
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

Trust Evaluation in Online Social Networks
Using Generalized Network Flow

Wenjun Jiang, Jie Wu, Fellow, IEEE, Feng Li, Member, IEEE,
Guojun Wang, Member, IEEE, and Huanyang Zheng

Abstract—In online social networks (OSNs), to evaluate trust from one user to another indirectly connected user, the trust evidence in
the trusted paths (i.e., paths built through intermediate trustful users) should be carefully treated. Some paths may overlap with each
other, leading to a unique challenge of path dependence, i.e., how to aggregate the trust values of multiple dependent trusted paths.
OSNs bear the characteristic of high clustering, which makes the path dependence phenomenon common. Another challenge is trust
decay through propagation, i.e., how to propagate trust along a trusted path, considering the possible decay in each node. We analyze
the similarity between trust propagation and network flow, and convert a trust evaluation task with path dependence and trust decay
into a generalized network flow problem. We propose a modified flow-based trust evaluation scheme GFTrust, in which we address
path dependence using network flow, and model trust decay with the leakage associated with each node. Experimental results, with
the real social network data sets of Epinions and Advogato, demonstrate that GFTrust can predict trust in OSNs with a high accuracy,
and verify its preferable properties.

Index Terms—generalized network flow, online social networks (OSNs), path dependence, trust decay, trust evaluation

F

1 INTRODUCTION

“To be trusting is to be fooled from time to time; to be
suspicious is to live in constant torment (Wu [1]).” People
face trust issues every day in real life. The trust mechanism
is a tool used to facilitate decision making in diverse appli-
cations. This paper copes with the setting in which a source
s is interested in a single target d (it can be a person, or
a product/service he provides) in online social networks
(OSNs). Some users have preconceived opinions about d.
s might desire to estimate whether or not she would like
d, based on the aggregated opinions of others. In real life, s
might first consult her friends for their recommendations. In
turn, the friends, if they do not have opinions of their own,
may consult their friends, and so on. Based on the cumu-
lative feedback s receives, she can form her own subjective
opinion. A trust evaluation system aims to provide a similar
process to produce high-quality trust prediction for users.

“Trust in a person is a commitment to an action, based
on a belief that the future actions of that person will lead to
a good outcome (Golbeck [2]).” Trust can be built through
direct contact (first-hand), such as a directed link from s
to u, or through a recommendation (second-hand), such
as a trusted path (s, u, d) representing s’s trust of d via u’s

• W. Jiang is with the School of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha, Hunan Province, 410082, P. R. China.
E-mail: wenjj8a@gmail.com

• J. Wu and H. Zheng are with the Department of Computer and Informa-
tion Sciences, Temple University, 1925 North 12th Street, Philadelphia,
PA 19122, USA. E-mail: jiewu@temple.edu, huanyang.zheng@gmail.com

• F. Li is with the Department of Computer and Information Technology,
Indiana University-Purdue University, Indianapolis, IN 46202, USA. E-
mail: fengli@iupui.edu

• G. Wang is with the School of Information Science and Engineering,
Central South University, Changsha, Hunan Province, 410083, P. R.
China. csgjwang@csu.edu.cn.

(a)

leak(v)

leak(u)

fsd = ?

0.5

0.6 0.7

0.6

0.8 ds

u

v

f0 = 1

(b)

Fig. 1. (a) An example of a trusted graph; (b) Evaluating trust using
GFTrust, in which the dashed arrow line represents trust flow.

recommendation (Fig. 1(a)). A path is constructed through
iterative recommendations. Multiple sequential and parallel
paths are overlapped to form a directed trusted graph from
s to d. In Fig. 1(a), e(s, u) and e(u, d) are two edges of
a sequential path (s, u, d); (s, u, d) and (s, v, d) are two
parallel paths; (s, v, u, d) is an overlapped path with paths
(s, u, d) and (s, v, d). Usually, each edge has a weight value
between 0 (no trust) and 1 (full trust) to quantify each direct
trust.

The Motivation. Trust aggregation is still an open
problem, although several attempts have been made
(Golbeck [2], Sun et al. [3], Wang and Wu [4], Jiang et al.
[5],Mahoney et al. [6], Taherian et al. [7]). Two open chal-
lenges are “how to aggregate the trust of overlapped paths”
and “how to calibrate trust decay over iterative recommen-
dations.” Some used high-level aggregation rules (Sun et al.
[3]), including the sequential rule, where concatenation
propagation of trust does not increase trust (i.e., the trust
of (s, u, d) is no more than that of e(s, u) or e(u, d)), and the
parallel rule, where multi-path propagation of trust does
not reduce trust. However, these rules are too general to
provide specific calculation guidance for trust aggregation.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

2

Moreover, most of the existing work cannot solve the two
challenges simultaneously. OSNs bear the small-world char-
acteristic of high clustering (Watts [8]). Because of this, the
path dependence phenomenon is much more common in
OSNs. Our motivation is to develop an efficient scheme that
can address the above two challenges simultaneously, and
provide guidelines for automatic trust prediction in OSNs.

Trust propagation is similar to a flow passing process.
The amount of flow corresponds to the amount of trust.
Initially, the source is given a certain amount of trust to
be allocated. Then a flow passes from the source to the
sink corresponds to the trust that is being propagated in a
trusted path. Total trust is an aggregation through different
paths (flows) from the source to sink. As network flows
can be split and merged, we address the path dependency
challenge. In addition, a flow may leak during its passing,
which can be used to address the trust decay challenge.

Besides solving the two challenges, we also strive to
design a unique trust evaluation system that is incentive
compatible, friendly to newcomers, and tolerant to the ma-
licious behavior of making Sybils.

Main Ideas. We propose a novel computational ap-
proach for calculating trust, based on a modified network
flow model with leakage. As shown in Fig. 1(b), given an
initial flow of 1 (i.e., f0 = 1 representing full trust) at s, what
is the final flow (i.e., fsd representing total aggregated trust)
that d can get? This flow model addresses path dependence
by allowing flow split and merge at each node. Moreover,
it is commonly agreed upon that people place more weight
on direct contacts than on indirect contacts. Therefore, any
viable trust model must address trust decay over iterative
recommendations. We introduce a notion of leakage associ-
ated with each recommendation node, which is analogous
to a leakage in a water pipe. At each node other than s and d,
a certain percentage of incoming flow will be leaked before
redirecting to outgoing links (e.g., leak(u) and leak(v) in
Fig. 1(b)). We will describe the calculation details later.

Our Contributions. We propose the GFTrust scheme,
where we introduce a modified generalized network flow
(simply generalized flow) model (Wayne [9]) to cope with
the trust evaluation task with path dependence and trust
decay (Fig. 1(b)). Once the trust from u to v passes a given
threshold, v is taken as trusted by u, but with a given limit
on capacity. The full capacity is 1, corresponding to a full
trust. Our model is analogous to a credit card system, where
s takes the role of a bank; each neighbor is a credit card
owner who is allowed to use a card, but with a given credit
limit. Other nodes can also be taken as a bank or credit card
owner in the same way. Each indirect reference corresponds
to a percentage of credit loss. The goal is to decide whether
or not s can accept the application of d, by calculating
the proper credit that d receives. Our contributions are
threefold:

(1) Our work is the first to address the two challenges
of path dependence and trust decay simultaneously, in the
domain of trust evaluation in OSNs. Also, we use a modified
generalized flow model with leakage, which is a novel
approach in trust evaluation.

(2) As a flow-based model, GFTrust has the advantage
of generality, while saving the normalization process (since
the resulting trust will never be larger than 1). Moreover,

it bears the properties of incentive compatibility and Sybil
tolerance, and it coincides with the basic axioms that a trust
model should meet (as shown in Appendix A).

(3) We conduct extensive experiments on a real social
network data set of Epinions (Jiang et al. [5]). Some more ex-
periments on the data set of another social network Advoga-
to (Levien [10]) is shown in Appendix B. The experimental
results validate the effectiveness of GFTrust, and also verify
its preferable properties. Moreover, the use of flow increases
the accuracy of trust prediction, while the leakage decreases
the deviation between the values of calculated trust and the
direct trust.

The remainder of this paper is organized as follows: Sec-
tion 2 analyzes the background of the two challenges, and
surveys related work in the literature. Section 3 states the
problem we address, and provides the preliminary concepts
we will use in network flow theory. Sections 4 and 5 present
the solution overview and the algorithm details. Section 6
analyzes the features and properties. Section 7 describes the
experimental evaluation. Finally, Section 8 concludes this
paper and suggests future work.

2 BACKGROUND AND RELATED WORK

In this section, we first analyze the necessity of addressing
the two challenges of path dependence and trust decay.
Then, we briefly review the literature.

Path Dependence. Some models can deal with path de-
pendence (e.g., Golbeck [2], Jøsang et al. [11]), but they may
cause information loss or reuse. Taking the trusted graph in
Fig. 1(a) for example, previous models go to two extremes:
(1) some ignore the overlapped edge e(v, u), by using only
the shortest paths (s, u, d) and (s, v, d) (Lin et al. [12]) or
ignore more information by only considering the shortest,
strongest paths (Golbeck [2]), which will lead to the loss
of information; (2) others take (s, v, u, d) as an independent
path (Jøsang et al. [11]) by using all three paths, which will
reuse the information of e(s, v) and e(u, d).

Trust Decay. Let us consider a scenario where s fully
trusts v1, and vi fully trusts vi+1, i ∈ [2, n − 1], and
finally vn fully trusts d. Then, how about the level in
which s trusts d? Two commonly used methods will cal-
culate trust as follows: (1) Multiplication. t(s, d) = t(s, v1) ·∏

t(vi, vi+1)·t(vn, d) = 1. (2) Taking the minimum. t(s, d) =
min{t(s, v1), t(vi, vi+1), ..., t(vn, d)} = 1. The result will be
that s will fully trust many indirectly connected users who
are far away from him/her, which is inconsistent with real
life. This indicates the strong necessity of considering trust
decay through propagation. Some models have mentioned
trust decay (e.g., Golbeck [2], Sun et al. [3], Jøsang et al.
[11]). However, they are on a coarse-grained level, i.e.,
they can only guarantee that trust does not increase during
propagation.

Related Work. The problem of path dependence arises
when combining information from multiple sources that
include unknown amounts of correlation, which have been
studied in the trust domain (Jøsang et al. [11]), and oth-
er domains including information fusion, decision fusion,
and control theory. These areas use mutual information
(Paninski [13]), entropy calculation or Bayesian analysis
(Bailey et al. [14], Chen and Varshney [15]), and state space

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

3

TABLE 1
Notations.

SYMBOL DESCRIPTION
G = (V,E) a trusted graph

s/d the source/destination
u/v/u′/v′ a node in the trusted graph
e(u, v) an edge from node u to node v
t(u, v) trust value from node u to node v
g(u, v) the gain factor of edge e(u, v)
c(u, v) the capacity of edge e(u, v)
f(u, v) the flow of edge e(u, v)
fr(v, u) the flow of e(v, u) in the residual network
cf (u, v) the residual capacity of edge e(u, v)
gf (v, u) the gain factor of e(v, u) in the residual network

analysis (Friedland [16]) as tools. The phenomenon of decay
usually emerges with distance, which also has been men-
tioned (but not well addressed) (Golbeck [2], Jøsang et al.
[11], Ziegler and Lausen [17]). For instance, trust decay is
inherent to Appleseed (Ziegler and Lausen [17]), by setting
a spreading factor. Recognizing the similarity between trust
propagation and flows, we use a natural way to model and
tackle the two challenges using network flows in the domain
of OSNs.

Network flow theory has been used in many field-
s (Ahuja et al. [18]), and has recently been introduced into a
trust evaluation system. Given capacity limits on the edges,
the goal of the maximum flow problem is to send as much
flow as possible from the source to the sink (see Ahuja et al.
[18] for details). Applying this idea, Levien [10] proposes
the Advogato maximum flow trust metric to distinguish vi-
cious nodes from good nodes. Given the network structure,
Advogato takes some predefined trusted nodes as seeds,
assigns them capacities, and outputs a set of trusted nodes
that can gain flow from seeds; other nodes are taken as vi-
cious, and will be excluded. Wang and Wu [4] measure trust
using the network flow theory. Three FlowTrust algorithms
are proposed to normalize trust metrics. However, none of
existing works have explicitly addressed the two challenges
of path dependence and trust decay simultaneously. More-
over, existing flow-based trust models have to normalize
the maximum flow into a trust value in order to make it in
a predefined range.

The generalized flow problem is a natural generalization
of the traditional network flow. GFTrust uses a carefully
designed generalized flow, which makes it able to solve the
two challenges, save the normalization process, and bear
some additional good properties. We will briefly describe
the idea of generalized flow in the next section.

3 PROBLEM DEFINITION AND PRELIMINARY CON-
CEPTS

In this section, we formulate the problem we address, and
provide some preliminary concepts. The notations used in
this paper are described in Table 1. Note that, e(u, v), g(u, v)
(and other similar representations), are denoted as e, g(e),
when it is unnecessary to distinguish an edge from others.

Problem Definition. Given a trusted graph G = (V,E),
V is the set of nodes and E is the set of edges. For two
indirectly connected nodes, s and d in V , s is the source and
d is the destination. For the confidence of user interactions in

Fig. 2. An example of the generalized flow network.

online social networks, we seek to determine how to design
an efficient scheme to evaluate the trust level of d for s;
specifically, how are we to address the two challenges of
path dependence and trust decay simultaneously?

In OSNs, trust evidence can be collected from three
main sources (Sherchan et al. [19]): attitudes, behaviors,
and experience. Trust has been represented in very d-
ifferent ways, such as continuous or discrete numeri-
cal values (e.g., Taherian et al. [7], Richardson et al. [20],
Jøsang et al. [11], Abdul-Rahman and Hailes [21]), or proba-
bility/entropy (e.g., Sun et al. [3]). In this work, we assume
that the direct trust values between any two connected users
are already known, which are represented by continuous
numerical values in [0,1], with 1 representing full trust (up-
per bound) and 0 representing no trust (lower bound). Our
goal is to infer indirect trust values for any two unconnected
users, based on the known ones.

Preliminary Concepts. The generalized network flow
problem (Wayne [9]) is an extension of standard network
flow, in which flow leaks as it is sent through the network.
It is represented by a gain function in each edge, g : E → R,
where R is the set of real numbers. For each unit of flow that
enters an edge e(u, v) at node u, g(u, v) units will arrive at
node v. A generalized flow should satisfy the capacity con-
straints: 0 ≤ f(u, v) ≤ c(u, v), and the generalized antisym-
metry constraints: ∀e(u, v) ∈ E : f(u, v) = −g(v, u)·f(v, u),
where g(v, u) = −1/g(u, v), and the minus sign means
that the flow is going in the opposite direction. Most of
the existing network flow algorithms (Wayne [9]) are based
on the Ford-Fulkerson method (Ford and Fulkerson [22]),
the two key concepts of which are residual network and
augmenting path.

Definition 1. (Residual network). Let f be a flow in a
network N = (V,E), where c(u, v) and g(u, v) are the
capacity and gain factor of edge e(u, v) ∈ E, respective-
ly. With respect to the flow f , the residual network is
Nf = (V,Ef), in which the residual capacity is defined
by cf (u, v) = c(u, v)− f(u, v).

Definition 2. (Augmenting path). An augmenting path is a
path in the residual network, where the capacity on each
edge is larger than 0. A new flow can pass through an
augmenting path.

Fig. 2 shows an example of a generalized flow network.
When a flow of f = 80 enters into s, only 80 · g(s, u) =
80 · 3/4 = 60 can go out of u, and 60 · g(u, d) = 60 · 1/2 =
30 can go out of d. Suppose that c(s, u) = c(u, d) = 100.
After sending the above flow f , the residual capacity will
be cf (s, u) = 100− 80 = 20, cf (u, d) = 100− 60 = 40, both
of which are larger than 0, then (s, u, d) is an augmenting
path.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

4

4 SOLUTION OVERVIEW

We give the overview of GFTrust. First of all, since people
join in OSNs because they hope to collaborate and interact
with others, we assume that everyone starts cooperatively
and trusting in others in the absence of feedback (we call
it the “initial trust assumption”). And as time passes by,
that trust will be shaped according to the real experience.
Biologists verified that cooperation with trust is our in-
stinct as human beings through natural selection (Nowak
[23], Manapat et al. [24], Rand et al. [25]); this can serve
as convincing evidence of our assumption. Based on this,
we deem the trust evaluation process for two indirectly
connected users, s and d, as follows: at first, s fully trusts
d. Then, according to the friends’ suggestions or comments,
the initial trust shrinks little by little. We then model the
process using network flow, with three tasks as follows:

Task 1: Determine the Initial Flow. According to the
initial trust assumption, we let the initial flow from s be
f0 = 1. We find that 1 is the most proper and natural value
of initial flow. Let us try other settings. If f0 = 0, then there
is no flow to send; in this case, no matter how good of a
recommendation the intermediate nodes make, s will not
trust d at all. In another case of f0 = ∞, there is infinite
flow to send; as long as there are enough paths from s to d,
s will highly trust d, since a large flow (even > 1) will reach
d. Therefore, both settings are not suitable for our scenario.
A more flexible alternative is to let 0 < f0 < 1. However,
there is no need to adjust it, since the node leakage will take
the same role. That is, we can set a larger node leakage if f0
is larger, and vice versa. So, we fix f0 = 1, and adjust the
node leakage.

Task 2: Explore the Node Leakage. We set the leakage
to be associated with nodes, since trust decay is caused
by nodes instead of edges. Just mentioning one example,
the direct trust from s to u, t(s, u), will not decay through
trust propagation from s to d via u. For modeling node
leakage, the most challenging issue is “How much flow
should leak in each node?” In real life, it may be very
complex since many factors may impact the answer, such
as the distance from source, the tie strength between users,
and the personality of users (some people may opt to trust
others, while some others may opt to distrust). Currently,
we mainly consider the factor of distance (from the source).
The GFTrust scheme offers a framework for considering and
integrating other factors in a reasonable way for the future.

Moreover, we take the approach of the proportional leak-
age, in which trust (flow) will shrink a certain proportion
during its propagation in each intermediate node. Another
possible method is the fixed value leakage, where trust
(flow) will lose a certain fixed amount. Intuitively, both of
the two approaches make sense. Here, we would like to put
the latter into the future work, and only consider the former.

Task 3: Assign the Edge Capacity. According to our
application scenario, we use the trust value t(e) on edge e
to represent its capacity, which limits the maximum flow
(trust) that can pass through the edge. In this way, the
trust value on each edge cannot be overused. Thus it can
avoid reusing some information, especially when there exist
dependent paths.

Based on the above analysis, we design three key steps

for GFTrust: (1) Modeling trust decay with node leakage; (2)
Constructing generalized flow network; and (3) Calculating
a near-optimal generalized flow.

There are two reasons for setting the goal of deriving a
near-optimal generalized flow: (1) It is still an open problem
of calculating the generalized maximum flow in polynomial
time complexity. According to (Wayne [9]), the time com-
plexity in the worst-case is O(nm(m+ nlgn)lgB), where n
is the number of nodes, m is the number of edges, and B is
the biggest integer for scaling decimal numbers to integers.
Kevin (Wayne [9]) presented a family of ξ-approximation
algorithms for every ξ > 0, which can improve the above
complexity by a factor of m. Perillo and Heinzelman [26]
uses generalized maximum flow to maximize the lifetime of
energy-constrained wireless sensors, in which the optimal
flow is calculated with linear programming. Its complexity
is O(p3L), where p is the number of variables, and L is
the variable resolution. (2) A near-optimal maximum flow
is acceptable in our scenario, because the task of trust
prediction is to estimate a trust level which is close to the
direct trust (i.e., the ground truth or the expressed trust),
instead of maximizing a trust value.

5 GFTRUST: THE ALGORITHM DETAILS

In this section, we introduce the details of GFTrust. Since
many works of trust evidence collection have been done
(e.g., Golbeck [2], Massa and Avesani [27]), we do not focus
on how to collect the information. Without loss of gener-
ality, we assume that the trusted graph is already known,
i.e., the trust relationships and values of directly-connected
neighbors are already available.

5.1 Modeling Trust Decay with Node Leakage
As mentioned before, trust may decay during its propa-
gation in a trusted path. We design a series of leakage
functions to simulate their patterns (Fig. 3).

A simple scheme is the uniform leakage (Fig. 3(a)), where
trust decays with the same percentage in each intermediate
node v ∈ V \ {s, d}. Intuitively, the leakage cannot be too
large, and we try some values in the experiments, as shown
in Eq. 1.

However, trust may decay differently along the propaga-
tion; it may first decay quickly (a larger decay), then slowly
(a smaller decay), or vice versa. Therefore, we also consider
the non-uniform leakage, i.e., the percentage of leakage
varies among different intermediate nodes, according to
their distance from the source. Three types of mathematical
functions have been examined, as shown in Eqs. 2, 3, and 4:

λ1(x) = leak, leak ∈ [0, 0.5), (1)
λ2(x) = 1− cos(kx), k ∈ {0.01, 0.05, 0.09, 0.13}, (2)

λ3(x) = l(−x), l ∈ {e, 5, 10, 15}, (3)
λ4(x) = (x+ 1)m,m ∈ {−2,−3,−4,−5}, (4)

where x is the distance from the current intermediate node
to the source. Other parameters k, l,m are set tentatively.
The listed values can lead to a reasonable leakage range of
[0, 0.4) (Fig. 3).

Since it is not clear how trust will decay during its
propagation, we design the above four leakage functions to

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

L
e

a
k
a

g
e

Distance

0.01
0.03
0.05
0.07
0.09
0.11

(a) Uniform

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

L
e

a
k
a

g
e

Distance

1-cos(0.01*x)
1-cos(0.05*x)
1-cos(0.09*x)
1-cos(0.13*x)

(b) Cosine

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

L
e

a
k
a

g
e

Distance

e(-x)

5(-x)

10(-x)

15(-x)

(c) Exponential

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

L
e

a
k
a

g
e

Distance

(x+1)(-5)

(x+1)(-4)

(x+1)(-3)

(x+1)(-2)

(d) Polynomial

Fig. 3. Four types of leakage functions.

Algorithm 1 Transform(G, s, d)
Input: G, a trusted graph; s, source; d, destination.
Output: G′, a generalized flow network.

1: for each intermediate node v in G do
2: Split v into v+ and v−; Add an edge e(v+, v−);

Nout(v
−)← Nout(v); Nin(v

−)← Nin(v).
3: for each edge e in G do
4: if e is an intermediate edge then
5: c(e)← 1; g(e)← 1− leak(v).
6: else
7: c(e)← t(e); g(e)← 1.

imitate four possible decay patterns. Some of the functions
leak more at the closer nodes, while others leak more at
distant nodes. Actually, these functions all favor the shorter
paths over the longer ones. We will test their effects in the
experiments.

5.2 Constructing Generalized Flow Network
To conduct trust evaluation using a generalized flow

algorithm, we should first construct the generalized flow
network, for which the capacity and gain factor of each edge
should be set. We design Algorithm 1 for the process. As
mentioned before, the capacity is set using the trust value.
Then, the main task is to cope with the gain factor, for which
we have two principles:

(1) For the outgoing edges from s and the incoming
edges to d, since all the flows going on these edges will
be fully passed on, we let their gain factors be 1.

(2) For the intermediate nodes where flows will leak,
the gain factors should be less than 1. Moreover, in the
generalized flow algorithms, the gain factor is associated
with edge. Thus, we take two steps to transform the leakage
of a node into the gain factor of an edge (an example is
shown in Fig. 4):

Step 1: splitting each intermediate node (lines 1-2). To
be specific, we split a node v into two nodes of v+ (+
indicates flow coming into it) and v− (− indicates flow
going out from it). Then, we add a new edge e(v+, v−) into
the graph, which is called intermediate edge, corresponding
to the intermediate node. The incoming neighbors of v are
linked to v+, and outgoing neighbors to v−.

(a) leak(v) = 0.1 (b) g(v+, v−) = 0.9

Fig. 4. Transforming node leakage to edge gain factor.

Fig. 5. An example for Observation 1.

Step 2: assigning the gain factor for the edge according to
the node leakage. First, we model the trust value of an edge
as its capacity (lines 3-7). Note that we let t(v+, v−) = 1. The
intuition is that a user will always trust his own opinion. Ac-
cordingly, c(v+, v−) = 1. The gain factor of an intermediate
edge e(v+, v−) is g(e) = 1 − leak(v) (lines 4-5), while that
of other edges is 1 (lines 6-7). The percentage of leak(v) can
be set according to Eqs. 1, 2, 3, 4.

5.3 Calculating Near-Optimal Generalized Flow
The goal of GFTrust is to solve the two challenges of path
dependence and trust decay, and predict a trust level that
is close to the truth. Therefore, we design a near-optimal
maximum flow algorithm. Before introducing the whole
process, we describe the following two observations:

Observation 1. In the original trusted graph, a shorter
trusted path makes a higher gain, i.e., a flow passing on
a shorter path remains a larger amount than that passing on
a longer path.

Consider two paths: q1 = {s, v1, ..., vm, d} and q2 =
{s, u1, ..., um, ..., un, d}, n > m. Suppose a flow f meets
the capacity constraints. Then, when f passes on q1, the
resulting flow will be f1 = f ·

∏
i∈[1,m](1 − leak(vi)).

Similarly, the same f passing on q2 will result in f2 =
f ·

∏
i∈[1,n](1 − leak(vi)). We can compare f1 and f2

through the result of ξ = f2
f1

. Since leak(vi) ∈ [0, 1), then
ξ =

∏
i∈[m+1,n](1 − leak(vi)) ≤ 1. Therefore, we have

f2 ≤ f1. So, we complete the proof.
Taking Fig. 5 for instance, suppose the leakage is 0.1 in

each intermediate node; then a flow f = 0.6 will become
0.6 · 0.9 = 0.54 through the upper path q1 = (s, v+1 , v

−
1 , d),

and 0.6 · 0.9 · 0.9 = 0.486 through the lower path q2 =
(s, v+2 , v

−
2 , v

+
3 , v

−
3 , d). As an extension, if f > 0.6, then

sending 0.6 through q1 and the remainder through q2 will
get a larger flow than that in the opposite order.

Observation 2. In the original trusted graph, the trusted
paths with the same length have the same efficiency of
sending flow.

Consider a special case of Observation 1: m = n. Then
we can get f1 = f2. That is, as long as a flow meets the
capacity constraints, sending it through any path with the
same length will lead to the same result.

Based on the above two observations, we propose a
greedy algorithm to select the shortest trusted path and
augmenting flow via the path (Algorithm 2). Fig. 6 shows
an example of the calculation process.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

6

(a) Generalized network (b) Residual network

Fig. 6. The process of calculating a feasible flow for the example trusted graph in Fig. 1(a). Steps: (1) Find the shortest trusted path (s, v+, v−, d)
to send flow. It results in f1 = 0.54, and the residual flow of s is 1 − 0.6 = 0.4. (2) Send the residual flow along the second shortest trusted path
(s, u+, u−, d), which results in f2 = 0.36. With f(s) = 0, there is no flow left to be sent. (3) The near-optimal generalized flow is f∗ = f1+f2 = 0.9.

Algorithm 2 GFNearOptimal(G′, s, d)

Input: G′, a generalized flow network.
Output: f∗, a near-optimal flow.

1: Initialize f(s)← 1; f∆ ← 0.
2: while f(s) > 0 do
3: Search the shortest augmenting path p.
4: return f∗ if p = ∅.
5: for each edge e in p do
6: f ← min{f(s), f · g(e), c(e)}.
7: f∗ ← f∗ + f .
8: for each edge e from d to s do
9: fr ← f · 1/g(e); c(e)← c(e)− fr.

10: f(s)← f(s)− fr.

Searching the Shortest Path in a Trusted Graph.
Based on the above analysis, we adapt the idea of the
Edmonds-Karp algorithm (Edmonds and Karp [28]), using
the breadth-first search to find the shortest trusted path,
which will be used as an augmenting path. Taking Fig. 6
for instance, let p1 = (s, u+, u−, d), p2 = (s, v+, v−, d),
p3 = (s, v+, v−, u+, u−, d). The process of selecting a path
is: (1) do the breadth-first search and find the first unused
shortest trusted path, suppose it is p2; (2) send flow from s
to d through p2. After that, record p2 in a used path list. Note
that the same path will not be used again. But, some edges
of it may be used more than once when they are included in
some other paths. However, as we have mentioned before,
the capacity on each edge is exactly the trust value, and at
most all the capacity is used up. Therefore, it overcomes
the drawback of information reuse in some existing models,
which may lead to inaccurate trust evaluation results.

Augmenting Flow. We iteratively take the shortest trust-
ed path, and execute the following two operations (Algo-
rithm 2), until one of the two end conditions is met: (1) there
is no flow remaining to be sent (i.e., f(s) = 0, line 2), or (2)
there are no augmenting paths (i.e., p = ϕ, line 4) for any
flow to pass.

Operation 1: Augmenting a flow f through the selected
path. Let f(s) be the amount of flow s can send out, and
e ∈ E be an edge in the path; f should satisfy: f ≤ c(e), and
f ≤ f(s). More importantly, f leaks in each intermediate
edge, denoted as f = f · g(e). Iteratively do this until f

reaches d.
Operation 2: Calculating the residual capacity of each

edge from d to s, as well as the residual flow that s can
send out. We do this by iteratively subtracting flow fr
(corresponding flow of f in the residual network) from
capacity, from d to s. The flow in the residual network is
fr = −f/g(e). The residual capacity is cf (e) = c(e) − fr ,
and the residual flow of s is f(s) = f(s)− fr .

Since f0 = 1 and flow leaks when it passes through
trusted paths, the result of Algorithm 2 is in the range of
[0, 1], which is the same with the trust value. Therefore, the
resulting flow can be taken as a trust value directly, without
normalization.

6 ANALYSIS OF GFTRUST

We give an extensive analysis of GFTrust: its efficiency
and near-optimal effect, its unique advantages, its incentive
compatibility, and its malicious behavior resistance proper-
ties. We also analyze its conformity with basic axioms in
Appendix A.

6.1 Efficiency and Near-Optimal Effect

Efficiency. From the example in Fig. 6, we can see that
only two paths are used to send out flows, i.e., the iterative
number of augmenting flows is k = 2. We observe that in
most cases, the iterative number in GFTrust is quite small
and can be taken as a constant.

Observation 3. In most cases, the iterative number of
augmenting flows in GFTrust is a small constant.

The trick lies in the limited initial flow and the selection
of augmenting path. The total flow to be sent is small, i.e.,
f0 = 1. Each time we augment flow, we select a trusted
path, whose minimum capacity should be larger than a
predefined threshold. Given the range of trust value [0, 1],
the threshold is usually at least as large as half trust, i.e., 0.5.
Even when we set the threshold to be 0.1, then the capacities
of edges in trusted paths are not smaller than 0.1, which
indicates that at least a flow of f = 0.1 can be sent out
through a path. Therefore, all the initial flow can be sent
out through, at most, 1/0.1 = 10 paths. In summary, the
iterative number of augmenting flow is small, because the
flow supply is small and the “pipe” is wide.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 15 30 45 60 75 90 105 120 135 150

F
lo

w

Edge ID

Optimal
GFTrust

(a) leak = 0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 15 30 45 60 75 90 105 120 135 150

F
lo

w

Edge ID

Optimal
GFTrust

(b) leak = 0.01

Fig. 7. Comparison of GFTrust and optimal method.

However, in some special cases, when there are not
enough wide “pipes,” the problem is as complex as the
standard maximum flow problem, for which, the iterative
number of augmenting flows is O(|V ||E|) (Cormen et al.
[29]). Note that, although a small number of trusted paths
may be used, all the trusted paths have been considered in
GFTrust, i.e., all paths have the chance to be used. Therefore,
it will not cause the loss of information. Based on the above
analysis, we can give the complexity of GFTrust.
Theorem 1. The total time complexity of Algorithms 1 and 2

in GFTrust is O(|V ||E|2).
Proof: For Algorithm 1, each node and edge are con-

sidered exactly once. Therefore, it takes the time complexity
of O(|V | + |E|). Usually, a network has more edges than
nodes, i.e., |V | < |E|. Then the complexity can be taken as
O(|E|).

For Algorithm 2, the basic operations of augmenting
flow and calculating residual capacity (lines 6-11) are in the
complexity of O(|E|). Also, the selection of shortest path
is the same with breadth-first search, for which the time
complexity is O(|E|) in the worst case.

According to the analysis of Observation 3, in the worst
case, the iterative number is the same with the Edmonds-
Karp algorithm, that is O(|V ||E|). Therefore, the total com-
plexity will be O(|V ||E|2).

Again, according to Observation 3, in most cases, the
iterative number is a small constant, for which the total
complexity of GFTrust will be O(|E|).

In addition, GFTrust is a local trust metric which is
based on a small trusted graph from source s to sink d,
instead of the whole large OSNs. Local trust metrics scale
well to any social network size, as only tiny subsets of
relatively constant size are visited (Ziegler and Lausen [17]);
we can set the trust threshold and the maximum length
of trusted paths, to restrict the size of trusted graphs. In
fact, many existing trust evaluation algorithms including
Golbeck [2] and Massa and Avesani [27], use the breadth-
first search algorithm. From this point of view, our algorithm
keeps the same time complexity as others, while solving
the two challenges of path dependence and trust decay
simultaneously.

Near-Optimal Effect. We check whether GFTrust can
gain near-optimal flow, by comparing it with optimal
method (implemented by linear programming), in the data
set of Kaitiaki (www.kaitiaki.org.nz). Kaitiaki is a small trust
network. The data set contains 64 nodes and 178 links. We
also assign four levels (i.e., 0.4, 0.6, 0.8, 1.0) of trust for this
data set. For each edge in Kaitiaki, we calculate the flow that
can pass from its starting node to ending node, through the
paths between them (the original edge is masked). Fig. 7

shows that the results of GFTrust are very close to the
optimal maximum flow. From this point, the calculated trust
of GFTrust is the upper bound estimation, i.e., s can trust d
at most in this level.

6.2 Basic Desirable Properties

The unique advantages of the GFTrust scheme are that it
can deal with both path dependence and trust decay. In
addition, GFTrust saves the normalization process that other
flow-based methods have to do, and it is more general than
non-flow-based models.

Ability to Solve Path Dependence. GFTrust can solve
the challenge of path dependence without information reuse
or loss, which is difficult to avoid in other models. The
reasons are as follows: (1) Avoiding information reuse. In
GFTrust, the capacity of an edge will be decreased by exactly
the amount of flows passing through it. Therefore, the
trust value on an edge will not be overused. (2) Avoiding
information loss. As mentioned before, in GFTrust, every
edge has the chance to be used for sending flows. Therefore,
the trust value on every edge is considered.

Ability to Solve Trust Decay. GFTrust can deal with
trust decay at a fine-grained level. The leakage of each
intermediate node can be set flexibly.

No Need to Normalize. Since the resulting flow falls in
the range of [0,1], it can be taken as a trust value directly. In
this sense, GFTrust calculates trust in a summation-like way,
which may lead to false positive effects. That is, the resulting
trust value may be larger than the direct trust (the ground
truth or the expressed trust). However, it makes sense that in
real life: if many (more than one) trusted friends recommend
someone to us, we will usually take the advice. Moreover,
we can eliminate or weaken the false positive effects by
increasing the leakage.

Generality. GFTrust is more general than existing trust-
ed graph-based models. For example, other flow-based
models can be deemed as a special case of leak = 0. Also,
MaxT aggregation (which selects the most reliable opinion)
in the reliability model can be seen as letting some paths
pass zero (0) flows. Furthermore, the flow-based trust model
has been verified to be able to deal with multi-dimensional
information (Wang and Wu [4]). Thus, GFTrust also bears
the advantage.

6.3 Special Desirable Properties: Misbehavior Resis-
tance

In OSNs, users may conduct several kinds of misbehavior,
such as providing bad service (Josang et al. [30]), Sybil at-
tack (Douceur [31]), bad mouthing (Sun et al. [32]), on-off
attack (Sun et al. [32]), conflicting behavior attack (Sun et al.
[32]), social spamming (Stringhini et al. [33]). Among them,
GFTrust can handle the first two cases, because the unique
design has two desirable properties, incentive compati-
bility (Douceur and Moscibroda [34]) and Sybil tolerance
(Viswanath et al. [35]). We consider two types of misbehav-
ior in the interactions between a service provider (d) and
a customer (s, u, etc.) in an OSN: (1) d wants to gain more
profits but he provides bad services; (2) d tries to false praise
himself by making Sybils.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

8

(a) Good service (b) Bad service

Fig. 8. Expected return of d as a server, s as a potential customer, u
as a current customer: (a) d provides good service; (b) d provides bad
service.

Let d be a service provider, u be a current customer, and
s be a potential customer. Let P (t(s, d)) be the probability
that s will choose d’s service, when the trust value from s to
d is t(s, d). Let t(s, v1, ..., vn, d) be the trust that is received
through path (s, v1, ..., vn, d), and ∆t(s, d) represents the in-
crement of t(s, d). Let r be the meta-return (e.g. voluntarism,
achievement incentive, economic return) of d after he has
serviced a customer, and R = P (t(s, d)) · r be the expected
return of d, from potential customer s.

We assume P (t) ∝ t, i.e., it is proportional to the trust
value. We also assume P (t) >> P (0), when t > 0. In
reality, P may even exponentially increase with t. P (0) is the
probability that a customer s will randomly select a service
provider d, without knowing its reputation. We suppose
each normal user will provide honest feedback. If d provides
good service for u, t(u, d) > 0; otherwise, t(u, d) = 0. In
addition, service providers are rational and selfish. They
want to get more returns. They will not provide bad service
if there are no benefits.

Property 1: Social Incentive Compatibility. GFTrust is
social incentive compatible in that it can provide nodes
with increasing expected value in response to increased
contribution.

Proof: Consider the scenario that d serves u, and s
is a friend of u, who thus is a potential customer of d. We
examine the expected return R of d. Since R = P (t(s, d)) ·
r, we focus on how the trust value of t(s, d) will change.
The following two cases may happen: (1) d provides good
service to u; (2) d does not provide good service to u.

In case (1), u will give a good reputation t(u, d) on the
direct edge to d. If s did not have trust in d before, we
represent it as t(s, d) = 0. Then, the increment of trust will
be ∆t(s, d) = t(s, u, d). Or, if s had known d before, with
trust t(s, d) > 0. Now, s can revise his trust in d through
the new short path (s, u, d). In both conditions, we have
∆t(s, d) ≥ 0. In case (2), u will not give a good reputation
to d. Therefore, ∆t(s, d) ≤ 0. Since P (t) is proportional to t,
the expected return for d is better in case (1). Therefore, the
service provider d has the incentive to provide good service.

Property 2: Sybil Tolerance. GFTrust is Sybil tolerant
in that a service provider cannot increase its benefits by
creating multiple identities to false praise himself.

Proof: A service provider d may create new identities
and put them into the network to false praise himself, if this
will help to increase his expected return R. However, the
design of GFTrust makes the Sybil attack unprofitable.

Assume d creates a new identity d′, and provides ser-
vice to u with identity d′. Therefore, the new trusted path

Fig. 9. Expected return of d as a server, s as a potential customer, u as
a current customer, and d made a Sybil.

will be (s, u, d′, d) (Fig. 9). When compared with the case
without Sybil attack, the newly added trusted path will
be (s, u, d) (Fig. 8(a)). Due to the setting of node leakage,
we have t(s, u, d) ≥ t(s, u, d′, d), then, P (t(s, u, d)) >
P (t(s, u, d′, d)), which will lead to a larger expected return.
Therefore, d has no incentive to conduct a Sybil attack.

It is worth noting that, there is another possible scenario
of Sybil attack, where identity d′ was inserted at the same
distance from u. We take it as a different Sybil attack that
is beyond our discussion. We can even take d′ in this
scenario as branch service providers, whose behaviors could
be deemed as normal behaviors.

7 EXPERIMENTAL EVALUATION

We evaluate the performance of GFTrust in two real social
network data sets, Epinions and Advogato (the results in
Advogato are displayed in Appendix B). The two data sets
are chosen, because they are published data sets that have
the ground truth of direct trust values (tru [36]), and they
are among the most often-used data sets for evaluating
trust prediction performance (e.g., Massa and Avesani [27],
Jiang et al. [5], Levien [10], Yao et al. [37]).

The goals of experiments are to (1) compare the effec-
tiveness of GFTrust with other trust evaluation strategies,
(2) examine the effects of four leakage functions and other
factors, including the maximum path length and the trust
threshold, and (3) check in which scenarios GFTrust can
provide a correct prediction.

7.1 Experimental Design

Evaluation Technique. We use a standard evaluation tech-
nique: leave one out (Kohavi [38]). If there is an edge be-
tween two nodes (say s and d), that edge is masked. That is
to say, the masked value is the ground truth value available
from the data set. Next, trust from s to d is calculated
through algorithms based on the trusted graph. Then, we
compare the calculated value with the masked value.

Data Set and Preprocess. We use a real trust net-
work data set of Epinions (www.epinions.com). It is an
online community web site where users can write reviews
and rate other users’ reviews. We use the technique in
(Richardson et al. [20]) to transform the trust values in Epin-
ions to be continuous in [0,1], and we use the same subset of
Epinions as in (Jiang et al. [5]), which has 3,168 nodes and
51,888 edges.

Evaluation Metrics. We consider the metric of trust
prediction accuracy, which represents the ability to predict
whether a user will be trusted or not, and has been com-
monly used (e.g., Jiang et al. [5], Massa and Avesani [27]).

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

9

TABLE 2
The basic operations in the reliability model.

Operation Method Equation Condition

Propagation Multi tp(s, vn) =
∏

t(vi, vj) e(vi, vj) ∈ pMin tp(s, vn) = min{t(vi, vj)}

Aggregation MaxT t(s, d) = t(vj , d), vj is most reliable
vj ∈ Nin(d)WAveT t(s, d) =

∑
t(s, vj) · t(vj , d)/

∑
t(s, vj)

• Mean Error:
∑
|tc− td|/D, where tc is the calculated

trust, td is the direct trust (i.e., the ground truth or the
expressed trust), and D is the total number of edges
whose trust can be predicted.

• Precision: At ∩ Bt/Bt, where At is the number of
edges in which s trusts d directly, and Bt is the
number of edges in which s trusts d by the algorithm.

• Recall: At ∩Bt/At.
• FScore: 2·Recall·Precision/(Recall+Precision).

Here, Mean Error is a quantity used to measure how
close the predictions are to the direct trust values (i.e.,
the ground truth or the expressed trust); a smaller Mean
Error indicates a higher prediction accuracy. Precision is
the fraction of users who are predicted to be trusted, and
are really trusted ones (i.e., the ground truth). Recall is the
fraction of users who are really trusted, and are subsequent-
ly successfully predicted. A higher Precision and Recall
indicates a higher prediction accuracy. The FScore metric
is used to measure the accuracy using Recall and Precision
jointly.

We also consider the metric of connection coverage, which
is the proportion of edges that have short paths between its
pair of nodes (thus their trust can be predicted) in all the
edges.

Methods for Comparison. In the experiments, we main-
ly consider the reliability model for comparison, since both the
reliability model and GFTrust consider the two challenges of
path dependence and trust decay.

In the reliability model, the trust value from incoming
neighbors (Nin(d)) to d is the direct trust (i.e., the ground
truth or the expressed trust), and the trust value from
source s to the nodes in Nin(d) is taken as the reliability of
the direct trust. Moreover, trust propagation calculates the
reliability of a trusted path. Two commonly used methods
are Multi and Min. Multi takes the product of trust values
in all edges. Min takes the minimum trust value in a path.
Trust aggregation among nodes in Nin(d) calculates the
final trust value. Two commonly used aggregation functions
are MaxT and WAveT. MaxT takes the trust value of the
most reliable incoming neighbor. WAveT takes the weighted
average value of all incoming neighbors. Table 2 shows the
equations of trust propagation and aggregation.

We implement five other trust prediction strategies:
AveR-MaxT, AveR-WAveT, MaxR-MaxT, MaxR-WAveT, and
SWTrust∗ (Jiang et al. [5]). If there are multiple paths from s
to a node in Nin(d), AveR will take the average path weight
as the reliability, while MaxR will take the maximum one.
SWTrust∗ is an algorithm which makes use of the idea of
TidalTrust (Golbeck [2]), and takes the weighted average
trust value of all shortest and strongest paths. We set trust
threshold Th ∈ [0.5, 0.9], and max length L ∈ [2, 6] for
experiments.

TABLE 3
Accuracy in Epinions, L = 4, Th = 0.5, leakage = 0.

Method Mean Error Recall Precision FScore
AveR-MaxT 0.3174 0.5385 0.4903 0.5132
AveR-WAveT 0.2639 0.5342 0.5165 0.5252
MaxR-MaxT 0.3105 0.5641 0.5019 0.5312
MaxR-WAveT 0.2641 0.5342 0.5144 0.5241
SWTrust* 0.3336 0.5556 0.5019 0.5274
GFTrust 0.2478 0.9872 0.4863 0.6516

7.2 Experimental Results in Epinions

The Effects of Different Strategies. Table 3 and Fig. 10
show the comparison of accuracy in Epinions. It indicates
that GFTrust has better performance than other strategies:
(1) its FScore is higher, with the improvement being 27.16%
when L = 6; and (2) its Mean Error is lower, with the
improvement being 23.72% when L = 6.

The Effects of Leakage Functions. We conduct experi-
ments with the four leakage functions in Fig. 3. Some rep-
resentative results are presented in Fig. 11. The upper four
figures demonstrate the effects of uniform leakage, while
the other four figures correspond to non-uniform leakage.
We gain some findings:

(1) The leakage has more positive effects on the Mean
Error than on the FScore. E.g., the Mean Error is decreased
significantly in Fig. 11(b), while the FScore remains relative-
ly stable in Figs. 11(a) and 11(c).

(2) The effects are of great difference in different settings
of L and Th. The changes are sharp with respect to trust
threshold Th, and much smoother with respect to maximum
length L. The reason is that the increase of Th takes more of
an effect on the available paths, i.e., less paths will be taken
as trustful if we set a higher Th.

(3) When the leakage is large enough, the accuracy
(either FScore or Mean Error) begins to be reduced. E.g.,
when the leakage is larger than 0.06, the FScore is decreased
in Fig. 11(c), and the Mean Error is increased in Fig. 11(d).
Therefore, the leakage cannot be too large. In fact, when we
set leak = 0.22 or even larger, the prediction accuracy is
reduced sharply.

(4) The effects of non-uniform leakage are even more
various with different settings. As shown in Figs. 11(e) and
11(g), the FScore of GFTrust with non-uniform leakage is
almost the same with or even lower than GFTrust(0) (i.e.,
no leakage); meanwhile, Fig1. 11(f) and 11(h) shows that the
Mean Error with leakage is lower than that without leakage.
In addition, within all the three leakage functions in Eqs. 2,
3, and 4, the last one, polynomial leakage, performs the best.

The Effects of Max Length. If the max length is large,
then there will be more intermediate nodes from s to d.
Fig. 12(a) shows that the coverages are increased with
increasing L, especially when L changes from 2 to 3; the
increase is not significant when L changes from 3 to 6.
In Epinions, a larger max length leads to little increase of
accuracy, as shown in Figs. 10(a), 10(b), 11(a), and 11(b).
Similar to the coverage, the gap is larger when L changes
from 2 to 3 than from 3 to 6. We analyze the reason, and find
that there are few paths when L is too small. Although there
do exist paths between some pairs of nodes, the number of
these paths is fewer.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

10

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

2 3 4 5 6

F
S

c
o
re

Max Length

AveR-MaxT
AveR-WAveT

MaxR-MaxT
MaxR-WAveT

SWTrust*
GFTrust

(a) FScore

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

2 3 4 5 6

M
e
a
n
 E

rr
o
r

Max Length

AveR-MaxT
AveR-WAveT
MaxR-MaxT
MaxR-WAveT
SWTrust*
GFTrust

(b) Mean Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.5 0.6 0.7 0.8 0.9

F
S

c
o
re

Trust Threshold

AveR-MaxT
AveR-WAveT

MaxR-MaxT
MaxR-WAveT

SWTrust*
GFTrust

(c) FScore

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 0.6 0.7 0.8 0.9

M
e
a
n
 E

rr
o
r

Trust Threshold

AveR-MaxT
AveR-WAveT

MaxR-MaxT
MaxR-WAveT

SWTrust*
GFTrust

(d) Mean Error

Fig. 10. The accuracy in Epinions.

0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70

0.00 0.02 0.04 0.06 0.08 0.10

F
S

c
o
re

Leakage

L=2
L=3
L=4
L=5
L=6

(a) Uniform Leakage

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.02 0.04 0.06 0.08 0.10

M
e
a
n
 E

rr
o
r

Leakage

L=2
L=3
L=4
L=5
L=6

(b) Uniform Leakage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.02 0.04 0.06 0.08 0.10

F
S

c
o
re

Leakage

Th=0.5
Th=0.6
Th=0.7
Th=0.8
Th=0.9

(c) Uniform Leakage

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.02 0.04 0.06 0.08 0.10

M
e
a
n
 E

rr
o
r

Leakage

Th=0.5
Th=0.6
Th=0.7
Th=0.8
Th=0.9

(d) Uniform Leakage

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

2 3 4 5 6

F
S

c
o
re

Max Length

GFTrust(1-cos(0.09*d))
GFTrust(1-cos(0.13*d))

GFTrust(5(-d))
GFTrust(exp(-d))

GFTrust((d+1)(-4))
GFTrust((d+1)(-5))

GFTrust(0)

(e) Non-uniform Leakage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6

M
e
a
n
 E

rr
o
r

Max Length

GFTrust(1-cos(0.09*d))
GFTrust(1-cos(0.13*d))

GFTrust(5(-d))
GFTrust(exp(-d))

GFTrust((d+1)(-4))
GFTrust((d+1)(-5))

GFTrust(0)

(f) Non-uniform Leakage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.5 0.6 0.7 0.8 0.9

F
S

c
o
re

Trust Threshold

GFTrust(1-cos(0.09*d))
GFTrust(1-cos(0.13*d))

GFTrust(5(-d))
GFTrust(exp(-d))

GFTrust((d+1)(-4))
GFTrust((d+1)(-5))

GFTrust(0)

(g) Non-uniform Leakage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9

M
e
a
n
 E

rr
o
r

Trust Threshold

GFTrust(1-cos(0.09*d))
GFTrust(1-cos(0.13*d))

GFTrust(5(-d))
GFTrust(exp(-d))

GFTrust((d+1)(-4))
GFTrust((d+1)(-5))

GFTrust(0)

(h) Non-uniform Leakage

Fig. 11. The accuracy of GFTrust with leakage in Epinions.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

2 3 4 5 6

C
o
v
e
ra

g
e

Max Length

Trustful
Not Trustful

(a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

0.5 0.6 0.7 0.8 0.9

C
o
v
e
ra

g
e

Trust Threshold

Trustful
Not Trustful

(b)

Fig. 12. The coverage in Epinions.

The Effects of Trust Threshold. Figs. 10(c), 10(d), 11(c),
11(d) show the accuracy with respect to the trust threshold.
During the increase of Th (from 0.5 to 0.9), the FScore
decreases sharply, especially when Th ≥ 0.6. We analyze
the reason, and find that, as Th increases, fewer paths will
be trusted (due to the decrease of the coverage, as shown
in Fig. 12(b)), which means less evidence can be used to
evaluate trust.

Scenarios of Prediction. Besides testing the above im-
pact factors, we also want to analyze in which conditions
GFTrust can make a correct or incorrect decision. We delved
into the meta-results, and obtained the following findings.
For the pairs of nodes being considered: (1) In the case
that GFTrust gives a higher trust than the direct trust, there
are usually several short trusted paths between them, the
length of which is L ≤ 4. In fact, only less than 3 paths
are used, which is consistent with Observation 3. (2) On the

contrary, in the case that GFTrust gives a lower trust than
the direct trust, it usually happens when there are no short,
trusted paths. We summarize two such cases: (a) There are
several paths, but all the paths are long, and thus, too many
intermediate nodes cause too much leakage; (b) there are
not enough paths to send all the initial flow.

These findings verify the incentive property of GFTrust.
Users (service providers) usually want to get high trust,
which can eventually help them get more returns. Then,
it is a wise decision to provide good services for more
customers. Only in this way can new short and trusted
paths be created from their friends (potential customers) to
a service provider.

7.3 Summary of Experiments
The experimental results validate that GFTrust is effective
in improving the trust prediction accuracy, and verify its in-
centive property. The FScore is higher than that using other
methods, and the Mean Error is lower due to the proper
setting of the leakage. Among all the four leakage functions,
the polynomial leakage performs the best in Epinions.

8 CONCLUSION AND FUTURE WORK

With the popularity of services and applications in OS-
Ns, the trust issues gain more attention both from service
customers and providers. Improving the trust evaluation
accuracy will help enhance both the customer experience
and the service quality. Due to its high clustering, the

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

11

path dependence phenomenon is more common in OSNs.
Although some trust models have been proposed, the two
challenges of path dependence during aggregation and trust
decay through propagation have not been well addressed.

Recognizing the similarity between trust propagation
and network flow, we design a generalized flow-based trust
evaluation scheme, GFTrust. We make use of the nature
of flow to deal with trusted path dependence, and model
trust decay with node leakage. We analyze the unique
advantages of GFTrust, and conduct extensive experiments
with real social network data sets. The results validate the
effectiveness of GFTrust: the use of flow and the setting of
leakage improve the trust prediction accuracy significantly.

GFTrust is the first to address both challenges of path
dependence and trust decay, in the domain of trust evalu-
ation in OSNs. It is also the first to introduce the modified
generalized flow model into a trust evaluation system. The
unique design makes it able to solve the two challenges,
save the normalization process, and bear two good proper-
ties of social incentive compatibility and Sybil tolerance. In
addition, setting the initial trust value as 1 makes GFTrust
generous to the newcomers. However, even when we are
generous at the beginning, possible Sybil users can only
conduct limited malicious behavior. On the other hand,
because GFTrust is Sybil-tolerant, it can thus be friendly to
newcomers.

Currently, the node leakage functions are designed intu-
itively. We let the leakage be associated with the distance,
and be a type of proportion leakage. In future work, we will
improve the design, and also try the approach of fixed value
leakage.

ACKNOWLEDGMENTS
This work is supported in part by NSF grants CNS 149860,
CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774,
ECCS 1231461, ECCS 1128209, and CNS 1138963. This
work is also supported by NSFC grants 61272151 and
61472451, ISTCP grant 2013DFB10070, the China Hunan
Provincial Science & Technology Program under Grant
Number 2012GK4106, and the Chinese Fundamental Re-
search Funds for the Central Universities 531107040845. The
authors also would like to thank anonymous reviewers who
gave valuable suggestions that have helped to improve the
quality of the manuscript. Some work of Wenjun Jiang was
conducted at Temple University.

REFERENCES

[1] J. Wu. Trust mechanisms and their applications in
MANETs. Keynote speech in TrustCom’09, 2009.

[2] J. Golbeck. Computing and applying trust in web-
based social networks. PhD thesis, University of Mary-
land, 2005.

[3] Y. L. Sun, W. Yu, Z. Han, and K. J. R. Liu. Information
theoretic framework of trust modeling and evaluation
for ad hoc networks. IEEE Journal on Selected Areas in
Communications, 24(2):305–317, 2006. ISSN 0733-8716.

[4] G. Wang and J. Wu. FlowTrust: Trust inference with
network flows. Frontiers of Computer Science in China,
5(2):181–194, 2011.

[5] W. Jiang, G. Wang, and J. Wu. Generating trusted
graphs for trust evaluation in online social networks.
Future Generation Computer Systems, 31:48–58, 2014.

[6] G. Mahoney, W. Myrvold, and G. C. Shoja. Generic
reliability trust model. Proc. PST, pages 113–120, 2005.

[7] M. Taherian, M. Amini, and R. Jalili. Trust inference
in web-based social networks using resistive networks.
Proc. ICIW, pages 233–238, 2008.

[8] D. J. Watts. Small worlds: The dynamics of networks
between order and randomness. Princeton University
Press, 1999.

[9] K. D. Wayne. Generalized maximum flow algorithms.
PhD thesis, Cornell University, 1999.

[10] R. Levien. Attack resistant trust metrics. PhD thesis, UC
Berkeley, USA, 2003.

[11] A. Jøsang, R. Hayward, and S. Pope. Trust network
analysis with subjective logic. Proc. ACSC, pages 85–
94, 2006.

[12] C. Lin, N. Cao, S. Liu, S. Papadimitriou, J. Sun, and
X. Yan. Smallblue: Social network analysis for expertise
search and collective intelligence. Proc. ICDE, pages
1483–1486, 2009.

[13] L. Paninski. Estimation of entropy and mutual infor-
mation. Neural Computation, 15(6):1191–1253, June 2003.
ISSN 0899-7667.

[14] T. Bailey, S. Julier, and G. Agamennoni. On conserva-
tive fusion of information with unknown non-gaussian
dependence. In Proc. FUSION, pages 1876–1883, 2012.

[15] B. Chen and P. K. Varshney. A bayesian sampling
approach to decision fusion using hierarchical models.
IEEE Transactions on Signal Processing, 50(8):1809–1818,
2002.

[16] B. Friedland. Control system design: An introduction
to state-space methods. Dover Publications, 2005.

[17] C. N. Ziegler and G. Lausen. Propagation models
for trust and distrust in social networks. Information
Systems Frontiers, 7(4-5):337–358, 2005.

[18] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network
flows: Theory, algorithms, and applications. Prentice
Hall, 1993.

[19] W. Sherchan, S. Nepal, and C. Paris. A survey of trust
in social networks. ACM Computing Surveys, 45(4):47:1–
47:33, 2013.

[20] M. Richardson, R. Agrawal, and P. Domingos. Trust
management for the semantic web. Proc. ISWC, 2870:
351–368, 2003.

[21] A. Abdul-Rahman and S. Hailes. A distributed trust
model. In Proc. NSPW, pages 48–60, 1997. ISBN 0-
89791-986-6.

[22] L. R. Ford and D. R. Fulkerson. Maximal flow through
a network. Canadian Journal of Mathematics, 8:399–404,
1954.

[23] M. A. Nowak. Five rules for the evolution of coopera-
tion. Science, 314(5805):1560–1563, 2006.

[24] M. L. Manapat, M. A. Nowak, and D. G. Rand. Infor-
mation, irrationality, and the evolution of trust. Journal
of Economic Behavior & Organization, 2012.

[25] D. G. Rand, J. D. Greene, and M. A. Nowak. Sponta-
neous giving and calculated greed. Nature, 489(7416):
427–430, 2012.

[26] M. A. Perillo and W. B. Heinzelman. Optimal sensor

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2435785, IEEE Transactions on Computers

12

management under energy and reliability constraints.
In Proc. WCNC, volume 3, pages 1621–1626, 2003.

[27] P. Massa and P. Avesani. Trust metrics on controversial
users: Balancing between tyranny of the majority and
echo chambers. International Journal on Semantic Web
and Information Systems, 3:39–64, 2007.

[28] J. Edmonds and R. M. Karp. Theoretical improvements
in algorithmic efficiency for network flow problems.
Journal of the Association for Computing Machinery, 19(2):
248–264, 1972.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (3rd edition). The MIT Press,
2009.

[30] A. Josang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision.
Decision Support Systems, 43(2):618 – 644, 2007.

[31] J. R. Douceur. The Sybil attack. Proc. IPTPS, 2002.
[32] Y. L. Sun, Z. Han, W. Yu, and K. J. R. Liu. A trust evalu-

ation framework in distributed networks: Vulnerability
analysis and defense against attacks. Proc. INFOCOM,
pages 1–13, 2006.

[33] G. Stringhini, C. Kruegel, and G. Vigna. Detecting
spammers on social networks. In Proc. ACSAC, pages
1–9, 2010.

[34] J. R. Douceur and T. Moscibroda. Lottery trees: mo-
tivational deployment of networked systems. In Proc.
SIGCOMM, pages 121–132, 2007.

[35] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove.
An analysis of social network-based sybil defenses. In
Proc. SIGCOMM, pages 363–374, 2010.

[36] http://www.trustlet.org/wiki/Trust network datasets.
[37] Y. Yao, H. Tong, X. Yan, F. Xu, and J. Lu. Matri: a multi-

aspect and transitive trust inference model. In Proc.
ACM WWW, pages 1467–1476, 2013.

[38] R. Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection. Morgan
Kaufmann, pages 1137–1143, 1995.

Wenjun Jiang received her Bachelor’s degree in
Computer Science from Hunan University, P. R.
China, in 2004, her Master’s degree in Computer
Software and Theory from Huazhong University
of Science and Technology, P. R. China, in 2007,
and her Doctorate degree in Computer Software
and Theory from Central South University, P. R.
China, in 2014. She has been a visiting Ph.
D student at Temple University for two years.
Currently, she is an assistant professor at Hunan
University. Her research interests include trust

and social influence evaluation models and algorithms in online social
networks, recommendation systems, and social network analysis.

Jie Wu is the chair and a Laura H. Carnell pro-
fessor in the Department of Computer and Infor-
mation Sciences at Temple University. He is also
an Intellectual Ventures endowed visiting chair
professor at the National Laboratory for Informa-
tion Science and Technology, Tsinghua Univer-
sity. Prior to joining Temple University, he was a
program director at the National Science Foun-
dation and was a Distinguished Professor at
Florida Atlantic University. His current research
interests include mobile computing and wireless

networks, routing protocols, cloud and green computing, network trust
and security, and social network applications. Dr. Wu regularly publishes
in scholarly journals, conference proceedings, and books. He serves
on several editorial boards, including IEEE Transactions on Service
Computing and the Journal of Parallel and Distributed Computing. Dr.
Wu was general co-chair/chair for IEEE MASS 2006, IEEE IPDPS 2008,
IEEE ICDCS 2013, and ACM MobiHoc 2014, as well as program co-
chair for IEEE INFOCOM 2011 and CCF CNCC 2013. He was an IEEE
Computer Society Distinguished Visitor, ACM Distinguished Speaker,
and chair for the IEEE Technical Committee on Distributed Processing
(TCDP). Dr. Wu is a CCF Distinguished Speaker and a Fellow of the
IEEE. He is the recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.

Feng Li received his Ph.D. in Computer Science
from Florida Atlantic University in Aug. 2009. His
Ph.D. advisor is Prof. Jie Wu. He joined the De-
partment of Computer, Information, and Lead-
ership Technology at Indiana University-Purdue
University Indianapolis (IUPUI) as an assistant
professor in Aug. 2009. His research interests
include the areas of wireless networks and mo-
bile computing, security, and trust management.
He has published more than 30 papers in con-
ferences and journals.

Guojun Wang received his B.Sc. in Geophysics,
M.Sc. in Computer Science, and Ph.D. in Com-
puter Science from Central South University,
China. He is now Chair and Professor of the De-
partment of Computer Science and Technology
at Central South University. He is also Director of
the Trusted Computing Institute of the University.
He has been an Adjunct Professor at Temple
University, USA; a Visiting Scholar at Florida
Atlantic University, USA; a Visiting Researcher
at the University of Aizu, Japan; and a Research

Fellow at the Hong Kong Polytechnic University. His research interests
include network and information security, Internet of things, and cloud
computing. He is a distinguished member of CCF, and a member of
IEEE, ACM, and IEICE.

Huanyang Zheng received his B.Eng. in T-
elecommunication Engineering from Beijing U-
niversity of Posts and Telecommunications, Bei-
jing, China, in 2012. He is currently a Ph.D.
student in the Department of Computer and In-
formation Sciences, Temple University, Philadel-
phia, PA, US. His current research focuses on
the delay tolerant networks, social networks, and
cloud systems.

