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Abstract—The discovery of peoples’ social connections is be-
coming a flourishing research topic, considering the rich social
information inferable from human trajectories. Existing social
tie detection methods often require mobile users to upload their
accurate locations, causing serious privacy concerns. On the other
hand, cloaking methods allow users to upload their obscured
locations instead and can efficiently protect their location privacy.
However, no existing social tie detection method can generate
social relationships among users when only obscured trajectories
are provided. To tackle the aforementioned problem, this paper
proposes a novel semantic-tree-based algorithm. Specifically, we
model the obscured regions from the cloaking algorithm as a
semantic region tree and assign weight values for regions based on
their popularity, further indicating the similarity between users
based on their temporal and spatial relations. We evaluate our
proposed approach using a real trajectory data set and show that
our algorithm can identify social ties successfully with 20% higher
accuracy than the existing approaches.

Index Terms—Cloaked trajectory, privacy preserving, semantic
similarity, social tie discovery.

I. INTRODUCTION

SOCIAL link prediction has emerged as a hot topic in social
network analysis because knowing the social ties among

people would be beneficial to link prediction [1], rating predic-
tion [2], product recommendation [3], and community discov-
ery [4]. One commonly adopted method of inferring social ties
is measuring the similarity of individuals’ historical locations in
both spatial and temporal dimensions because recent research
studies have proven that people’s social relationship may partly
influence their mobility patterns. In particular, people’s trajec-
tory is an important clue for inferring social ties since we and
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our friends are likely to visit similar locations [5]. In recent
years, location-based social network applications have become
highly popular around the world. More people are using GPS-
enabled devices to log their outdoor locations and activities
[6], [7] and to share information about their current locations
and activities with friends through remote servers. This kind of
information sharing has a profound impact on social networks
[8] and provides the basis of inferring social ties.

Location is sensitive information for individuals, and it is
probable to be leaked out, by an untrusted server, to malicious
third parties [9]. Extensive studies have been conducted to
guard against individual’s location privacy leaking in location-
based services [9]–[13].

Most of the existing approaches are based on location per-
turbation and obfuscation, which employ well-known privacy
metrics calculated at the server side to evaluate the level of
personal data disclosure [14]. K-anonymity is a representative
measure guaranteeing that a user is indistinguishable from at
least k − 1 other users. Generally, to achieve k-anonymity, a
centralized location anonymizer [15] is responsible for enlarg-
ing the queried location in a location-based service query to a
larger region, which geographically covers at least k − 1 other
users. This process is defined as cloaking [10], and the spatial
cloaked area around user’s actual location is defined as cloaking
region, whereas a trajectory that is composed of a sequence of
cloaking regions is then called a cloaked trajectory. As shown
in Fig. 1, k is 4 and 7 for the two users, respectively. We notice
that the cloaking regions have different sizes according to the
setting of k. Sometimes, the cloaking region of a user with a
large k might contain the cloaking region of another user with
a smaller k (see the red rectangular region in Fig. 1).

Considering that cloaking-based approaches are widely
adopted in location privacy preserving, identifying social ties
from cloaked trajectories is pretty much a necessity. Based on
k-anonymity cloaked locations, Tan et al. [16] proposed a social
tie prediction algorithm, although it suffers from low accuracy.
In our previous paper [17], we have introduced how to reveal
the social connections via blurry trajectories processed by
cloaking algorithms. Different from the work of Tan et al. [16],
we take the different privacy protection levels into consider-
ation and realize that the semantic meanings and hierarchical
relations of cloaking regions would be very useful.

This paper tackles the problem of inferring social ties from
obscured trajectories for privacy preservation purposes. Com-
pared with traditional methods that ignore the location privacy
of users, the distance between two cloaking regions can no
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Fig. 1. Cloaked trajectories.

Fig. 2. Containment relationship of coverage areas.

longer reflect the actual distance between two users. To solve
such problems, we proposed a weighted hierarchical semantic
tree model in this paper. First, we transform the cloaking
regions into semantic regions. Considering the different levels
of privacy requirements of users, which can be reflected by
their choices of k in k-anonymity cloaking, there exists a con-
tainment relationship among the semantic regions. The concept
of containment relationship of semantic regions is illustrated
in Fig. 2. In this figure, residential community contains the
park and the market; for some users with high k values, the
semantic region could be residential community, and for users
with lower k values, the semantic region could be the park or the
market. Furthermore, the difference of popularity of regions is
taken into account in our paper. Since people appearing in some
rarely visited regions are considered to have a larger chance of
knowing each other, less popular regions are more successful in
inferring social ties.

Next, we propose a novel algorithm to infer social ties
among people using a weighted hierarchical semantic tree. The
probability of the existence of social ties between two users is
then measured by a similarity score.

On the basis of the previous work, we improve the accuracy
in social tie discovery.

In particular, we improve the semantic tree model by further
considering the impact of the popularity of semantic regions to
the calculation of similarity among users. In this case, we divide
regions into popular regions and unpopular regions.

For example, bars and stadiums could be regarded as the
unpopular regions, whereas markets and restaurants could be
regarded as popular regions. In our paper, the popularity of a re-
gion is mainly decided by its number of check-ins, and a region
is more representative of people’s hobbies and characteristics
if it is an unpopular region. Thus, unpopular regions should be
assigned a higher weight than popular regions when measuring
similarity.

The contributions of this paper can be summarized as
follows.

• We introduce a weighted hierarchical semantic tree
model. In this model, different levels of user privacy
preservation are taken into account. We also consider
some important features of semantic regions to help con-
struct our model, such as the containment relationship of
regions and the popularity differences among regions.

• We propose a trajectory similarity measuring algorithm to
discover social ties of users from the cloaked trajectories
based on the weighted hierarchical semantic tree model.

• We use the Gowalla data set [5], [18] that records 196 591
users to evaluate the performance of the proposed scheme.
The results show that our proposed method can improve
the social tie inferring accuracy by almost 20% when
compared with existing algorithms.

The rest of this paper is organized as follows. Section II re-
views the related literature. Section III introduces the weighted
hierarchical semantic tree model. Section IV gives full details of
our algorithm for social ties detection. Section V evaluates our
approach with a real-world data set and reports the evaluation
results. Section VI concludes our work.

II. RELATED WORK

The relation between social ties and human mobility has been
widely explored in recent years [5], [6], [8], [19]. It is revealed
that human trajectories and social ties are closely correlated [8].
Cho et al. [5] further studied the relation between social ties and
human geographic and temporal dynamics and identified the
strong indication between trajectory similarity and social tie.
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Semantic trajectory data mining has emerged as an im-
portant tendency in recent studies [20], [21]. For example,
Baratchi et al. constructed semantic location histories, with
which they proposed a novel mechanism to estimate the prob-
ability if social tie exists between users by measuring their
trajectory similarity [6], [22]. Liu et al. [23] captured landmarks
on trajectory, which was composed of a sequence of locations
labeled with semantic tags (called semantic locations). These
semantic locations contain a wealth of information about indi-
vidual’s daily activities. For example, Alvares et al. [20] have
found semantic trajectory patterns from users’ mobility histo-
ries. They first mapped each stop in the trajectory to semantic
landmark and then applied sequential pattern mining to find
user’s frequent behaviors. In [21], the user’s next location on
their trajectory is predicted by analyzing the geographic and
semantic features.

Location information is important but sensitive; a mass of
location privacy protection mechanisms have been proposed in
social networking services. Zhang et al. proposed a suit of novel
fine-grained private matching protocols to enable two users
perform profile matching without disclosing privacy informa-
tion for proximity-based mobile social networking [24], [25].
Sun et al. studied social tie discovery problem in mobile
social network and adopted geographic cell index to record
mobile user’s location and further proposed a Private Set
Intersection Cardinality (PSI-CA) protocol and a Bloom-filter-
based protocol for privacy-preserving spatiotemporal matching
[26]. Location perturbation and obfuscation are the most
studied approaches [9], [27]. As a representative technology,
k-anonymity, which was introduced by Gruteser and Grunwald
[28], could reduce the probability of the target object
being identified from a k-objects group to only 1/k [29].
Gruteser and Grunwald proposed an adaptive interval cloaking
algorithm to construct spatial–temporal cloaking areas contain-
ing at least kmin users. After that, they sent only the cloaking
areas to application servers for different kinds of services. In
k-anonymity cloaking, the level of user anonymity, which is
indicated by k, could be maintained by changing the size of the
cloaking area [30]. A larger k corresponds to a higher privacy
protection level, and vice versa.

A number of research studies also discussed the metrics of
location privacy evaluation [31]–[34]. Intuitively, the degree
of location privacy is defined as the accuracy with which
an untrusted party can locate an individual. Since privacy is
intrinsically related to uncertainty, entropy-based metrics are
mostly adopted to evaluate the privacy protection level in
anonymous communication [31], [32]. Typically, the privacy
metric is defined as

H(k) = −
I∑

i=1

pi lg pi (1)

where pi denotes the adversaries probabilities for different
assignments of user identities to the observed position, and
I indicates the total number of such assignment hypothesis.
Hoh and Gruteser [31] also proposed an alternative metric with
the expectation of distance error to capture how accurate an

adversary can estimate individual’s location. They gave the
formulation as

E[d] =
1

NK

K∑
k=1

I∑
i=1

pi(k)di(k) (2)

where di describes the total distance error between the correct
assignment hypothesis and the hypothesis i, whereas N is the
number of users, and K denotes the total observation time.

In this paper, we try to identify social ties based on users’
cloaked trajectory resulted from k-anonymity processing. Com-
pared with previous studies, this approach extends the concept
of semantic trajectory and explores hierarchical relationship
of semantic regions for social tie identification; meanwhile,
it preserves location privacy to users with different privacy
protection requirement levels.

III. PROPOSED MODEL

Here, we would elaborate the detail of our proposed model.
Intuitively, it is difficult to deduce social ties via obscured
trajectories, since they are unable to reveal accurate location
distance at the same time. In our approach, we first transform
the cloaking regions to semantic regions in a preprocessing
stage, to, e.g., make cloaking regions carry semantic informa-
tion. Next, since users have different requirements in privacy
protection, reflected in the different values of k, the granularity
of cloaking regions varies. In this case, there exists hierarchical
relationship among semantic regions. Users in two regions
having a hierarchical relationship are likely to know each other.
Third, the weight of semantic regions is allocated based on the
popularity of regions. Two users have a higher probability of
knowing each other if they appear in a less-visited region. This
way, we can improve the accuracy of social tie discovery.

A. System Overview

A trusted anonymization server is deployed to transform raw
trajectories to cloaked trajectories. Only the cloaking regions
will be forwarded to the application server to support various
kinds of services. Fig. 1 shows the procedure in detail. First,
the trusted server collects raw GPS trajectories from the mobile
devices. Then, the trusted server anonymizes the trajectories
with k-anonymity to make users indistinguishable from k − 1
other users. Different users may have different privacy protec-
tion requirements, which are determined by the value of k.
A larger k brings a higher privacy protection level, and vice
versa. In practice, a number of k options are presented to users.
Users select suitable k empirically according to their privacy
protection demand. When all trajectories are processed by the
trusted server, cloaked trajectories could be shared with the
application servers.

For convenience, the cloaking region is represented with
a rectangle indicated by the x, y coordinates of its top left
and bottom right corners. Considering that users may have
different privacy protection levels, the size of cloaking regions
varies accordingly. Let U = {Ui : i = 1, 2, . . . , U} denote the
set of users and Tu denote the corresponding trajectories. Each
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Fig. 3. Procedure of our model.

trajectory is composed of a set of triples {Rp, Ep, Lp}, where
Ep and Lp denote the time stamp when user u arrived and left
region Rp, respectively, R = {Ri : i = 1, 2, . . . , R} is the set
of cloaking regions.

B. Semantic Regions

Here, we will elaborate the procedure of labeling cloaking
regions with semantic tags. The semantic meaning is repre-
sented by its detailed address rather than its GPS location. The
procedure of transforming cloaking region to semantic cloaking
region is illustrated in the first gray box in Fig. 3. Services such
as Google Maps API provide basic functions to geographic
locations to their corresponding toponym with accurate GPS
information. However, a cloaked region cannot be processed
with this service since it lacks exact latitude and longitude
information.

It is worth noting that a semantic region transformed from
a cloaking region should carry one and only one semantic
meaning. If a semantic region could not meet this requirement,
it needs to be expanded to carry only one semantic meaning.
The operation is to include more regions.

To implement the process of transforming a cloaking region
to a semantic region, we select several locations in the cloaking
region as a sample set. This is conducted by dividing the cloak-
ing region into disjoint rectangles with equal sizes and selecting
the center point of each rectangle as a sample location. We
denote all the sample locations in a cloaking region with L =
{Li : i = 1, 2, . . . , L}. For each location Li ∈ L, the semantic
meaning associated to it could be derived by reverse geocoding
using Google Maps API.1 LetS = {Si : i = 1, 2, . . . , S} be the
set of semantic meanings associated to the locations in L, such
that Si represents the semantic information of location Li.

If all the subregions in L carry a same semantic meaning,
which is denoted by A, it could be deduced that the semantic
meaning of the cloaking region is A. Otherwise, none of the
semantic meanings in S could satisfy the user’s anonymity
level. Thus, a region with a bigger size, covering all of the
semantic meaning as the semantic region of this cloaking
region, should be selected as the representative region. As
the structure of each semantic meaning obtained by reverse
geocoding using Google Maps API is hierarchical, we search

1https://developers.google.com/maps/documentation/geocoding

Fig. 4. Hierarchical semantic tree.

them along with the hierarchical structure to the upper levels
until the semantic meaning is the same. For example, the
semantic meanings in a cloaking region are different, including
Library of BUPT, Canteen of BUPT, and Basketball Court
of BUPT; thus, we should select a larger region covering all
of these semantic meanings as the semantic region. In this
example, the semantic region is BUPT campus, which is a
common upper level semantic meaning. This way, we could
transform all the cloaking regions into semantic regions. For
each cloaking region, Ap represents the semantic meaning of
the spatial–temporal portion {Rp, Ep, Lp}.

C. Hierarchical Semantic Tree

In the previous discussion, we have transformed cloaking
regions into semantic regions. As the anonymity levels of
individuals are different, the varying sizes of semantic regions
may result in internal containment relationship. Taking Fig. 2 as
an example, we assume that Jack and John appear at a park and
that the anonymity level of John is higher than that of Jack.
Moreover, the number of users in the park within a given time
slot is too few to satisfy John’s needs in privacy preservation.
Thus, the semantic region should be expanded to a residential
community, as in Fig. 2. Intuitively, a person with larger k is
more likely to be allocated a semantic region with a larger
size, and this region would probably contain the region that is
allocated to a person holding smaller k.

Based on the containment relationship, a hierarchical seman-
tic tree is constructed. Each node in the tree is associated with a
semantic region. As illustrated in Fig. 4, nodes located in higher
layer geographically contain those in lower layers. For example,
BUPT Campus geographically covers the BUPT library and
the third teaching building; thus, the node representing BUPT
library is the parent node of the latter two. Similarly, since
BUPT Campus and Tsinghua University are both located in
Haidian District, they are both child nodes of Haidian District.
Population density is unevenly distributed in different regions;
thus, persons with constant privacy level k are not associated
to a certain node fixedly. For example, a user in region 1 may
transfer to region 2 in the next timestamp (see Fig. 4).
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D. Weights of Semantic Regions

In our previous work, we consider that all the regions expose
the same influence on similarity calculation. Different regions
should contribute different influences when measuring the sim-
ilarity of users’ trajectories. For example, people checking in
a bar may share more similar characteristics. Since a bar is a
less popular region, people here are more likely to have social
ties. In our model, we consider that the popularity of a region
decides its weight in similarity calculations, and less popular
regions should be assigned a higher weight.

To determine the weight of each region, we propose an
approach to set regions’ weights based on mathematical expec-
tation and standard deviation. Mathematical expectation could
reflect the probability-weighted average of all possible values
of a discrete random variable. Standard deviation is used to
quantify the amount of variation or dispersion of a set of data
values.

First of all, we need to calculate the probability of every
region being checked in. We count the number of check-ins of
each region and then calculate the percentage of the check-ins
of each region on each level by

Pji =
Cji∑|Cj |
i=1 Cji

(3)

where the set of the check-ins in the jth level is denoted by
Cj = {Cji : i = 1, 2, . . . , |Cj|}, and Cji represents the number
of check-ins of the ith node in the jth level. The set of per-
centages is denoted by Pj = {Pji : i = 1, 2, . . . , |Pj |}, where
|Pj | denotes the number of nodes in the jth level. This per-
centage could represent the probability that a region has been
checked in.

Next, we calculate the expectation and the standard devi-
ation, which are denoted by EV and SD, respectively, in
each level of the tree. For the jth level, we could obtain the
expectation value via

EV =

|Cj |∑
i=1

Pji × Cji (4)

where |Cj | is the number of nodes in the jth level of the tree,
and obtain the standard deviation by

SD =

√√√√ 1
|Cj |

|Cj |∑
i=1

(Cji −EV)2 (5)

where EV could be obtained from (4). The mathematical
expectation is the probability-weighted average of different
amounts of check-ins of all regions in this level.

Observing the distribution of the check-in numbers could
help classify the regions into different grades. The distribution
curve of the number of check-ins in certain level of the tree
is demonstrated in Fig. 5. We found that the distribution curve
is similar to the normal distribution, and the peak of the curve
corresponds to the expectation value. In Fig. 5, the horizontal
axis is the number of check-ins, and the vertical axis is the

Fig. 5. Distribution curve of check-in numbers.

percentage. The area encompassed by the curve and two lines
perpendicular to the horizontal axis represents the percentage of
regions whose check-ins numbers fall into the range of the two
lines. For example, the area of the shaded part could represent
the percentage of regions whose number of check-ins falls into
between x = 0 and x = EV − 2SD, which is p% in this case.

According to the mathematical expectation value, the stan-
dard deviation, and the distribution analysis, all of the regions
at the same level could be clustered into multiple grades, and
different weight values should be assigned to different grades
accordingly. This way, regions could be differentiated based on
popularity.

Next, we would illustrate the details of classifying regions
under the premise of not changing the structure of the hierar-
chical semantic tree. When clustering regions of a level, the
k-means method is adopted. In further details, we set the
clusters and weights as follows.

• Determine typical values as the center points of k-means.
Instead of selecting initial centering points randomly in a
traditional k-means method, we select them according to
EV and SD. It is known that the standard deviation does
measure how far typical values tend to be from the expec-
tation value, and thus, the initial center points could be set
based on the standard deviations of the expectation value
(mathematically, EV ± SD or EV ± 2SD). This way,
some errors caused by selecting center points randomly
could be reduced.

• Cluster regions for each level. In each level of the tree,
we cluster regions by a k-means method. In the k-means
method, items are clustered mainly by the distance be-
tween the item and the center points. In our work, the
distance is the difference between the number of check-
ins in every region and that of center points.

• Assign different weight values to different clusters. We
rank the clusters according to the percentage of their
corresponding center point, and this rank could reflect
their popularity. A lower value of a center point indicates
that the regions in this cluster are relatively less popular;
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Fig. 6. Example of clustering regions.

thus, we should assign a higher weight value to this class,
and vice versa.

As shown in Fig. 6, regions of certain level are clustered
into five clusters according to the check-in numbers. In this
example, EV is equal to 260, and SD is equal to 150. The
points with the same color and shape belong to a cluster.
In Fig. 6, we could observe that the numbers of regions in
different clusters are uneven. Furthermore, a cluster contains
more regions if the value of center point is closer to the
expectation value, and vice versa. In this case, we should assign
different weight values to five clusters. Regions in the cluster
within which the check-in numbers of the center point are the
lowest are assigned the biggest weight, and vice versa. For
example, if the center point values of five clusters are v1, v2, v3,
v4, and v5, respectively, where v1 < v2 < v3 < v4 < v5, their
weights should be w1, w2, w3, w4, and w5, respectively, where
w1 > w2 > w3 > w4 > w5.

E. Temporal Similarity

When calculating similarity of two trajectories, it is neces-
sary to ensure that they are aligned in temporal dimension. It
makes sense only if the two regions to be compared fall in a
same time slot.

Definition 3.1–(Pair Regions): Suppose pi and pj are two
spatial–temporal semantic portions from two trajectories t1
and t2, respectively; they are defined as pair regions if and only
if the temporal constraint TimeDiff is satisfied. More specif-
ically, TimeDiff(Epi

, Epj
) � δt and TimeDiff(Lpi

, Lpj
) � δt

should be satisfied simultaneously for pi and pj , where δt is a
given temporal implying the optimal time span.

To guarantee the mobility of individuals and the amount of
pair regions on two trajectories, δt is set as 1 h. Two considera-
tions should be fine-tuned to better determine the parameter δt.
For one thing, to ensure that the semantic regions in a trajectory
are meaningful, the time span should not be too long. For exam-
ple, making a comparison between trajectories in different years
makes no sense. For another, the alignment of different trajecto-
ries on the same day is not mandatory. This ensures that regions
with similar patterns in different days should still be considered
as pair regions. For example, Jack and John are colleagues and
know each other. However, Jack goes to the company every

Fig. 7. Pair regions in two trajectories.

workday, whereas John does not come to the company every
day. Although Jack and John may not meet every day, we still
observe similar mobility patterns between them.

Fig. 7 illustrates the concept of pair regions, where pair
regions are indicated with same shape. It is possible that a
region on a trajectory may be paired with more than one region
on another trajectory, i.e., p4, p5, and p6 circled in Fig. 7.
This is because multiple regions may satisfy the same temporal
constraint δt. For this case, similarity between all pair regions
is measured.

F. Relationship Between Trajectories’ Similarity and
Social Ties

It is supposed that the similarity of individuals’ trajectories
can imply, to a large extent, their common preference of behav-
iors and mobility patterns. Therefore, a high similarity score of
trajectories may indicate that social tie may exist between users.

Hierarchical semantic tree is adopted as a feasible model for
inferring social ties in this paper. The underlying concept is
twofold. First, if users’ trajectories match well, they are likely
to share same pattern in the hierarchical semantic tree. Second,
to say the least, although their trajectories are not exactly the
same, social tie may still exist if their trajectories are close
in the hierarchical semantic tree or if there exists containment
relationship between their semantic regions.

IV. PROPOSED SOCIAL TIE DISCOVERY ALGORITHM

The existence of social ties mainly depends on the similarity
of trajectories between users. We can calculate the similarity of
two trajectories based on pair regions. Several relevant metrics,
including the lowest common ancestor node and the length
of the shortest path, can be obtained from the hierarchical
semantic tree, as follows.

• The level of the lowest common ancestor node. The level
of the lowest common ancestor node of pair regions
determines how relevant the pair regions are in the hier-
archical semantic tree. Lower level may lead to greater
impact on similarity measurement since a lower level
node represents a more specific semantic region. If the
pair regions are located in the same node in the tree, it,
itself, is the lowest common ancestor node.

• The shortest length between two semantic regions. The
shortest length between two regions in the hierarchical
semantic tree reflects how close the two regions are.
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Intuitively, they are closer if they are more geographically
adjacent.

• The level of the semantic regions themselves. If the
semantic regions are located in a lower level in the hier-
archical semantic tree, their locations are more accurately
indicated.

• The popularity of each region. We consider that persons
checking in the less popular region are more likely to have
social ties.

Based on the aforementioned considerations, the metrics are
defined accordingly as follows.

1) len(Ri, Rj): the length of the shortest path between re-
gion Ri and region Rj ;

2) lca(Ri, Rj): the lowest common ancestor node of Ri and
Rj ;

3) depth(Ri): the level of region Ri in the hierarchical
semantic tree;

4) deep_max: the maximum level of the tree;
5) sim(Ri, Rj): the similarity between cloaking regions Ri

and Rj in the tree;
6) inf(Ri): the influence of Ri in social ties prediction,

which is decided by the level of region Ri. Intuitively,
inf(Ri) increases with depth(Ri) monotonically;

7) W (Ri): the weight of Ri, which reflects the popularity of
this region.

We measure the similarity of trajectories based on these three
metrics: the length of the shortest path, the level of the lowest
common ancestor, and the influence of the semantic region. It
is illustrated in the following equation:

simPair(Ri, Rj)

= e−α×len(Ri,Rj)

×
{
inf(Ri)× inf(Rj)× e−γ(W (Ri)×W (Rj))

×eβ×depth(lca(Ri,Rj)) − e−β×depth(lca(Ri,Rj))

eβ×depth(lca(Ri,Rj)) + e−β×depth(lca(Ri,Rj))

}
.

(6)

Apparently, the value of (6) increases monotonically with
respect to depth(lca(Ri, Rj)), but decreases with len(Ri, Rj).
The smaller len(Ri, Rj) is or the greater depth(lca(Ri, Rj))
is, user A and user B are more likely to locate in regions of a
lower level in the hierarchical semantic tree, such that they will
have greater influence and achieve a maximum sim(Ri, Rj).
On the contrary, if len(Ri, Rj) is closer to 2 × deep_max
and depth(lca(Ri, Rj)) is equal to 1 (i.e., root node), then
sim(Ri, Rj) will be close to 0. In addition, α and β are
parameters scaling the contribution of the length of the shortest
path and the level of the lowest common ancestor, respectively;
and γ is scaling the contribution of the weight of a region.
The optimal setting of α, β, and γ should be decided by the
experimental results. In addition, inf(Ri)× inf(Rj) represents
the mutual influence contributed to the similarity. To derive the
similarity of two cloaked trajectories, the hierarchical semantic
tree and the set of pair regions in two trajectories (t1 and t2),

Fig. 8. Calculating the similarity of regions.

which is denoted by PR, are taken as input. Then, the metrics
defined earlier are derived for each pair of regions. According to
(6), the similarity of each pair region is then obtained. Finally,
by taking the weighted average of the similarities of all pair
regions, the similarity of two cloaked trajectories is achieved.
The detail description is illustrated in Algorithm 1.

Algorithm 1 The algorithm of calculating two trajectories’
similarity

Require:
The hierarchical semantic tree, HST;
The set of pair regions of trajectories t1 and t2, PR;

Ensure:
The similarity of trajectories t1 and t2, Sim;

1: Sim = 0;
2: Num = |PR|;
3: for all (Ri, Rj) ∈ PR do
4: LCANode = searchLCA(Ri, Rj ,HST);
5: SP = ShortestPathLength(Ri, Rj ,HST);
6: LCALevel = LocatedLevel(LCANode,HST);
7: Level1 = LocatedLevel(Ri,HST);
8: Level2 = LocatedLevel(Rj ,HST);
9: W1 = Weight(Ri)

10: W2 = Weight(Rj)
11: Inf1 = Influence(Level1);
12: Inf2 = Influence(Level2);
13: Update simPair according to (6);
14: Sim = Sim + simPair;
15: end for
16: Sim = Sim/Num;
17: return Sim;

We take Fig. 8 as an example. Two users, namely, Jack and
John, are involved in this scenario. At time m1, the semantic
region of Jack is covered by region A, and the semantic region
of John is in region B. Region C is their lowest common
ancestor, which is in the second level of the semantic tree.
According to this tree, the length of the shortest path is equal
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to 5. Then, we can calculate the similarity of the first pair
regions of these two trajectories. In the next timestamp m2, Jack
and John arrive at regions D and E, respectively. The second
similarity score can also be calculated based on (6) earlier. After
calculating the similarity scores of all pair regions, we set −→s
as the similarity vector to record the similarity score of each
pair of regions from the two trajectories, which is denoted by
−→s = (simPair1, simPair2, . . . , simPairn).

Finally, the similarity score of the two trajectories (t1, t2) can
be calculated by

Sim(t1, t2) =
1

|−→s | ×
n∑

i=1

simPairi. (7)

If more than one trajectory exists for an individual, each
pair of trajectories between users should be compared. We
assume that the set of trajectories of Jack is T1 and the set
of trajectories of John is T2. For each trajectory ti ∈ T1, we
calculate a trajectory similarity score of ti and every trajectory
tj ∈ T2. Then, an average value of all the known trajectory
similarity scores can be combined to obtain an overall similarity
score of two individuals. This score can be used to measure
their degree of closeness. To decide whether there exist social
ties between two individuals, a threshold δs is set. If the score
is greater than threshold δs, we consider that it is more likely
that they have social ties between them. δs is determined by
estimating the F-measure when it achieves optimal value.

V. PERFORMANCE EVALUATION

A. Setup

In this paper, the proposed algorithm is verified with a real-
world data set collected by Gowalla [5], [18]. It is a location-
based social networking website where users share their
locations by check-in. The friendship network is undirected and
was collected using their public API. This data set consists of
196 591 nodes and 950 327 edges. A total of 6 442 890 check-
ins from these users has been collected from February 2009 to
October 2010.

Wang et al. have found that the similarity between two indi-
viduals’ movements strongly correlates with their relationship
in the social network, and the probability could reach almost
80% [8]. Thus, we select some users with high movement
similarity from the original data set, and it is considered that
these users really have social ties. Thus, we use the data set of
these users as our data set. We adopt the following procedures
to set up our simulation.

• We consider that users’ trajectories with too few records
could not reflect their mobility routine. It will be difficult
to discover social ties among the users with little informa-
tion. Thus, we ignore users with less than 20 check-ins.

• For all of the retained users, we randomly set k for each
of them to represent individual privacy protection level
(3 � k � 10). We select consecutive check-ins within a
defined time interval as a trajectory and only choose
trajectories having at least 20 locations. Then, we store all
retained trajectory information, friendship information,

and the correspondences between users and k in a local
MySQL database.

• For a given trajectory composed of GPS check-in loca-
tions, we transform it to a cloaked trajectory. Next, we
transform all of the cloaking regions to semantic regions.

• We divide the data set into two partitions: a training set
containing the previous 75% of consecutive records in
each trajectory and a testing set containing the remaining
25% of records in each trajectory. All of the trajectories
are processed by the k-anonymity cloaking method.

Precision, recall, and F-measure are the main measurements
for the experimental evaluation. They are usually used in
information retrieval tasks. In information retrieval contexts,
precision and recall are defined in terms of a set of retrieved
documents and a set of relevant documents. Precision is
the fraction of retrieved instances that are relevant, whereas
recall is the fraction of relevant instances that are retrieved.
F-measure is the harmonic mean of precision and recall. In this
paper, the precision rate, the recall rate, and the F-measure are
redefined by

Precision =
p+

p+ + p−
(8)

Recall =
p+

|R| (9)

F-measure =
2 × Precision × Recall

Precision + Recall
(10)

where p+ and p− indicate the numbers of correct and incorrect
predictions of the existence of social ties, respectively. |R| indi-
cates the total number of social tie records in the social network.

Experiments are divided into two parts: sensitivity tests
and performance comparison. The sensitivity tests evalu-
ate the proposed algorithm under various parameter settings
(i.e., α, β, and γ) in (6). In performance comparison, we
mainly evaluate the performance from three aspects. First, we
analyze the performance of our approach with different groups
of people holding different values of k. Second, we contrast
our model with the k-anonymous spatial–temporal cloaking
model (KSTCM) [16]. The anonymity levels for different users
are varied in our paper. Finally, we evaluate the performance
by using semantic trajectories without cloaking and make a
comparison with the performance using cloaked trajectories.

B. Sensitivity Tests

This test aims to evaluate the performance of the proposed
algorithm under different parameter settings. To investigate the
impact of different factors, in each step, only one parameter
would be fine-tuned, whereas the others remain unchanged.

As can be observed from Fig. 9, when α and γ grow,
precision improves, but recall decreases. Conversely, precision
decreases, but recall improves when β grows. Meanwhile, it
is interesting to find β gains better impact to influence both
precision and recall, which suggests that the level of the lowest
common ancestor node plays an important role in determining
the performance of our proposed mechanism. In addition, it
could be concluded that the containment relationship among
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Fig. 9. Performance in various parameter settings. (a) Performance changing
with α. (b) Performance changing with β. (c) Performance changing with γ.

semantic regions is influenced in similarity calculation. In our
previous work [17], we consider that all regions have the
same weight values. In this paper, we could observe that the
performance improves greatly when the region popularity is
taken into consideration.

To explore the best combination of α, β, and γ, more exper-
imental results with various parameter settings are reported.

Although there is no causal relation between precision
and recall, they are regarded as two interconstraint measures.
In this situation, the best performance would be obtained
when F-measure achieves the highest value. This is because
F-measure takes both precision and recall into consideration.
Precision and recall get closer when F-measure increases.
From the parameter setting experiment, we set α = 0.15,
β = 0.1, and γ = 0.15 after this experiment, since it achieves
the best performance of F-measure and precision and recall
are most harmonious. In this situation, our approach could
achieve 47.22% in terms of precision and 49.05% in terms of
recall, which reflects the performance when considering all
anonymity levels of privacy protection.

Fig. 10. Influence of k on performance.

C. Performance Comparisons

To validate the performance of our proposed model, compar-
isons are conducted with previous studies. More specifically,
the experiments are divided into the following steps.

1) We first validate the performance in terms of anonymity
levels by grouping all users according to their anonymity
level k.

2) The performance is compared between our approach
and KSTCM [16]. We calculate precision, recall, and
F-measure when k is set to 4, 6, 8, and 10.

3) To validate the influence of the weights of semantic
regions, we compare the performance with our previous
work [17], which does not consider the impact of seman-
tic regions’ popularity.

4) To evaluate the proposed algorithm under the condi-
tion of ignoring the privacy protection, we evaluate the
performance using purely semantic trajectories without
k-anonymity cloaking. In this comparison, we transform
the raw GPS trajectories to semantic trajectories directly
without cloaking.

Apparently, the size of the cloaking regions grows when
k increases. The growing size of the cloaking regions will
inevitably lead to an indefinite representation of the region
and finally cause a degradation of performance. As illustrated
in Fig. 10, precision and recall gradually deteriorate as
k increases, which implies that a better performance is available
for users with low privacy requirements.

In KSTCM [16], the privacy protection levels of all the users
are the same by default. A comparison of two models is given in
Fig. 11. As can be seen, our approach outperforms KSTCM in
terms of precision, recall, and F-measure. It demonstrates that
our approach using semantic regions is more capable than that
using raw cloaking regions. The result implies that semantic re-
gions could reveal more individuals’ interests and preferences,
and individuals usually have closer social ties when sharing
similar semantic regions or locating in the less-popular regions.
A comparison between this model and our previous work [17],
which does not take the difference of popularity of regions
into account, is shown in Fig. 12. As shown in Fig. 12, the
performance improves by almost 5% when considering the
weight of semantic regions based on their popularity. It suggests
that the popularity of regions is helpful to discover social ties,
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Fig. 11. Comparison of precision, recall, and F-measure under different values of k. (a) Precision rate comparison. (b) Recall rate comparison. (c) F-measure
comparison.

Fig. 12. Performances of our previous model and of the weighted hierarchical
semantic tree model.

Fig. 13. Performances using cloaked trajectories and semantic trajectories.

and less-popular regions could better represent users’ interests
and characteristics.

Finally, we evaluate our proposed algorithm with semantic
trajectories without cloaking by transforming raw GPS tra-
jectories to semantic regions directly. This way, we compare
the performance of our approach under the situations with
and without providing privacy preservation. From Fig. 13, we
observe that there is a significant improvement in precision
rate using accurate semantic trajectories rather than cloaked
trajectories. It suggests that accurate locations benefit in im-
proving the accuracy of social ties detection. Intuitively, raw
GPS locations carry more accurate semantic meanings, which
would probably make the semantic regions locate in lower
levels of the hierarchical semantic tree. From the results, we see
that the three metrics do not degrade significantly, considering

the challenge of using cloaked trajectories. We validate that our
algorithm is capable of discovering social ties with a reasonable
performance while preserving location privacy effectively.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel approach to infer
social ties with cloaked trajectories instead of accurate GPS
trajectories for privacy preserving. Instead of matching histori-
cal locations directly in geographic space, we presented a novel
model to transform cloaking regions to semantic regions and
further proposed a weighted hierarchical semantic tree model
to make the containment relationship visible. The weighted
hierarchical semantic tree is then used to calculate the similarity
of the trajectories of individuals and predict the existence
of social ties. We have conducted extensive experiments to
evaluate the performance of our approach with a real data set.
The evaluation results demonstrated that our approach could
infer social ties and effectively preserve privacy of users. We
have compared our proposed model with existing work and
demonstrated that our approach could achieve much higher
performance in social tie detection.

In the future, we would like to further improve the accuracy
of discovering social ties by clustering similar users based on
their semantic patterns. In addition, we plan to apply privacy
preservation techniques to new applications that require loca-
tion privacy protection, such as in participation sensing.
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