function chaining use cases in mobile
networks,” Internet Engineering Task Force, 2015.

[5] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi,
“Design and implementation of a consolidated middlebox
architecture,” in Presented as part of the 9th {USENIX}
Symposium on Networked Systems Design and Implementation
({NSDI} 12), 2012, pp. 323–336.

[6] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: a
software-defined framework for developing, deploying,
and managing network functions,” in Proceedings of the
2016 ACM SIGCOMM Conference, 2016, pp. 511–524.

[7] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella, “Opennf:
Enabling innovation in network function control,” in SIG-
COMM 2014.

[8] J. Sherry and S. Ratnasamy, “A survey of enterprise mid-
dlebox deployments,” EECS Department, University of
California, Berkeley, Tech. Rep., 2012.

[9] D. Zeng, L. Gu, S. Pan, and S. Guo, “Software defined
networking ii: Nfv,” in Software Defined Systems. Springer,
2020, pp. 77–100.

[10] S. Fayazbakhsh, V. Sekar, M. Yu, and J. Mogul, “Flow-
tags: Enforcing network-wide policies in the presence of
dynamic middlebox actions,” in HotSDN 2013.

[11] P. P. Zave, R. Ferreira, X. Zou, M. Morimoto, and J. Rex-
ford, “Dynamic service chaining with dysco,” in SIG-
COMM 2017.

[12] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling
and resource optimization with network function virtu-
alization,” IEEE Transactions on Communications, vol. 64,
no. 9, pp. 3746–3758, 2016.

[13] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of
cross-edge service function chaining for cost-efficient edge
computing,” IEEE Journal on Selected Areas in Communica-
tions, vol. 37, no. 8, pp. 1866–1880, 2019.

[14] M. Rost and S. Schmid, “Np-completeness and inapprox-
imability of the virtual network embedding problem and
its variants,” Technical Report, Tech. Rep., 2018.

[15] “Virtual network embedding approximations: Leveraging
randomized rounding,” arXiv preprint arXiv:1803.03622,
2018.

[16] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and
placing chains of virtual network functions,” in CloudNet
2014.

[17] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near
optimal placement of virtual network functions,” in IN-
FOCOM 2015.

[18] T. Kuo, B. Liou, K. Lin, and M. Tsai, “Deploying chains
of virtual network functions: On the relation between link
and server usage,” in INFOCOM 2016.

[19] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions vir-
tualization with soft real-time guarantees,” in INFOCOM
2016.

[20] A. Gember, A. Krishnamurthy, S. St. John, R. Grandl,
X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar,
“Stratos: A network-aware orchestration layer for middle-
boxes in the cloud,” in arXiv 2013.

[21] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella, “Opennf:
Enabling innovation in network function control,” SIG-
COMM Comput. Commun. Rev., vol. 44, no. 4, pp. 163–174,
2014.

[22] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici, “Clickos and the art of network
function virtualization,” in USENIX NSDI 2014, pp. 459–
473.

[23] Yao, Hong and Xiong, Muzhou and Li, Hui and Gu, Lin
and Zeng, Deze, “Joint optimization of function mapping
and preemptive scheduling for service chains in network
function virtualization,” Future Generation Computer Sys-
tems, vol. 108, pp. 1112–1118, 2020.

[24] Bhamare, Deval and Samaka, Mohammed and Erbad,
Aiman and Jain, Raj and Gupta, Lav and Chan, H An-
thony, “Multi-objective scheduling of micro-services for
optimal service function chains,” in 2017 IEEE international
conference on communications (ICC). IEEE, 2017, pp. 1–6.

[25] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson,
A. W. Moore, S. Hand, and J. Crowcroft, “Queues don’t
matter when you can JUMP them!” in NSDI 2015.

[26] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal, “Fastpass: A centralized ”zero-queue” datacen-
ter network,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, 2014.

[27] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo:
Predictable message latency in the cloud,” in SIGCOMM
2015.

[28] F. P. Tso, G. Hamilton, R. Weber, C. S. Perkins, and D. P.
Pezaros, “Longer is better: Exploiting path diversity in
data center networks,” in ICDCS 2013.

[29] S. Bera, S. Misra, and A. Jamalipour, “Flowstat: Adaptive
flow-rule placement for per-flow statistics in sdn,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 3,
pp. 530–539, 2019.

[30] Z. Zhou and Q. Wu and X. Chen, “Online Orchestration of



11

Cross-Edge Service Function Chaining for Cost-Efficient
Edge Computing,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 8, pp. 1866–1880, 2019.

[31] X. Wang and C. Wu and F. Le and F. C. M. Lau, “On-
line Learning-Assisted VNF Service Chain Scaling with
Network Uncertainties,” in 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), 2017, pp. 205–
213.

[32] S. M. Johnson, “Optimal two- and three-stage production
schedules with setup times included,” Naval Research Lo-
gistics Quarterly, vol. 1, 1954.

[33] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems.
Springer Publishing Company, Incorporated, 2008.

[34] H. Hoogeveen, L. van Norden, and S. van de Velde,
“Lower bounds for minimizing total completion time in a
two-machine flow shop,” Journal of Scheduling, vol. 9, no. 6,
pp. 559–568, 2006.

[35] F. D. Croce, V. Narayan, and R. Tadei, “The two-machine
total completion time flow shop problem,” European Jour-
nal of Operational Research, vol. 90, no. 2, pp. 227 – 237,
1996.

[36] H. Zheng, Z. Wan, and J. Wu, “Optimizing mapre-
duce framework through joint scheduling of overlapping
phases,” in ICCCN 2016.

[37] P. Duan, Q. Li, Y. Jiang, and S. T. Xia, “Toward latency-
aware dynamic middlebox scheduling,” in ICCCN 2015.

[38] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Taxing
the queue: Hindering middleboxes from unauthorized
large-scale traffic relaying,” IEEE Communications Letters,
vol. 19, no. 1, pp. 42–45, 2015.

[39] M. Pinedo, Scheduling - Theory, Algorithms, and Systems,
2008.

[40] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[41] Ryu component-based software defined net-
working framework. [Online]. Available:
http://osrg.github.io/ryu/

[42] J. Kleinberg and E. Tardos, Algorithm Design, Boston, MA,
USA, 2005.

[43] M. Pinedo, Scheduling: Theory, Algorithms, and Systems.
Springer International Publishing, 2016.

[44] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren,
“Inside the social network’s (datacenter) network,” in SIG-
COMM 2015, pp. 123–137.


