
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Provably Efficient Resource Allocation for Edge
Service Entities using Hermes

Sheng Zhang, Member, IEEE, Yu Liang, Jidong Ge, Member, IEEE, Mingjun Xiao, Member, IEEE, and

Jie Wu, Fellow, IEEE

Abstract—Virtualization techniques help edge environments separate the role of the traditional edge providers into two: edge

infrastructure providers (EIPs), who manage the physical edge infrastructure, and edge service providers (ESPs), who aggregate

resources (especially, compute resources) from multiple EIPs to place service entities and offer value-added services to end users

(EUs). In such an environment, end users submit their data analysis jobs to ESPs; ESPs process the data analysis jobs using their

service entities. One fundamental and critical problem for an ESP is to decide how much compute resources to rent from each edge

server under the constraint that the total amount of rental resources is no more than a specified budget threshold, so that the average

makespan of the data analysis jobs submitted to it is minimized. This Edge Resource Allocation (ERA) problem is proven to be NP-

complete by reducing the set cover problem to a special case of it. To design an approximation algorithm for ERA, we perform two

transformations on ERA: first, we transform ERA into mERA by replacing minimization with maximization; second, we transform mERA

into dmERA by limiting the possible amounts of rental resources to a finite set of values. We find that dmERA has several tractable

properties that allow us to design Hermes, a provably efficient algorithm that approximates the optimal allocation. We demonstrate

that the gap between Hermes and the optimum in simulations and Android-based testbed experiments are no larger than 4.78% and

12.43%, respectively. Hermes can also output a curve showing the trade-off between the average makespan and the budget threshold,

so that an ESP can choose the right balance.

Index Terms—Capacity provisioning, edge computing, resource allocation, service entity

✦

1 INTRODUCTION

MOBILE devices are becoming increasingly popu-
lar and pervasive. They are no longer luxuries

but musts: a plethora of people use them for banking,
gaming, etc. However, mobile devices are, and will
continue to be, resource-poor, since the most sought-
after features of a mobile device are light weight and
tolerable heat dissipation, not high processor speed and
large memory size [1]. Therefore, mobile devices still
fall short of running computation-intensive jobs, such
as augmented reality [2], interactive gaming [3], and
natural language processing [4]. A viable solution to
overcome this challenge is to offload mobile workloads
to remote clouds [5]. However, delivering mobile work-
loads to remote datacenters incurs long WAN (Wide
Area Network) latency, which is not acceptable in many
mobile applications such as augmented reality.

Recent studies have proposed deploying small scale
edge servers that are geographically near mobile devices
and end users [3], [5], [6], [7]. Previous studies mainly

• S. Zhang, Y. Liang, and J.D. Ge are with the State Key Laboratory for
Novel Software Technology, Nanjing University, Nanjing 210023, China.
E-mail: sheng@nju.edu.cn, dg1832003@smail.nju.edu.cn, gjd@nju.edu.cn.

• M.J. Xiao is with with the School of Computer Science and Technology /
Suzhou Institute for Advanced Study, University of Science and Technol-
ogy of China, Hefei, P. R. China.
E-mail: xiaomj@ustc.edu.cn.

• J. Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

EIP layer
h1 h2 h3

ESP layer

EU layer

u1 u2 u3

x1 x2

ESP1ESP2 ESP3

EIP1 EIP2

J1
job description

J2
job description

J3
job description

Fig. 1: An example scenario that includes 3 edge servers, 2 EIPs, 3
ESPs, and 3 EUs. Given the constraint that the total amount of rental
resources is no more than a specified budget threshold, an ESP (e.g.,
ESP1) should decide how many compute resources (e.g., x1 and x2) to
rent from each edge server so that the average makespan of the data
analysis jobs submitted to ESP1 is minimized.

focused on automatic application partition for offload-
ing [8], [9], [10], [11], [12], [13], distributed support
for machine learning jobs [14], [15], edge service entity
placement [16], [17], etc.

Edge server resources tend to be virtualized and can
be allocated at a fine granularity by the aid of lightweight
virtualization techniques [18]. This enables edge virtu-
alization, a paradigm that decouples the functionalities
in an edge environment by separating the role of the
traditional edge providers into two: edge infrastruc-
ture providers (EIPs), who manage the physical edge
infrastructure, and edge service providers (ESPs), who
aggregate resources (e.g., compute resources) from mul-

IEEE/ACM TRANSACTIONS ON NETWORKING 2

tiple EIPs to place service entities and offer value-added
services to end users (EUs). In such an environment,
end users submit their data analysis jobs to ESPs; ESPs
process the data analysis jobs using their service entities.
Fig. 1 shows an example. There are 3 edge servers, h1,
h2, and h3, owned by 2 EIPs. An ESP may rent compute
resources from multiple edge servers, e.g., ESP1 rents
resources from both h1 and h2. Three EUs u1, u2, and
u3 submit jobs J1, J2, and J3, respectively, to ESP1 via
wireless links. An edge server can offer edge services to
an end user if the user is in close proximity of the edge
server, e.g., u1 can only use the resources from h1, while
u2 can use the resources from both h1 and h2. Each end
user can process a part of its job locally using a mobile
device and offload the rest of its job to the edge servers
it can reach.

From the perspective of an ESP, its objective is to
minimize the average completion time of the submitted
jobs; meanwhile, the ESP wants to minimize the total
cost of renting substrate resources from EIPs. Therefore,
a fundamental and critical problem for an ESP is to
decide how many compute resources to rent from each
edge server under the constraint that the total amount
of rental resources is no more than a specified budget
threshold, so that the average makespan of the data
analysis jobs submitted to it is minimized. We call this
problem the Edge Resource Allocation (ERA) problem.

The ERA problem is non-trivial due to the following
intertwined challenges. First, both of edge servers and
user jobs are heterogeneous, so when making the rental
decisions, an ESP should respect such heterogeneity.
Second, due to the proximity requirement, each edge
server can only offer resources to a limited number of
users and a user can only use resources from a limited
number of edge servers. Third, the goal (i.e., minimizing
the average job makespan of a set of jobs) is not linear,
making traditional linear or integer linear programming
methods no longer effective. These intrinsically inter-
twined challenges together complicate our problem.

This paper proposes Hermes1, a provably efficient
algorithm that approximates the optimal allocation. The
ERA problem is proven to be NP-complete by reducing
the set cover problem to a special case of it. To design
an approximation algorithm for ERA, we perform two
transformations on ERA: first, we transform ERA into
mERA by replacing minimization with maximization;
second, we transform mERA into dmERA by limiting
the possible amounts of rental resources to a finite set
of values. We find that dmERA has several tractable
properties that allow us to design Hermes. Fortunately,
Hermes is also an approximation algorithm for the
original ERA problem. We theoretically prove that Her-
mes is an approximation algorithm for dmERA, mERA,

and ERA with approximation factors 1−1/e
2G , 1−1/e

2(n+G) , and

1. The name of the algorithm, Hermes, comes from the Olympian
God Hermes, who is famous for its unrivalled speed. Similar to
the God Hermes, the proposed algorithm minimizes the average job
makespan, in other words, it accelerates the job execution speed.

α + β − αβ, respectively, where α and β are defined in
Eq. (34). We also discuss three extensions of Hermes.
We use simulations and testbed-based experiments to
evaluate Hermes and verify our theoretical analysis. We
summarize our contributions here as follows:

• We are the first to identify the edge resource alloca-
tion problem and prove that ERA is NP-complete,
to the best of our knowledge.

• We design Hermes for ERA with guaranteed per-
formance through two-step transformation and two-
step reversion. We also discuss extensions and lim-
itations of Hermes.

• We evaluate Hermes using simulations and testbed-
based experiments. The simulation results demon-
strate that the gap between Hermes and the op-
timum is 2.21% on average and 4.78% at most.
And the testbed results show that the gap between
Hermes and the optimum is 12.43% at most.

The rest of the paper is organized as follows. We
survey related work in Section 2. We introduce the
edge resource allocation problem and its complexity in
Section 3. We then present our solution in Section 4.
Evaluation is given in Section 5. We conclude the paper
and discuss limitations in Section 6.

2 RELATED WORK

There are many works considering efficient offloading
for edge computing from both the systemic [10], [11],
[12], [13] and algorithmic [8], [9], [19], [20], [21] per-
spectives. The multi-user computation partition prob-
lem with the objective of minimizing the average time
is solved in [9]. Dynamic offloading with completion
deadline constraint to reduce energy consumption is
studied in [8]. Time slot assignment for energy-efficient
mobile offloading is investigated in [19]. Tan et al. [20]
proposed to greedily dispatch jobs and schedule jobs
using the Highest Residual Density First rule, when
there are multiple jobs and multiple edge servers. Sundar
and Liang [21] investigated the problem of dispatching
dependent tasks to multiple edges with deadline con-
straints, so as to minimize application execution cost.
Chen et al. [22] leverages deep reinforcement learning
to efficiently dispatch bursty jobs.

Service entity placement was investigated in some
recent works. Jia et al. [23] studied the load balancing
between multiple edge servers. Yu et al. [16] investigated
the problem of joint edge server provisioning and rout-
ing path selection from the perspective of networking.
Xu et al. [24] considered the caching and offloading prob-
lem in resource-limited edge servers to minimize com-
putation latency. Zhang and Tang [25] studied the client
assignment problem for DIAs. Liang et al. [26] proposed
a utility-based entity placement framework and they
also investigated the interaction-oriented edge service
entity placement problem [27]. Wang et al. [17] studied
a similar service entity placement problem that resem-
bles the uncapacitated facility location problem [28].

IEEE/ACM TRANSACTIONS ON NETWORKING 3

Some other works have discussed the edge support for
mobile augmented reality (MAR) applications. Liu et
al. [29] focused on edge server assignment and frame
resolution selection to minimize MAR service latency.
VideoStorm [30] leverages the resource-quality tradeoff
and latency-tolerance of partial video analysis requests
to accelerate video analysis. Chameleon [31] utilizes tem-
poral persistence of top-k configurations and spatial sim-
ilarities to minimize the resource consumption for video
analysis. JCAB [32] jointly optimizes the configuration of
edge-based video analysis and the bandwidth allocation
for maximizing the total accuracy and minimizing the
total energy cost. These studies explore domain-specific
knowledges to optimize edge video analysis.

Some other studies [4], [33], [34], [35], [36] pro-
pose pooling together near-by (maybe intermittently-
connected) mobile devices for resource sharing, and
they form a self-organized cloudlet that collaboratively
solves parallel tasks. Workloads are usually assumed
fine-grained and permit arbitrary partitioning [37]. How
to split workloads during a contact to minimize job
makespan is investigated in [34]. How to estimate the
computational capacity of a cloudlet is studied in [35].

The power of two choices is due to [28], [38]. Submod-
ular function optimization can be found in [39], [40].

In short, none of existing studies has investigated the
resource allocation problem in edge virtualization from
the perspective of an edge service provider. We propose
solutions with non-trivial performance guarantees. We
also reveal the trade-off between makespan and budget.

3 PROBLEM AND COMPLEXITY

In this section, we first introduce the scenario we con-
sider in this paper, then we present the notations and the
problem formulation, lastly we show its time complexity.

3.1 The System

In edge computing environments, edge servers are usu-
ally deployed on a business premise such as in a doctor
office or a coffee shop [6]. According to the Open Edge
Computing initiative [18], edge server resources tend to
be virtualized and can be allocated at a fine granular-
ity by the aid of lightweight virtualization techniques.
Hence, a mobile device can offload part of its job to
nearby edges, i.e., the job is done in parallel by multiple
nearby edges. In general, there are two parallelism mod-
els: data parallelism and model parallelism [15]. In the
first model, the input data is partitioned among the edge
servers, and each edge server locally processes the data
and returns the results to the mobile device. The second
one is usually used in machine learning for training a
model which is partitioned among edge servers, and
each edge server updates part of the model parameters
by processing the entire input data. Data parallelism has
been more widely adopted than model parallelism; thus,
in this paper, we adopt the data parallelism model.

time window

job comes

job descriptions

(bi, si)

Hermes

1

2

3

time

Fig. 2: Scenario overview.

In the data parallelism model, the input data can
be classified into two types: modularly divisible and
arbitrarily divisible [37]. The workload on the first type
of data is usually represented as a directed acyclic graph
(DAG) which has dependencies between its small tasks.
The workload on the second type of data has the prop-
erty that all elements in the input demand an identical
type of processing [34], [41], [42]. These loads have the
characteristic that they can be arbitrarily partitioned into
any number of load fractions. Many jobs have this prop-
erty. e.g., processing of massive experimental data, image
processing applications like feature extraction and edge
detection, computations of Hough transforms, and ex-
traction of signals buried in noise from multidimensional
data collected over large spans of time. Therefore, in this
paper, we assume job workloads are fine-grained and
permit arbitrary partition. We postpone the discussion
on the case in which partition is limited until Section 4.4.

Fig. 2 shows the overview of our scenario. Mobile
users2 submit their jobs in an online manner. Time is
divided into multiple time windows of each length. The
proposed algorithm, i.e., Hermes, allocates resources to
service entities at the end of each time window for jobs
submitted within the window. More specifically, when a
device ui submits a job Ji, it would provide the amount
of workload of Ji, which is denoted by si, and the
amount of available local computation resources at ui.
These job descriptions are stored in a queue (see 1© in
Fig. 2); at the end of each time window, we run Hermes
to find how many compute resources to rent from each
edge server so that the average makespan of the jobs in
the queue is minimized (see 2© in Fig. 2); the allocation
results are then sent back to each device and edge server
(see 3© in Fig. 2).

As mentioned above, we use si to denote the amount
of workload of Ji, which is quantified by the amount
of computations (e.g., the total number of CPU cycles
required to accomplish a job is used as the workload
of the job in [8]). Without loss of generality, the input
size of Ji is assumed to be proportional to the workload
size of Ji; thus, we also use si to represent the input
size of Ji. By offloading partial workloads to some edge
servers, the amount of compute resources a job can use
consists of two parts: the capacity of the job submitter
and the equal-share of each edge server it connects with.
Now we have the following question: given the amount
of compute resources a job can use, how does the job

2. We will use user and device interchangeably in this paper.

IEEE/ACM TRANSACTIONS ON NETWORKING 4

partition its workload to minimize its own makespan?
For example, in Fig. 1, suppose the workload of J2

is 100, the amount of local compute resources on the
submitter u2 is 10, J2 can use 10 and 20 units of compute
resources in h1 and h2, respectively. How can we parti-
tion the workload of J2 to minimize the makespan of J2?
If we send 30 and 40 units of workloads to h1 and h2,
respectively, the makespan of J2 is max{ 3010 ,

30
10 ,

40
20} = 3.

It is not hard to see that, to minimize the makespan of
J2, J2 should finish at the same time on u2, h1, and h2,
resulting in the optimal makespan max{ 2510 ,

25
10 ,

50
20} = 2.5.

Therefore, we can calculate the optimal makespan of a
single job through dividing the amount of workloads by
the total amount of compute resources it can use, e.g.,
for J2, its optimal makespan is 100

10+10+20 = 2.5. In the rest
of the paper, given the amount of compute resources a
job can use, we assume that its makespan is the amount
of workloads divided by the total amount of compute
resources it can use.

Each device can partition the input of its job based
on the allocation results returned by Hermes in the
following way. We assume the compute resources rented
by an ESP in each edge server is equally shared among the
devices that are in proximity to it. For example, in Fig. 1,
if ESP1 rents x1 = 40 and x2 = 20 units of compute
resources in h1 and h2, respectively, then, J2 can use
40
2 = 20 and 20

2 = 10 units of resources in h1 and h2,
respectively. Suppose the amount of local computation
resources at u2 is 10 and the input size of J2 is 160, then
the optimal makespan of J2 is 160

20+10+10 = 4. Therefore,
u2 should send 4×20 = 80 and 4×10 = 40 units of input
data to h1 and h2, respectively, and keep the remaining
40 units of input data for local processing.

As mobile devices are usually in proximity to edges,
network latency is usually very small compared with
computation latency. Besides, the input data can be par-
titioned into blocks; when a block is received by a service
entity, the entity can start processing it and meanwhile
the subsequent blocks are being transmitted. That is,
transmitting data and processing data can be done in
a pipeline-like way, which further reduces the impact of
network latency on the job makespan. Therefore, in this
paper, we assume that transmitting a part of a job from
a user to an edge server incurs no network latency.

3.2 Problem Formulation

We consider an edge computing scenario which contains
a set of n edge servers, denoted by h1, h2, ..., and hn.
They are operated by multiple different EIPs. There is
one ESP of interest. The budget threshold for the ESP is
C. Denote by xi the amount of compute resources the
ESP wants to rent in each edge server. These xi’s are the
optimization variables. Obviously, we have

∑n

i=1
xi ≤ C. (1)

This paper focuses on delay-sensitive mobile jobs,
which demand low delay for improving user experi-

ence [9]. Such kind of jobs (e.g., mobile augmented re-
ality) usually perform computation-intensive operations
onto the input data and then output the results. There
are m data analysis jobs, J1, J2, ..., and Jm, submitted
by users u1, u2, ..., and um, respectively. ui is also called
the submitter of Ji. We use ui to refer to both the user
and the mobile device, unless otherwise specified.

The computation workload of a job can be represented
in terms of the total number of CPU cycles required for
accomplishing the job [8], [43]. In this paper, we let si
denote the amount of workloads of Ji. To reduce the
completion time of a job Ji, the submitter ui usually
offloads partial workloads to nearby edge servers and
processes the remaining workloads locally using its own
computation resources. Let bi denote the amount of
available computation resources ui has for its job.

The connections of edge servers and users are repre-
sented by a 0-1 matrix R = [rij]n×m, where

rij =

{

1 if uj is in proximity to hi,

0 otherwise.
(2)

The number of users that are connected to hi is hence
∑m

k=1 rik . As we mentioned before, we assume that the
compute resources rented by an ESP in each edge server
is equally shared among the users that are in proximity
to it. In other words, if rij = 1, then Jj obtains xi∑

m
k=1

rik
amount of compute resources (i.e., the clock frequency
of the CPU chip [8]) from edge server hi. Thus, the total
amount of compute resources Jj can use is

bj +

n
∑

i=1

rijxi
m
∑

k=1

rik

. (3)

As we mentioned in the last subsection, the makespan
of a job is the amount of workloads divided by the total
amount of compute resources it can use. Therefore, the
makespan of Jj can be represented by

sj

bj +
n
∑

i=1

rijxi
m∑

k=1

rik

. (4)

We use the average makespan, i.e.,

1

m

m
∑

j=1

sj

bj +
n
∑

i=1

rijxi
m∑

k=1

rik

, (5)

as the optimization goal. The average job makespan
indicates, on average, how long it takes for a data
analysis job to get its final output. Given a set of jobs, the
total number of jobs, i.e., m, is fixed. Thus, minimizing
average job makespan is equivalent to minimizing the
total makespan. Therefore, the optimization goal can be
rewritten as

d(X) = d([x1, x2, ..., xn]) =

m
∑

j=1

sj

bj +
n
∑

i=1

rijxi
m∑

k=1

rik

, (6)

IEEE/ACM TRANSACTIONS ON NETWORKING 5

TABLE 1: Main notations for quick reference

Symbol Meaning
m # of jobs/devices/users
Ji i-th job
ui submitter of Ji

bi local computation capacity of ui

si the amount of workloads of Ji

n # of edge servers
hj j-th edge server
C the budget threshold for the ESP
rij indicating whether uj is in proximity to hi

xi # of resources the ESP wants to rent in hi

d(X) the objective function of ERA
D(X) the objective function of mERA
G # of possible values of xi in dmERA

where X = [x1, x2, ..., xn]. Main notations are summa-
rized in Table 1 for quick reference.

The ERA problem can be formulated as follows:

[ERA] min d(X)

s.t.
n
∑

i=1

xi ≤ C

xi ≥ 0, i = 1, 2, ..., n

(7)

Note that d(X) is non-linear, therefore, ERA is not a
linear programming problem. Taking Fig. 1 for example,
suppose there are 3 jobs with s1 = 70, s2 = 100, s3 = 50,
b1 = 1, b2 = 5, and b3 = 10. When the budget threshold
C for ESP1 is 90, the optimal solution is x1 = 59 and
x2 = 31; when C increases to 180, the optimal allocation
changes to x1 = 107 and x2 = 73.

3.3 Complexity

By reducing the NP-complete Set Cover (SC) prob-
lem [28] to ERA, we have the following theorem.

Theorem 1: The decision version of ERA is NP-
complete.

Proof: We first present the decision versions of SC
and ERA as follows.

• Decision version of SC: Given a universe U =
{e1, e2, ..., eM} of M elements, an integer K , a col-
lection of subsets of U , i.e., R1, R2, ..., and RN , does
there exist a sub-collection of these subsets with size
no more than K that covers all elements of U?

• Decision version of ERA: Given n edge servers, the
connection matrix R, the budget threshold C, and m
jobs J1, J2, ..., and Jm, where Ji has bj units of local
computation resources and sj units of workloads,
is there an assignment of xi that makes the total
makespan no more than D?

We now show that any instance of SC can be poly-
nomially reduced to an instance of ERA. Without loss
of generality, denote an arbitrary instance of SC by
< M,N,K,Ri >, the corresponding instance of the ERA
problem < m,n, sj , bj, rij , C,D, xi > can be constructed
as follows:

• m←M and n← N ;
• sj ←M and bj ← 1 for each job;
• rij ← 1 if hj ∈ Ri; otherwise, rij ← 0;
• C ←MKmax

i
{|Ri|}+ 1;

• D ←M ;
• xi can be either ⌊M max

i
{|Ri|}+

1
K ⌋ or 0.

It is easy to see that the construction can be finished in
polynomial time. Now, it is sufficient to show that these
two instances are indeed equivalent.

(⇐=) Suppose that ERA has a positive answer, i.e.,
there is an assignment of xi such that the total makespan
is no more than D. Considering the possible values of
each xi, the ESP can rent ⌊M max

i
{|Ri|}+

1
K ⌋ amount of

compute resources from at most K edge servers. Without
loss of generality, we assume,

xi =

{

⌊M max
i
{|Ri|}+

1
K ⌋ 1 ≤ i ≤ K,

0 otherwise.
(8)

We now show {R1,R2, ...,RK} is indeed a positive
answer to SC, which is equivalent to proving each user
connects with at least one of h1, h2, ..., and hK . We
prove this by contradiction: suppose some user, say uj ,
does not connect with any of h1, h2, ..., or hK , then the
makespan of Jj is sj/bj = M = D. Therefore, the total
makespan over all jobs would be larger than D, which
contradicts that it is a positive answer to ERA.

(=⇒) Suppose that SC has a positive answer. Without
loss of generality, we assume R1, R2, ..., and RK are
selected in SC and can cover all elements. For ERA, we
let xi = ⌊M max

i
{|Ri|} +

1
K ⌋ for 1 ≤ i ≤ K , otherwise

xi = 0. Firstly, since

n
∑

i=1

xi ≤ ⌊M max
i
{|Ri|}+

1

K
⌋ ·K ≤ C, (9)

this is a feasible assignment. Note that xi is not necessar-
ily an integer. Secondly, for any job Jj , since it connects
with at least one edge server, its makespan (see Eq. (4))
is no more than

sj

bj +
n
∑

i=1

rijxi
m∑

k=1

rik

≤
M

1 +
⌊M max

i
{|Ri|}+

1

K
⌋

max
i

{|Ri|}

<
M

1 +M
< 1.

(10)

So the total makesoan of all jobs is no more than 1×M =
D, which implies ERA also has a positive answer.

So far we have proved that the decision version of
ERA is NP-hard. Given an assignment of xi’s, we can
verify whether the total makespan exceeds D in O(mn)
time, therefore, ERA belongs to NP. Combining them
together, we prove that the decision version of ERA is
NP-complete.

It is nontrivial to directly find an efficient algorithm for
ERA. Therefore, in the next section, we first look at some
special cases of ERA to reveal the problem structure and
find key insights that help us design Hermes for ERA.

IEEE/ACM TRANSACTIONS ON NETWORKING 6

ERA

minimization

mERA dmERA

maximization
discretization
maximization

Hermes

theorem 5 theorem 4 theorem 3

Fig. 3: Theorems 3 to 5 provide theoretical performance bounds of
Hermes w.r.t. dmERA, mERA, and ERA, respectively.

4 THE SOLUTION: HERMES

Observing that directly solving ERA is not easy, we
first perform two transformations on ERA to obtain a
new problem dmERA in Section 4.1. Then, we find that
dmERA has several tractable properties that allow us
to design Hermes in Section 4.2. We provide theoretical
analysis on Hermes in Section 4.3. Extensions of Hermes
are discussed in Section 4.4.

4.1 Problem Transformation

Given any instance of ERA,
∑m

j=1
sj
bj

is fixed. Thus,

minimizing d(X) in Eq. (6) is equivalent to maximizing

D(X) = −
m
∑

j=1

sj

bj +
n
∑

i=1

rijxi
m∑

k=1

rik

+
∑m

j=1

sj
bj
. (11)

Then we have the following equivalent problem, where
“m” in mERA denotes maximization:

[mERA] max D(X)

s.t.
n
∑

i=1

xi ≤ C

xi ≥ 0, i = 1, 2, ..., n

(12)

We further transform mERA to dmERA by limiting xi

to a finite set of possible values, where “d” in dmERA
denotes discretization:

[dmERA] max D(X)

s.t.
n
∑

i=1

xi ≤ C

xi ∈ {0,
C

G
, ...,

GC

G
}, i = 1, 2, ..., n

(13)

In dmERA, G is a hyper-parameter: in practice, it
could be the number of CPU cores. We can think of G
as a knob that we are able to turn and it controls the
approximation ratio and running time of Hermes. We
will see the impact of G from the perspectives of both
theoretical analysis and extensive simulations.

Relationship among ERA, mERA, and dmERA is
shown in Fig. 3. The roadmap is outlined as follows.
In Section 4.2, we develop an approximation algorithm,
i.e., Hermes, for dmERA. In Section 4.3, we prove that
Hermes is also an approximation algorithm for both
mERA and ERA.

4.2 Solving Discrete Maximization Version of ERA

We start by looking at two special cases of dmERA. Note
that, our target is not to solve these two special cases, but
to collect useful information for us to solve the general
dmERA problem.

4.2.1 Uniform Fixed Rental

In this case, we assume

xi is either 0 or FC
G

for any edge server hi,
where F is an fixed integer and 1 ≤ F ≤ G.

Then, the decision we have to make is to select a subset
H of {h1, h2, ..., hn} and make sure that the number of
selected edge servers is no more than ⌊ C

FC
G

⌋ = ⌊GF ⌋.

The objective function in this case can be rewritten as
follows, where “u” denotes uniform:

Du(H) = −
m
∑

j=1

sj

bj +
∑

hi∈H

rij
FC
G

m∑

k=1

rik

+
m
∑

j=1

sj
bj
. (14)

The uniform case of dmERA can be formulated as
follows:

[udmERA] max Du(H)

s.t. |H| ≤ ⌊
G

F
⌋

(15)

In the following, we prove that Du(H) has three
tractable properties: nonnegativity, monotonicity, and
submodularity.

Definition 1: (Nonnegativity, Monotonicity, and Sub-
modularity) Given a non-empty finite set U , and a
function f defined on the power set 2U of U with real
values, f is called

• nonnegative if f(A) ≥ 0 for all A ⊆ U ;
• monotone if f(A) ≤ f(A′) for all A ⊆ A′ ⊆ U ;
• submodular if f(A∪{a})−f(A) ≥ f(A′∪{a})−f(A′)

for all A ⊆ A′ ⊆ U and a ∈ U − A′.

We have the following theorem:

Theorem 2: Du(H) in udmERA is nonnegative, mono-
tone, and submodular.

Proof: (Nonnegativity) Since
∑

hi∈H

rij
FC
G∑

m
k=1

rik
≥ 0 for

any Jj , we have

sj

bj +
∑

hi∈H

rij
FC
G

m∑

k=1

rik

≤
sj
bj
, (16)

which guarantees that Du(H) is nonnegative.
(Monotonicity) For all H ⊆ H′, since, for any Jj ,

∑

hi∈H

rij
FC
G

m
∑

k=1

rik

≤
∑

hi∈H′

rij
FC
G

m
∑

k=1

rik

, (17)

we have Du(H) ≤ Du(H′), which indicates monotonicity.

IEEE/ACM TRANSACTIONS ON NETWORKING 7

Algorithm 1 Algorithm for udmERA

Input: the job size sj and the local computation capacity
bj for each j ∈ [1,m], the connection indicator rij for
each pair of i ∈ [1, n] and j ∈ [1,m], budget threshold
C, hyper-parameter G, fixed integer F

Output: H
1: H ← ∅
2: while |H| < ⌊GF ⌋ do
3: select hi /∈ H that maximizes Du(H ∪ {hi}) −

Du(H)
4: H ← H ∪ {hi}
5: end while
6: return H

(Submodularity) Denote (bj+
∑

hi∈H

rij
FC
G∑

m
k=1

rik
) by f(H, j).

For all H ⊆ H′ and any edge server h, we have

f(H, j) · f(H′, j) ≤ f(H ∪ {h}, j) · f(H′ ∪ {h}, j)

⇔
f(H′, j)− f(H)

f(H, j) · f(H′, j)
≥

f(H′, j)− f(H)

f(H ∪ {h}, j) · f(H′ ∪ {h}, j)

⇔
sj

f(H)
−

sj
f(H ∪ {h}, j)

≥
sj

f(H′, j)
−

sj
f(H′ ∪ {h}, j)

⇔Du(H ∪ {h})−Du(H) ≥ Du(H
′ ∪ {h})−Du(H

′),

which indicates that Du(H) is submodular.

Theorem 2 enables us to design an approximation
algorithm of factor (1 − 1/e) shown in Alg. 1, where e
is the base of natural logarithm [40]. Remember that xi

can only be 0 or FC
G in udmERA, we only have to select

a subset of edge servers. In Alg. 1, H is initialized to ∅;
in each iteration, we add the edge server that maximizes
the marginal gain of Du(H) into H, i.e., in each iteration,
we select hi /∈ H that maximizes Du(H∪ {hi})−Du(H).

There are at most n iterations in Alg. 1; in each
iteration, we need to check at most n clouds to find the
cloud that maximizes the marginal gain. It takes O(mn)
time to compute Du(H), thus, the time complexity of
Alg. 1 is O(mn3).

4.2.2 Non-uniform Fixed Rental

In this case, we assume

xi is fiC

G
for edge server hi,

where fi is an fixed integer and 0 ≤ fi ≤ G.

Then, the decision we have to make is also to select a
subset H of {h1, h2, ..., hn} and make sure that the total
amount of rental resources in selected edge servers is no
more than C, i.e.,

∑

hi∈H xi =
∑

hi∈H
fiC
G ≤ C, which is

equivalent to
∑

hi∈H fi ≤ G.

The objective function in this case can be rewritten as
follows, where “n” denotes non-uniform:

Dn(H) = −
m
∑

j=1

sj

bj +
∑

hi∈H

rij
fiC

G
m∑

k=1

rik

+
m
∑

j=1

sj
bj
. (18)

Algorithm 2 Algorithm for ndmERA

Input: the job size sj and the local computation capacity
bj for each j ∈ [1,m], the connection indicator rij for
each pair of i ∈ [1, n] and j ∈ [1,m], budget threshold
C, hyper-parameter G, fixed integer fi for each i ∈
[1, n]

Output: H
1: call Alg. 1 to generate H1

2: H2 ← ∅
3: while G ≥

∑

hi∈H2

fi + min
hi /∈H2

fi do

4: select hi /∈ H2 that maximizes
Dn(H2∪{hi})−Dn(H2)

fi
subject to

∑

hj∈H2∪{hi}

fi ≤ G

5: H2 ← H2 ∪ {hi}
6: end while
7: return arg max

H′∈{H1,H2}
Dn(H)

The non-uniform dmERA can be formulated as fol-
lows:

[ndmERA] max Dn(H)

s.t.
∑

hi∈H

fi ≤ G (19)

To solve ndmERA, an intuitive idea is to use the same
greedy heuristic in Alg. 1. Another intuitive idea is that,
in each iteration, we select the edge server that maxi-
mizes the ratio of marginal gain of Dn(H) to the amount
of rental resources in that edge server, i.e., in each itera-

tion, we select hi /∈ H that maximizes Dn(H∪{hi})−Dn(H)
fi

.
However, there is no theoretic performance guarantee
on either of them. Fortunately, if we use these two ideas
independently and return the better one of the two
results, then the performance is bounded [38], [40], [44]:
the approximation ratio is 1

2 (1 −
1
e). The algorithm is

shown in Alg. 2. It is not hard to see the time complexity
of the algorithm is also O(mn3).

4.2.3 General dmERA

We design Hermes (shown in Alg. 3) for dmERA. The
main intuition behind Hermes is as follows: since we
already have an approximation algorithm (Alg. 2) for
ndmERA, is it possible for us to find another intermedi-
ate problem that is (a) similar to ndmERA, and (b) easy
to transform the results to fit for dmERA?

Fortunately, such an intermediate problem exists, and
we name it idmERA, where “i” denotes intermediate:
there are m jobs with parameters bj and sj , n groups
of edge servers, each group has G edge servers, the
coverages of edge servers in the same group are the
same. More specifically, the i-th group of edge servers
are denoted by hi1, hi2, ..., and hiG. We use xik to denote
the amount of resources we would like to rent in edge
server hik. Similar to ndmERA, we assume xik = kC

G .
The coverage can be represented by a three-dimensional
matrix [rikj]n×G×m, where rikj = 1 if hi connects with
uj , otherwise rikj = 0.

IEEE/ACM TRANSACTIONS ON NETWORKING 8

The budget threshold is still C, the question is how to
choose a subset H of these nG edge servers to maximize

Q(H) = −
m
∑

j=1

sj
bj +

∑

i,k

rikjxik
m∑

h=1

rikh

+

m
∑

j=1

sj
bj
. (20)

Notice that, idmERA is in fact a large instance of nd-
mERA, where the number of edge servers becomes nG.
Keeping this observation in mind, let us look at Hermes
in Alg. 3. Lines 2-10 generate a solution, [y′ig]n×G, for
idmERA using the same idea as in Alg. 1. Here, y′ig
indicates whether the edge server hig is selected. Lines
11-13 transform [y′ig]n×G into X

′ that fits for dmERA:
for the i-th group of edge servers, we set x′

i to be the
maximal amount of rental resources among all selected
edge servers in this group and remove the rest (if any).
After doing this, we get some unused budget due to
removal, which is (C −

∑n
i=1 x

′
i). We then allocate them

in a greedy manner: in each iteration, add C
G to the x′

i

that maximizes the marginal objection function, finally
we get X

′. Lines 15-26 construct another solution X
′′

using the other idea as in Alg. 2. The final result is the
better one of X′ and X

′′.
The time complexity of Hermes is O(mn3G3). The

theorems in the next subsection indicate that Hermes has
performance guarantee. We will shortly see in extensive
evaluations and testbed-based experiments that, Hermes
is far better than this theoretical bound.

4.3 Theoretic Analysis

Theorem 3: Hermes is a factor 1−1/e
2G approximation

algorithm for dmERA.
Proof: Denote by X

∗ the optimal solution to dmERA,
and by X the solution returned by Hermes. We want to
prove

D(X)

D(X∗)
≥

1− 1/e

2G
. (21)

Let H∗ be the optimal solution to idmERA, and let
H′ be arg max

H∈{H1,H2}
Q(H). According to previous re-

sults [38], [40], we know

Q(H′) ≥
1− 1/e

2
Q(H∗). (22)

Notice that, if we can only select one cloud from
each cloud group, idmERA is equivalent to dmERA, i.e.,
dmERA is a special case of idmERA. With this observa-
tion, we have

Q(H∗) ≥ D(X∗). (23)

Looking at lines 11-13 and 24-26 of Hermes, when
transforming [y′ig]n×G into X

′, we set x′
i to be the maxi-

mal amount of rental resources among all selected edge
servers in this group and remove the rest. Considering
there are at most G edge servers in each group, we have

D(X′) ≥
Q(H1)

G
,

D(X′′) ≥
Q(H2)

G
.

(24)

Algorithm 3 Hermes

Input: the job size sj and the local computation capacity
bj for each j ∈ [1,m], the connection indicator rij for
each pair of i ∈ [1, n] and j ∈ [1,m], budget threshold
C, hyper-parameter G

Output: X = [x1, x2, ..., xn]
1: // construct X′

2: set xi ← 0 for each i ∈ [1, n]
3: set y′ig ← 0 for each i ∈ [1, n] and g ∈ [1, G]
4: set Y ← 0
5: while Y ≤ G do
6: select the y′ig that (1) y′ig = 0 and (2) maximizes

D([x1, ..., xi+y′ig ·
C
G , ..., xn])−D([x1, ..., xi, ..., xn])

7: set y′ig ← 1

8: set xi ← xi + y′ig ·
C
G

9: set Y ← Y + g
10: end while
11: set y′i0 ← 1 for each i ∈ [1, n]
12: set x′

i ←
C
G · max

y′
ig
=1,g∈[0,G]

g for each i ∈ [1, n]

13: allocate the remaining budget (i.e., C −
∑n

i=1 x
′
i)

in a greedy manner: in each iteration, add C
G to

the x′
i that maximizes D([x′

1, ..., x
′
i + C

G , ..., x′
n]) −

D([x′
1, ..., x

′
i, ..., x

′
n])

14: // construct X′′

15: set xi ← 0 for each i ∈ [1, n]
16: set y′′ig ← 0 for each i ∈ [1, n] and g ∈ [1, G]
17: set Y ← 0
18: while Y ≤ G do
19: select the y′′ig that (1) y′′ig = 0 and (2) maximizes

D([x1,...,xi+y′′
ig ·

C
G
,...,xn])−D([x1,...,xi,...,xn])

g

20: set y′′ig ← 1

21: set xi ← xi + y′′ig ·
C
G

22: set Y ← Y + g
23: end while
24: set y′′i0 ← 1 for each i ∈ [1, n]
25: set x′′

i ←
C
G · max

y′′
ig=1,g∈[0,G]

g for each i ∈ [1, n]

26: allocate the remaining budget (i.e., C −
∑n

i=1 x
′′
i)

in a greedy manner: in each iteration, add C
G to

the x′′
i that maximizes D([x′′

1 , ..., x
′′
i + C

G , ..., x′′
n]) −

D([x′′
1 , ..., x

′′
i , ..., x

′′
n])

27: // return the better one of X′ and X
′′

28: return arg max
X∈{X′,X′′}

D(X)

Combining Eqs. (22), (23), and (24) together, we have

D(X) = max{D(X′), D(X′′)}

≥
max{Q(H1), Q(H2)}

G
=

Q(H′)

G

≥
1− 1/e

2G
Q(H∗)

≥
1− 1/e

2G
D(X∗).

(25)

The theorem holds immediately.
In the last theorem, we have shown that Hermes is a

IEEE/ACM TRANSACTIONS ON NETWORKING 9

factor 1−1/e
2G approximation algorithm for dmERA. Re-

member that dmERA differs from mERA in the possible
values of xi’s: the former limits any xi to one of 0,
C
G , ..., (G−1)C

G , and C, while the latter allows any xi to
be any real number between 0 and C. We show below
that, although Hermes is designed for dmERA, it has
guaranteed performance for mERA.

Theorem 4: Hermes is a factor 1−1/e
2(n+G) approximation

algorithm for mERA.
Proof: Remember that, mERA allows xi’s to be as-

signed any real values between 0 and C.
Denote by X

† the optimal assignment of xi’s in mERA,
by X

∗ the optimal assignment in dmERA, and by X

the solution returned by Hermes. We want to know the
relation between X

† and X. Since we already know the
relation between X

∗ and X due to Theorem 3, what we
are going to do is to establish the relation between X

†

and X
∗.

We construct another assignment X‡ by rounding each
x†
i in X

† to the nearest multiples of C
G towards infinity,

i.e.,

x‡
i =

fiC

G
, (26)

where fi satisfies

(fi − 1)C

G
< x†

i ≤
fiC

G
. (27)

Denote the total amount of rental resources in X
‡ by C‡,

which is

C‡ = C +

n
∑

i=1

(x‡
i − x†

i) ≤ C +
nC

G
. (28)

Obviously, we have

D(X†) ≤ D(X‡)|C‡ ≤ D(X‡)|C+nC
G
, (29)

where D(X‡)|C‡ represents the objective function when
the budget threshold becomes C‡.

Let us take a close look at X‡. If we take C
G as a unit of

resource, X‡ contains (n+G) units of resources. Consider
removing the rental resources in X

‡ unit by unit in a
greedy manner: each time we remove the unit that incurs
the least marginal loss. After removing n units, we get
a new assignment X

§ that contains exactly G units of
resources.

As the removal is conducted in a greedy manner with
respect to marginal loss, it is easy to see that, D(X§) is
no less than G

G+n percent of D(X‡)|C+nC
G

, that is,

D(X§) ≥
G

G+ n
D(X‡)|C+nC

G
. (30)

Observing that X§ is a feasible assignment to dmERA
with respective to budget C, we have

D(X§) ≤ D(X∗). (31)

Combining Eqs. (29), (30), and (31) together, we have

D(X∗) ≥
G

n+G
D(X‡)|C+nC

G
≥

G

n+G
D(X†). (32)

Taking Eq. (32) and Theorem 3 together, we further
have

D(X) ≥
1− 1/e

2G
D(X∗) ≥

1− 1/e

2(n+G)
D(X†). (33)

The theorem holds immediately.

We have shown that Hermes is an approximation
algorithm for mERA. Remember that mERA differs from
ERA only in the objective function: the former maximizes
D(X) in Eq. (11), while the latter minimizes d(X) in
Eq. (6). We show below that, Hermes approximates the
optimal solution to ERA.

Theorem 5: Hermes is a factor (α + β − αβ) approxi-
mation algorithm for ERA, where

α =
1− 1/e

2(n+G)
, and β =

C +max
j
{bj}

min
j
{bj}

. (34)

Proof: According to Eqs. (6), (11), and (33), we have

−d(X) +
m
∑

j=1

sj
bj
≥ α(−d(X†) +

m
∑

j=1

sj
bj
), (35)

which is equivalent to

d(X) ≤ αd(X†) + (1− α)

m
∑

j=1

sj
bj
. (36)

In the next, we are trying to express
∑m

j=1
sj
bj

using

d(X†). We first develop a lower bound on d(X†). Obvi-
ously, d(X†) is minimized when every application can
occupy all the edge server capacities, therefore,

d(X†) ≥
m
∑

j=1

sj
bj + C

≥

m
∑

j=1

sj

C +max
j
{bj}

. (37)

Combining Eqs. (36) and (37) together, we have

d(X) ≤ αd(X†) + (1 − α)

m
∑

j=1

sj
bj

≤ αd(X†) + (1 − α)

m
∑

j=1

sj

min
j
{bj}

≤ αd(X†) + (1 − α)

(C +max
j
{bj})d(X

†)

min
j
{bj}

≤ (α+ β − αβ)d(X†).

(38)

The theorem holds immediately.

It should be noted that, the approximation ratio of
Hermes in theory may be loose; however, we will shortly
see in performance evaluations that, the performance of
Hermes is far better than the theoretical bound.

IEEE/ACM TRANSACTIONS ON NETWORKING 10

4.4 Discussions

In this section, we discuss several extensions of Hermes
to handle various situations including weighted shared,
limited partition, and heterogeneous propagation delays.

Weighted Shares. Hermes assumes an edge server is
equally-shared among the devices it connects with. In
reality, although mobile users may have varied priorities
and demands, extending Hermes to fit for this scenario
is not hard. We can assign a weight wj to each user uj ,
where wj may be proportional to the price that uj pays
to the ESP. In this case, d(X) becomes

d(X) =

m
∑

j=1

sj

bj +
n
∑

i=1

rijwjxi
m∑

k=1

rikwk

. (39)

It is not hard to verify that the new d(X) still has the
properties discussed in this paper; thus, we only have
to slightly adjust Hermes to fit for weighted shares.

Limited Partition. So far, the Hermes algorithm works
only for the arbitrarily divisible workloads, as we men-
tioned in Section 3.1. This subsection discusses the case
in which the partition is limited. We assume the input of
any job consists of multiple indivisible blocks. Without
loss of generality, the size of a block is denoted as δ.
Then, the size sj of the input of Jj can be denoted by
pjδ, where pj is the number of blocks. We extend Hermes
as follows to solve this case.

We first run Hermes to obtain the resource allocation
X = [x1, x2, ..., xn]. Then, we know the total amount of
computation resources Jj can use is bj +

∑n
i=1

rijxi∑
m
k=1

rik
.

Denote this value as ηj . Then, mobile device uj should
send yi =

sj
ηj
· rijxi∑

m
k=1

rik
units of input data to the service

entity located at edge server hi. However, these yi’s may
not be exactly a multiple of δ. We then round down
these yi’s and let the remaining input data, which is

sj −
∑n

i=1⌊yi⌋, be sent to
sj−

∑
n
i=1

⌊yi⌋

δ randomly selected
edge servers that are connected to uj .

By doing so, at most one more block is sent to an
edge server, compared to the divisible case. Suppose the
service entity at hi receives one more block, then the
completion time of workloads from Jj at hi is at most

δrij
xi∑m

k=1
rik

larger than that in the divisible case. Therefore,

the makespan of Jj is at most
δrij

mini{
xi∑m

k=1
rik

}
longer than

that in the divisible case.
Heterogeneous Propagation Delays. We mentioned

in Section 3.1 that the network latency is ignored in
the proposed algorithm Hermes, since transmitting data
and processing data can be simultaneously done in a
pipeline-like way. This subsection discusses the case in
which the heterogeneous propagation delays between
users and edge servers are taken into account.

Suppose the propagation delays between uj and hi

is Lij . Without loss of generality, we assume r1j = 1
and L1j = max1≤i≤n(rijLij). Remember that a job is
finished if all parts of the job are finished. To minimize

the makespan of Jj , we should let all parts of Jj finish
at the same time. Therefore, the makespan of Jj can be
denoted by

sj − bjL1j −
n
∑

i=1

(L1j − Lij)
rijxi
m∑

k=1

rik

bj +
n
∑

i=1

rijxi
m∑

k=1

rik

+ L1j . (40)

Take J2 in Fig. 1 for example. Let s2 = 100, b2 = 10,
L12 = 0.5, L22 = 1, and J2 can use 10 and 20 units
of compute resources in h1 and h2, respectively. Then,

the optimal makespan of J2 is 100−10×1−(1−0.5)×10
10+10+20 +1 =

3.125. That is, u2 sends (3.125 − L12) × 10 = 26.25 and
(3.125 − 1) × 20 = 42.5 units of workloads to h1 and
h2, respectively; and keeps the remaining 31.25 units of
workloads for local processing.

Given the makespan of each job, it is easy to verify
the new objective still has the properties discussed in
this paper, which helps us slightly modify Hermes to
adapt to this situation.

5 PERFORMANCE EVALUATION

We evaluate Hermes using simulations, trace-driven and
testbed-based experiments. We answer the following
questions in our evaluation: (1) How effective is Her-
mes’s resource allocation? (2) How well does Hermes
approximate the optimal allocation? (3) What is the effect
of the hyper-parameter G? (4) Can Hermes provide any
suggestions on choosing the budget threshold?

5.1 Simulation-based Evaluation

Our simulations are setup as follows.
Similar to [8], for mobile device capacities, we uni-

formly generated each bj between 100 to 1000 Mega
cycles per second; the amount of workloads of a job was
uniformly generated between 500 to 1500 Mega cycles.
For edge server hi, we let rij = 1 with a probability
that is randomly selected between [1/15, 1/5]. By default,
the number of jobs was 50; the number of edge servers
was 6; the budget threshold was 10,000 Mega cycles per
second; and the hyper-parameter G was 20.

We introduce four algorithms for comparison. OPT:
we simply use brute force to enumerate all possible
allocations. Equal: xi =

C
n for each i ∈ [1, n]. Random: the

budget is randomly partitioned into n parts, which are
assigned to n clouds, respectively. FixedLevel: we first
compute the optimal xi for each hi irrespective of the
other clouds, and then use Alg. 2 to find a selection.

Due to the high time complexity of OPT, we compared
Hermes with OPT on a “small” setting: the number
of edge servers, n, was 6, and the number of jobs, m,
was 50. When transforming mERA into dmERA, we
introduce the hyper-parameter G. We want to know how
G affects the performance of Hermes with respect to
mERA and ERA. Figs. 4(a) and 4(b) show the results
under varying G. We made two main observations.

IEEE/ACM TRANSACTIONS ON NETWORKING 11

(a) Impact of G on mERA (b) Impact of G on ERA (c) Impact of C on mERA (d) Impact of C on ERA

Fig. 4: Simulation results on small instances (the default setting is n = 6 and m = 50)

(a) Impact of G on mERA (b) Impact of G on ERA (c) Impact of C on mERA (d) Impact of C on ERA

Fig. 5: Simulation results on large instances (the default setting is n = 20 and m = 300)

(a) Impact of the number of jobs
when n = 20

(b) Impact of the number of edge
servers when m = 300)

Fig. 6: ERA under varying m and n (C = 600, 000, G = 50)

First, Hermes outperformed FixedLevel, Random, and
Equal; the gap between Hermes and OPT was within
1% throughout these simulations. Second, when G in-
creased, Hermes had more opportunities to improve the
final allocation (i.e., D(X) in mERA increased and d(X)
in ERA decreased when G increased).

We are also interested in evaluating the effect of the
budget threshold. Figs. 4(c) and 4(d) depict the results.
As we expected, the performance of all algorithms gets
better when C increases, and the gap between Hermes
and OPT is extremely small. Their close performance
may help an ESP to make decisions when it wants to
offer edge service but does not know how to choose a
proper budget threshold.

We also ran Hermes and other algorithms except OPT
on a “large” setting: the number of edge servers, n, was
20, and the number of jobs, m, was 300. Figs. 5 and 6
show the results. There is an interesting observation in
Figs. 5(a) and 5(b). When the hyper-parameter G was
less than 32, we found that, Equal outperformed Hermes.
This is due to the fact that, when G was too small (e.g.,
G is less than n = 20 in these two figures), Hermes
did not have much opportunity to improve the resource
allocation, while Equal just split the total budget equally
among n clouds and thus it was not affected by G. This

TABLE 2: The Hermes
OPT

ratio for ERA

P
P
P
P
PP

m
n

4 5 6 7 8

30 1.0063 1.0119 1.0203 1.0313 1.0443
40 1.0055 1.0104 1.0201 1.0321 1.0478
50 1.0061 1.0162 1.0226 1.0178 1.0383

observation suggests that we should choose for G a value
at least larger than n.

Figs. 5(c) and 5(d) show the effect of the budget
threshold C in the large setting. We note that, through-
out these simulations, Hermes always outperformed the
other three baselines, and Hermes reduced the total
makespan by 7% on average and 10% at most compared
with the second-best one.

Fig. 6 demonstrates the impact of the number of jobs,
m, and the number of edge servers, n. When the number
of jobs increases, the total makespan increases; however,
more jobs benefit from nearby edge servers and the
individual makespan is shortened. When the number of
edge servers increases, Hermes has more opportunities
to minimize the total makespan.

To generalize our evaluation on approximation ratio,
Table 2 shows the approximation ratio of Hermes when
both of the number of edge servers and the number of
jobs are varying. We found that the gap between Hermes
and OPT was 2.21% on average, and 4.78% at most,
which is far better than our theoretical bounds.

5.2 Trace-driven Evaluation

We consider a metropolitan area that contains edge
servers and users in this paper. For locations of edge
servers, we use the locations of Starbucks within the 4th
ring road of Beijing, as shown in Fig. 7(a). Similar to
a previous study [17], we use Starbucks’ locations as
the locations of edge servers, because the distribution
of them in a city usually achieves a decent coverage of

IEEE/ACM TRANSACTIONS ON NETWORKING 12

(a) Locations of 92 Starbucks
in Beijing, China.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Normalized Delay

(b) y × 100% connections are associated
with x×% smallest delays.

(c) Impact of the number of jobs (d) Impact of the budget threshold

Fig. 7: Trace-driven results (the default setting is C = 100, 000 and m = 500)

Planner

Connection

Manager

Task Manager

remote

result

workload

partitioning

Planner

Connection

Manager

Task Manager

Job Submitter

��������

�	
��������

remote

task
result

��������

���� !"#$%&

'()*+,-.

workload

partitioning

/012345

678

9:;<=>?

Fig. 8: Testbed for Hermes on 8 phones and 2 PCs

users, making them very suitable for placing edges. We
calculate the minimum bounding rectangle of these 92
Starbucks with two sides parallel to a meridian. Then, we
extend this rectangle by adding 5km to each side, so as
to form the area of interest, within which we randomly
generate user locations.

We assume there is a connection between a user and
a server if the Euclidean distance between them is not
larger than a pre-defined threshold, e.g., 5km; then,
the propagation delays between them are synthesized
following realistic distributions disclosed in [45], making
sure the average delay is 20ms. The CDF of the synthet-
ically generated delays is shown in Fig. 7(b), in which
y× 100% connections are associated with x×% smallest
delays. For example, 80% connections are associated
with nearly 14% smallest delays in Fig. 7(b).

Similar to the simulations in the last subsection, we
uniformly generated each bj between 100 to 1000 Mega
cycles per second; the amount of workloads of a job was
uniformly generated between 500 to 1500 Mega cycles.
By default, the number of jobs was 500; the budget
threshold was 100,000 Mega cycles per second; and the
hyper-parameter G was 20.

Figs. 7(c) and 7(d) shows the impact of the number
of jobs and the budget threshold, in which the default
setting is m = 500 and C = 100, 000. We have similar
observations as in simulations, although we consider
heterogeneous propagation delays here. When the num-
ber of jobs increases, the amount of available resources
a job can use decreases, making the average makespan
increases; when the budget threshold increases, the ESP
can rent more resources from EIPs, decreasing the aver-
age makespan of all jobs.

TABLE 3: The average makespan of the submitted jobs on our testbed

❳
❳
❳
❳
❳
❳
❳❳

Servers
Algs

Equal FixedLevel Hermes OPT

2 phones 221.9ms 220.7ms 217.3ms 201.1ms
3 phones 195.8ms 193.2ms 182.9ms 162.5ms
4 phones 181.2ms 174.2ms 161.0ms 143.2ms
4 phones
+ 1 PC

163.5ms 159.9ms 132.1ms 110.7ms

4 phones
+ 2 PCs

146.2ms 136.4ms 112.2ms 92.1ms

5.3 Testbed-based Evaluation

We implemented Hermes on eight Android phones
(Hisilicon Kirin 810 with 6GB bytes of memory) and two
computers (2.3 GHz Intel Core i5 with 8G bytes of mem-
ory). Three phones were used as end users, one phone
as the controller, and the rest of them were considered as
edge servers. Hermes contained three main components,
as shown in Fig. 8. The connection manager allowed
neighbor discovery, pairwise connection, and data ex-
change. The task manager was responsible for managing
tasks states, running data analysis tasks, and merging
outputs/results. The planner communicated with other
Android phones for necessary information (e.g., avail-
able computation resources) exchange. The controller
was responsible for running the Hermes algorithm to
split workloads of a job among phones.

As we mentioned in Section 3.1, there are many types
of divisible workloads such as pattern search, file com-
pression, joining operation in relational databases, graph
coloring, and genetic search. We evaluated Hermes using
the Karger’s algorithm for the min-cut problem as the di-
visible job. To guarantee Karger’s algorithm returns the
min-cut with high probability, it is proved that Karger’s

algorithm should be executed no less than |V |(|V |−1)
2

times, where |V | is the number of vertices in a graph. In
our experiment, we randomly generated a graph with
|V | = 200, thus, Karger’s algorithm should be run at
least 9,900 times on the graph. We see represent the size
of the job as 9,900, and the minimal indivisible block is
one run of the Karger’s algorithm.

Table 3 shows the comparison results on our testbed
in terms of average makespan of the submitted jobs.
The results are averaged over 10 independent runs.
Throughout the experiments, we found that the gap
between Hermes and OPT was 21.82% at most, which
is far better than our theoretical bounds.

IEEE/ACM TRANSACTIONS ON NETWORKING 13

 0
 50

 100
 150
 200
 250
 300

2 3 4 5 6 7 8 9 10 11 12 13

d
(X

)
in

 E
R

A

the budget threshold C (x100,000 Mega Cycles)

Hermes

Fig. 9: The makespan-budget trade-off in Hermes

Fig. 9 illustrates the makespan-budget relationship in
Hermes. When an ESP increases its budget threshold,
the total makespan decreases; however, the returns are
diminishing. This trade-off can be used by an ESP to
choose the right balance between makespan and budget.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of resource alloca-
tion for edge service entities under a budget threshold,
identify its NP-completeness, and design an approxi-
mation solution—Hermes—through two-step transfor-
mation and theoretical analysis. The evaluations results
confirm our theoretical findings and claims.

Hermes has several limitations, which are also the di-
rections of our future work. Firstly, Hermes assumes the
wireless connections between end users and edge servers
are fixed, e.g., u2 connects with h1 and h2 at all times. In
reality, the connection between a user and an edge server
may change over time, due to the physical motion of the
user. A simple way to adapt to this changing situation
is to re-run Hermes whenever a connection disappears
or a new connection emerges.

Secondly, we do not consider hierarchical edge servers
in this paper. With hierarchical edge servers, an edge
server can further delegate its workloads to upper-layer
edge servers (which are usually more powerful), while
in our current design, an edge server cannot delegate its
workload to others.

Lastly, the optimization goal (i.e., minimizing the aver-
age makespan of a set of jobs) may not represent the true
need of individual users. A user may be more interested
in reducing energy consumption of its mobile device. In
the future, we may need to support more metrics from
the user perspective.

ACKNOWLEDGMENTS

This work was supported in part by NSFC (61872175),
Natural Science Foundation of Jiangsu Province
(BK20181252), the Fundamental Research Funds for
the Central Universities (14380060), and Collaborative
Innovation Center of Novel Software Technology and
Industrialization. Sheng Zhang is the corresponding
author.

REFERENCES

[1] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-
in-time provisioning for cyber foraging,” in Proc. of ACM MobiSys
2013, pp. 153–166.

[2] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satya-
narayanan, “Towards wearable cognitive assistance,” in Proc.
ACM MobiSys 2014, pp. 68–81.

[3] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proc. Mobidata 2015, pp. 37–42.

[4] G. Huerta-Canepa and D. Lee, “A virtual cloud computing
provider for mobile devices,” in Proc. ACM Workshop MCS 2010,
pp. 6–11.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for VM-based cloudlets in mobile computing,” IEEE pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[7] C. Wang, S. Zhang, H. Zhang, Z. Qian, and S. Lu, “Edge cloud
capacity allocation for low delay computing on mobile devices,”
in Proc. IEEE ISPA 2017, pp. 1–8.

[8] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,”
in Proc. IEEE INFOCOM 2016, pp. 1–9.

[9] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation
partitioning for latency sensitive mobile cloud applications,” IEEE
Transactions on Computers, vol. 64, no. 8, pp. 2253–2266, 2015.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer
with code offload,” in Proc. ACM MobiSys 2010, pp. 49–62.

[11] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and cloud,”
in Proc. ACM EuroSys 2011, pp. 301–314.

[12] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: code offload by migrating execution transparently,” in
Proc. USENIX ODSI 2012, pp. 93–106.

[13] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. IEEE INFOCOM 2012, pp.
945–953.

[14] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He,
and K. Chan, “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” in Proc. IEEE
INFOCOM 2018, pp. 1–9.

[15] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in
distributed machine learning clusters,” in Proc. IEEE INFOCOM
2018, pp. 1–9.

[16] R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog
computing-enabled internet-of-things: A network perspective,” in
Proc. IEEE INFOCOM 2018, pp. 1–9.

[17] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service
entity placement for social virtual reality applications in edge
computing,” in Proc. IEEE INFOCOM 2018, pp. 1–9.

[18] “Open Edge Computing,” http://openedgecomputing.org/.
[19] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient re-

source allocation for mobile-edge computation offloading,” arXiv
preprint arXiv:1605.08518, 2016.

[20] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching
and scheduling in edge-clouds,” in Proc. IEEE INFOCOM 2017,
2017, pp. 1–9.

[21] S. Sundar and B. Liang, “Offloading dependent tasks with com-
munication delay and deadline constraint,” in Proc. IEEE INFO-
COM 2018, pp. 1–9.

[22] N. Chen, S. Zhang, Z. Qian, J. Wu, and S. Lu, “When learning joins
edge: Real-time proportional computation offloading via deep
reinforcement learning,” in Proc. IEEE ICPADS 2019, pp. 1–8.

[23] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing
in wireless metropolitan area networks,” in Proc. of IEEE INFO-
COM 2016, pp. 1–9.

[24] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in Prof.
of IEEE INFOCOM 2018, pp. 1–9.

[25] L. Zhang and X. Tang, “Client assignment for improving in-
teractivity in distributed interactive applications,” in Proc. IEEE
INFOCOM 2011, pp. 3227–3235.

[26] Y. Liang, J. Ge, S. Zhang, J. Wu, Z. Tang, and B. Luo, “A utility-
based optimization framework for edge service entity caching,”
IEEE Transactions on Parallel and Distributed Systems, pp. 1–12, 2019.

[27] Y. Liang, J. Ge, S. Zhang, J. Wu, L. Pan, T. Zhang, and B. Luo,
“Interaction-oriented service entity placement in edge comput-
ing,” IEEE Transactions on Mobile Computing, pp. 1–12, 2019.

IEEE/ACM TRANSACTIONS ON NETWORKING 14

[28] V. Vazirani, Approximation algorithms. Springer, 2004.
[29] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network or-

chestrator for mobile augmented reality,” in Proc. IEEE INFOCOM
2018, pp. 1–9.

[30] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approx-
imation and delay-tolerance,” in Proc. USENIX NSDI 2017, pp.
377–392.

[31] J. Jiang, G. Ananthanarayanan, P. Bodk, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc.
ACM SIGCOMM 2018, pp. 1–14.

[32] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-
based real-time video analytics,” in Proc. IEEE INFOCOM 2020,
pp. 1–10.

[33] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proc. ACM workshop
MCS 2012, pp. 29–36.

[34] S. Zhang, J. Wu, and S. Lu, “Distributed workload dissemination
for makespan minimization in disruption tolerant networks,”
IEEE Transactions on Mobile Computing, vol. 15, no. 7, pp. 1661
– 1673, 2016.

[35] Y. Li and W. Wang, “Can mobile cloudlets support mobile appli-
cations?” in Proc. IEEE INFOCOM 2014, pp. 1060–1068.

[36] B. P. Rimal, D. P. Van, and M. Maier, “Cloudlet enhanced fiber-
wireless access networks for mobile-edge computing,” IEEE Trans-
actions on Wireless Communications, vol. 16, no. 6, pp. 3601–3618,
2017.

[37] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible load the-
ory: a new paradigm for load scheduling in distributed systems,”
Cluster Computing, vol. 6, no. 1, pp. 7–17, 2003.

[38] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective outbreak detection in networks,”
in Proc. ACM SIGKDD 2007, pp. 420–429.

[39] S. Fujishige, Submodular functions and optimization. Elsevier, 2005,
vol. 58.

[40] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis
of approximations for maximizing submodular set functions,”
Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[41] L. Li, R. Geda, A. B. Hayes, Y. Chen, P. Chaudhari, E. Z. Zhang,
and M. Szegedy, “A simple yet effective balanced edge partition
model for parallel computing,” in Proc. ACM SIGMETRICS 2017,
pp. 1–21.

[42] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and com-
puting optimization in wireless powered mobile-edge computing
systems,” IEEE Transactions on Wireless Communications, vol. 17,
no. 3, pp. 1784–1797, March 2018.

[43] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. IEEE INFOCOM 2016, pp. 1–9.

[44] D. Yang, X. Fang, and G. Xue, “ESPN: Efficient server placement
in probabilistic networks with budget constraint,” in Proc. IEEE
INFOCOM 2011, pp. 1269–1277.

[45] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom,
“Measuring latency variation in the internet,” in Proc. ACM
CoNEXT 2016, pp. 473–480.

Sheng Zhang (M’14) is an associate professor
in the Department of Computer Science and
Technology, Nanjing University. He is also a
member of the State Key Lab. for Novel Software
Technology. He received the BS and PhD de-
grees from Nanjing University in 2008 and 2014,
respectively. His research interests include cloud
computing and edge computing. To date, he has
published more than 70 papers, including those
appeared in TMC, TON, TPDS, TC, MobiHoc,
ICDCS, INFOCOM, SECON, IWQoS, and ICPP.

He received the Best Paper Runner-Up Award from IEEE MASS 2012.
He is the recipient of the 2015 ACM China Doctoral Dissertation Nomi-
nation Award. He is a member of the IEEE and a senior member of the
CCF.

Yu Liang is a PhD candiate in Nanjing Univer-
sity. She received her MS degree from Nanjing
University in 2011. She was a senior software
engineer in Trend Micro China Development
Center between 2011 and 2017. Her research
interests include resource allocation in cloud and
edge computing. Her publications include those
appeared in TPDS, TMC, COMNET, COMCOM,
ICDCS, and Globecom.

Jidong Ge is an associate Professor at Software
Institute, Nanjing University. He received his
PhD degree in Computer Science from Nanjing
University in 2007. His current research interests
include cloud computing, distributed computing,
workflow scheduling, workflow modeling, pro-
cess mining. His research results have been
published in more than 90 papers in international
journals and conference proceedings including
IEEE TPDS, IEEE TSC, JPDC, COMNET, JASE,
JNCA, FGCS, JSS, Inf. Sci., ESA, ICSE, ASE,

IWQoS, GlobeCom, APSEC, ICSSP, HPCC, SEKE etc.

Mingjun Xiao is an associate professor in the
School of Computer Science and Technology
at the University of Science and Technology
of China (USTC). He received his Ph.D. from
USTC in 2004. In 2012, he was a visiting scholar
at Temple University, under the supervision of
Dr. Jie Wu. He is a TPC member of many
conferences, including IEEE INFOCOM 2018,
IEEE ICDCS 2015, ACM Mobihoc 2014, etc, and
has served as a reviewer for many journal pa-
pers. His main research interests include mobile

crowdsensing, mobile social networks, and vehicular ad hoc networks.
He has published over 50 papers in refereed journals and conferences,
including TON, TMC, TPDS, TC, INFOCOM, etc.

Jie Wu (F’09) is the Director of the Center for
Networked Computing and Laura H. Carnell pro-
fessor at Temple University. He also serves as
the Director of International Affairs at College of
Science and Technology. He served as Chair of
Department of Computer and Information Sci-
ences from the summer of 2009 to the summer
of 2016 and Associate Vice Provost for Interna-
tional Affairs from the fall of 2015 to the summer
of 2017. Prior to joining Temple University, he
was a program director at the National Science

Foundation and was a distinguished professor at Florida Atlantic Univer-
sity. His current research interests include mobile computing and wire-
less networks, routing protocols, cloud and green computing, network
trust and security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and books.
He serves on several editorial boards, including IEEE Transactions on
Mobile Computing, IEEE Transactions on Service Computing, Journal of
Parallel and Distributed Computing, and Journal of Computer Science
and Technology. Dr. Wu was general co-chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP
2016, and IEEE CNS 2016, as well as program co-chair for IEEE
INFOCOM 2011 and CCF CNCC 2013. He was an IEEE Computer
Society Distinguished Visitor, ACM Distinguished Speaker, and chair for
the IEEE Technical Committee on Distributed Processing (TCDP). Dr.
Wu is a CCF Distinguished Speaker and a Fellow of the IEEE. He is
the recipient of the 2011 China Computer Federation (CCF) Overseas
Outstanding Achievement Award.

