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A B S T R A C T

Deep learning-based video analytics is computation-intensive. Manufacturers such as Nvidia have launched
many embedded deep learning accelerators and are rapidly gaining market share. However, the computing
resources of such accelerators are still limited and heterogeneous. Although existing systems aim at optimizing
video query tasks from a variety of perspectives, they rarely consider the general cooperation between
heterogeneous edge devices and the dynamic workload of video content. In this work, we present SplitStream,
a distributed system for accelerating video query tasks across heterogeneous edge devices, which is able to
fully utilize the resources on each device and adapt to the workload dynamics. The key to achieving this is the
data parallelism brought by the multi-instance mechanism and the dynamic workload adaptability brought by
the two-level workload balancing mechanism. Evaluation results show SplitStream reduces the result retrieval
time by up to 19% and improves the resource utilization by up to 234%.
1. Introduction

Video cameras are ubiquitous nowadays. Cities and organizations
are steadily increasing the size and reach of their camera deploy-
ments, generating massive video data. A survey of tens of organizations
shows that their average number of cameras has increased by almost
70% from 2015 to 2018 (International trends, 2018). Due to the
breakthrough in deep learning (Voulodimos et al., 2018), we are able
to extract useful information from video feeds using deep learning
tools (Preeti and Sri, 2021; Zhou et al., 2022; Zhao et al., 2017), a.k.a.
video query (Bolle et al., 1998; Wang et al., 2020). Performing video
queries on retrospective videos generates query results, including the
class, location, and confidence of each object in each frame of a video.
These results are increasingly analyzed to support lots of tasks including
traffic monitoring, surveillance, customer tracking, and so on.

A key problem is, how can we analyze video feeds to acquire as
many query results as possible in a given time? (Xu et al., 2021). As
we know, timely processing video queries require heavy computing
resources that are far beyond the traditional video surveillance infras-
tructures (Teutsch et al., 2010). Besides, modern video query pipelines
tend to use cascaded architectures (Jang et al., 2021; Kleinrouweler
et al., 2021; Elgamal et al., 2020), which usually contain multiple Deep
Neural Networks (DNNs) and thus require even more resources.

One possible solution to achieve high throughput of video query
is to run video analytics tasks on the remote cloud. However, on one
hand, the retrospective video data is usually stored in local cameras or
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storage servers, hence the data flow, storage cost, and processing cost of
cloud services rise as the video data grows (Public, 2022; Elastic GPU,
2022); on the other hand, transferring the video data to the public cloud
is sometimes forbidden due to data privacy (Shi et al., 2016).

An alternative way is to move video analytics tasks from the remote
cloud to the edges, where data resides (Shi et al., 2016). A typical edge
environment consists of many heterogeneous devices such as Internet of
Things (IoT) devices, intelligent cameras, and other edge servers. These
heterogeneous devices have different computing and memory capaci-
ties (Pasteris et al., 2019; Luo et al., 2021). There are several factors
that make the local edge processing of the query task possible. Firstly,
manufacturers such as Nvidia and Google are rapidly iterating on their
embedded machine learning accelerators (Nvidia, 2022; Google, 2022;
Intel, 2022), and existing research shows that cameras equipped with
these accelerators are gaining market share at a high rate, which makes
it possible to deploy simple deep learning-based video analytics tasks
on a single camera. Secondly, an edge system usually shares a relatively
large network bandwidth in its local networks through switches, private
access points, and routers, which saves the cost of data transmission and
reduces network traffic in the backbone network compared with cloud
processing (Mao et al., 2017; Mach and Becvar, 2017).

However, the resource requirement of a cascading query pipeline
usually far exceeds one single device’s capability, it is then necessary
to distribute the pipeline across multiple devices, since there are many
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devices with scattered resources in an edge environment. However,
there are several challenges to achieve this. Firstly, it is hard to fully
utilize scattered edge resources. As mentioned before, there are more and
more edge devices equipped with deep learning accelerators. In an edge
network, the number of such devices is highly possible to far exceed
the number of the pipeline primitives. If we deploy one primitive on
exactly one device (Zhang et al., 2021), a large number of devices will
be idle because they cannot participate in the processing, and many
resources will be wasted. Secondly, orchestrating heterogeneous devices
needs careful design. Due to the heterogeneity of edge devices, a task
runs at different speeds at different edges. If one primitive has multiple
instances running parallel, the instance on a relatively weak device
could become a straggler and suffer from backlog. If we adjust the
data input rate at the data source according to the slowest instance,
the other instances may become relatively idle, causing resource waste.
Finally, video analytics workload is time-varying. The third obstacle is
the workload dynamics due to time-varying video content. For some
query tasks, the complexity of video content may affect the computing
workload. For example, if a query task needs to run classification for
every object in a frame, then the more objects appear in a frame, the
greater the amount of computation. In such a case, each primitive may
experience workload dynamics, affecting the overall throughput. The
common solution is to adjust task share for each instance and scale
up/down the instances. However, deploying new DNN tasks is very
slow and may impair other deployed instances (Singh et al., 2021; Yeh
et al., 2019; Zhao et al., 2020) and the dynamics may have temporary
spikes, misleading the balancing decisions.

Our key insight is that, video analytics tasks should be adaptively
distributed to edge devices. Here, ‘‘adaptively’’ means the analytics
workload of an edge device should be proportional to its available com-
putational capacity, besides, we should adjust the analytics workload
between edge devices from time to time if necessary.

In this paper, we develop SplitStream, a distributed and workload-
adaptive video query processing system in the edge environment that
addresses these challenges. In SplitStream, each query pipeline is ab-
stracted as a Directed Acyclic Graph (DAG) in which each node rep-
resents a pipeline primitive (i.e., processing step). SplitStream intelli-
gently deploys these primitives on different edge devices and adaptively
adjusts the deployment when necessary. For the first challenge, Split-
Stream scales the number of instances of each primitive. By assigning
one primitive’s task to multiple instances, more resources from idle
devices can be utilized. For the second challenge, we adopt a stochas-
tic task partition strategy that assigns different amounts of tasks to
different instances using stochastic sampling according to the devices’
computing powers. For the third challenge, SplitStream applies a two-
level workload balancing mechanism that adjusts the task partition
in a short time interval and scales up or scales down the number of
instances in a long time interval using a multi-queue filtering method.
Evaluation results show SplitStream reduces at most 40% time in video
query processing and doubles the utilization of devices.

The rest of this paper is organized as follows. Section 2 shows the
motivation. Section 3 provides the overview of SplitStream. Section 4
provides the details of SplitStream. Section 5 evaluates the performance
of SplitStream. We provide related works in Section 6 and conclude the
paper in Section 7.

2. Motivation

In this section, we motivate the design of SplitStream. We firstly
show video query pipelines are complex and resource-intensive. Then
we show edge devices are heterogeneous and thus they have different
processing capacities for video feeds. Finally, we show video analytics
workloads are not static; instead, they are time-varying, requiring
periodical workload balancing.
2

Fig. 1. A representative video query pipeline used in this paper. Based on the type of
the detected object (vehicle or person), the task-specific module selects one of the two
branches, each of which employs a cascaded sequence of classifiers to further identify
the attributes of the object. For example, if the detected object is a vehicle, then it goes
to the lower branch: classify its type (car, truck, etc.) and then recognize its maker.

2.1. Video query pipelines are directed acyclic graphs (DAGs)

The breakthrough in deep neural networks results in the emergence
of massive accurate primitives of video analysis in the computer vision
community. Modern live video analytics pipelines typically adopt a
cascaded architecture which consists of a front-end object detector
followed by a back-end task-specific module to perform a variety of
analytics tasks on each of the detected object of interest within a video
frame. Object detection primitive (e.g., Faster-RCNN Ren et al., 2015,
YOLO Redmon et al., 2016, SSD Liu et al., 2016, and RetinaNet) is the
core in many video query systems (Zhang et al., 2021). The task-specific
primitives including DNN based image classification such as Resnet (He
et al., 2016), VGG (Simonyan and Zisserman, 2014), and GoogleNet
(Szegedy et al., 2015). Such primitives are usually resource-intensive.

Fig. 1 displays a representative video query pipeline discussed in
this paper. It detects the objects in each video frame and then extracts
specific information using image classification primitives according to
the class of each object. The task-specific DAG consists of two branches.
Based on the type of the detected object (vehicle or person), the task-
specific module selects one of the two branches, each of which employs
a cascaded sequence of classifiers to further identify the attributes of
the object. For example, if the detected object is a vehicle, then it
goes to the lower branch: classify its type (car, truck, etc.) and then
recognize its maker.

This query pipeline has widespread usage in many scenes. For
example, the gathered vehicle information can help manage traffic by
analyzing the number and types (e.g., car, truck) of vehicles, while the
personal information can help search for missing people or criminal
suspects with specific characteristics. In the pipeline shown in Fig. 1,
video data are extracted into frames by the video data source, and
then one frame is sent into an object detector, which extracts the
regions of interest (ROI1) using the bounding boxes and classes, and
encodes them into small pictures. At this point, one frame is turned into
multiple pictures containing exactly one object of person or vehicle.
Each ROI will be sent to the following classifiers (e.g., gender classifier,
behavior classifier) independently according to its class. Each classifier
classifies an attribution such as the gender of a person and adds it into
the intermediate result. Finally, the results collector will collect the
analytics results and return the results to the user.

2.2. Edge devices are heterogeneous

Recent surveys (Fortinet, 2022; Hsieh et al., 2018) show that edge
storage costs are getting lower and lower in recent years. The cost per
gigabyte of SD cards drops from $0.35 in 2017 to $0.13 in 2020. New
video analytic schemes store video files on the local storage of cameras
and stream them to the cloud when a query task is committed (Xu
et al., 2021). However, transmitting large video files consumes a lot
of bandwidths of public network (Hung et al., 2018) and may violate
data privacy. At the same time, the edge network is usually connected
by private switches, APs, and routers (Shi et al., 2016), providing large
bandwidth resources. If the query can be done locally, the traffic in the

1 ROI means the boundaries of an object of interest on an image.
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Fig. 2. Time-varying workloads. Scenario A is a large parking lot with dozens of
vehicles next to an intersection. Vehicles and people enter or leave the parking lot.
Scenario B is a vacant lot behind a house. Many pedestrians stay in the scene for a
long time while a few pedestrians and vehicles pass through the road quickly.

Fig. 3. SplitStream Architecture. A user commits a query task to S-Scheduler. S-
Scheduler abstracts the query task into a DAG and generates an initial deployment
scheme (Section 4.1), then informs the devices in S-Runtime to run instances. During
running time, S-Balancer performs workload balancing periodically (Section 4.2).

public network can be reduced, and so as the data flow cost. Due to
the growth of edge deep learning accelerators and the cheap storage
with abundant bandwidths, it is promising to process the video query
task locally. To achieve that goal, the scattered resources on different
devices should be fully utilized.

Due to the popularity of deep learning, hardware manufacturers
such as Nvidia and Google are speeding up iteration and promotion
of their embedded accelerators, which can significantly enhance the
computing power of edge devices, such as surveillance cameras (Meel,
2021). Research shows that the market share of cameras equipped
with such accelerators increases from 355 million dollars in 2018 to
1,120,000 million dollars in 2023 (Softtek, 2020). This means that
there will be more devices with deep learning capability in the edge
environment such as smart cameras.

Due to different manufacturers and product lines, these devices
may have heterogeneous computing and memory resources, which
makes the same DNN task run at different speeds on different devices.
Moreover, some complex DNN tasks need more memory to store param-
eters and intermediate result, and cannot be deployed on devices with
limited memory. Table 1 shows inference times of some typical DNNs
for object detection and image classification on several edge devices.
We can see the inference time varies a lot across devices due to their
heterogeneities. Specifically, when then computational capacity of an
edge device increases, we can see that the inference time decreases.
3

Table 1
Inference time on typical devices.

Device Yolo-v5m Resnet18 Resnet34 Resnet50

Jetson Nanoa 0.574 s 0.0231 s 0.045 s 0.061 s
AGX Xavierb 15 W 0.132 s 0.0167 s 0.029 s 0.043 s
AGX Xavier 30 W 0.105 s 0.0169 s 0.025 s 0.032 s
AGX Xavier MAXN 0.071 s 0.0081 s 0.015 s 0.018 s
E5 2640v4 Server 0.158 s 0.0214 s 0.041 s 0.047 s

a 72 GFLOPs, 4 GB/2 GB.
b 2.8 TFLOPs, 64 GB/32 GB.

2.3. Inference workloads are time-varying

To explain how video contents affect the workload, we choose
two typical surveillance video clips selected from the VIRAT Ground
Dataset (Oh et al., 2011). Scenario A is a large parking lot, scenario B is
a small parking lot, and both are next to a road. The evaluated pipeline
is shown in Fig. 1. Fig. 2 shows the results in which we use the number
of detected objects to represent the workload. We can see that the
number of vehicles or persons detected by the object detector directly
affects the subsequent classifiers’ workloads. There are 2 factors that
affect the workload: (i) video content is changing over time. In a period
of time, there may be more or fewer vehicles/persons that enter/leave
the view. (ii) some objects may appear at the corner of the view and
stay in the view only for a short time. Moreover, there may be many
objects detected by the object detector incorrectly, causing workload
spikes.

Such workload dynamics may have significant impacts on the user’s
experience. Users are mainly concerned about throughput, i.e., the
number of results acquired per second. The workload spikes may
result in some pipeline primitives being overloaded and becoming
bottlenecks, reducing the overall throughput.

3. SplitStream overview

We present SplitStream, a distributed and workload adaptive system
for scheduling video query tasks in the edge environment, which can
fully utilize resources scattered on different devices, orchestrate hetero-
geneous devices to reduce bottlenecks, and handle workload dynamics
to further improve the throughput.

3.1. SplitStream architecture

SplitStream mainly contains S-Scheduler (Section 4.1), S-Balancer
(Section 4.2), and S-Runtime, as shown in Fig. 3. S-Scheduler helps
abstract the query task into a DAG and generate an initial deployment
scheme, including the number of instances for each pipeline primitive,
the workload share of each instance, and the deployment device of each
instance. S-Balancer targets to handle workload dynamics. It gathers
workload information of each instance and performs workload balanc-
ing algorithms. S-Runtime, located on smart cameras, PCs, or servers,
holds one or more instances with specific workload shares according
to the initial deployment scheme.

The component that actually runs the query task is S-Runtime. Fig. 4
illustrates S-Runtime on each device. The aggregator layer provides a
uniform interface for each device, and the dispatcher layer enables re-
sult dispatch to different downstream instances with different workload
assignments. Both of them provide a uniform interface that enables
direct data transfer. The task queues buffer the tasks to be processed
by primitive instances and provide information such as processing
rate, data incoming rate, and processing rate for S-Balancer to perform
workload balancing.
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Fig. 4. S-Runtime on each device. The aggregator and dispatcher provide a uniform
interface for direct data transfer between devices; the task queues buffer tasks of each
primitive instance and monitor workload for balancing.

Fig. 5. Example of Query DAG and deployment. (a) the query DAG of the pipeline
in Fig. 1; (b) the initial deployment generated by S-Scheduler (e.g., 2𝑎0.4 means it is
an instance of 2 and instance 1 should send 40% of its processing results to 2𝑎0.4 );
c) the deployment after performing 𝑡-workload balance, which changed the workload
ssignments of 2𝑎 and 2𝑏; (d) the deployment after performing 𝑇 -workload balance,
hich adds a new instance of 2.

.2. Workflow

The workflow from a user submitting its video query request to the
ser obtaining the query results is shown in Fig. 3: 1⃝ A user submits
he task configuration to S-Scheduler. The configuration describes the
AG pipeline of the query task (e.g., Fig. 5(a) shows a DAG pipeline). It
ontains information of each pipeline primitive, including its upstream
nd downstream primitives and the resource requirements (i.e., compu-
ation and memory). 2⃝ S-Scheduler uses the task configuration and the
pecifications of all devices (i.e., computing power and memory size) to
enerate an initial deployment scheme as shown in Fig. 5(b). Each node
n the scheme is an instance of a pipeline primitive and one primitive
an have multiple instances with different workload assignments. For
xample, instance 3𝑎0.3 in Fig. 5(b) is responsible for processing 30%
f the workloads received from the upstream instances (i.e., 2𝑎0.4 and
𝑏0.6 ), which means 2𝑎0.4 and 2𝑏0.6 need to send 30% of their processing
esults to 3𝑎0.3 . After obtaining the deployment scheme, S-Scheduler
nforms S-Runtime on each device to start the instances and begin video
rocessing. 3⃝ To accommodate the workload dynamics and reduce
ottlenecks, S-Runtime sends instance workload states to S-Balancer
ithin heartbeat packets. S-Balancer performs 𝑡-workload balancing

very 𝑡 time and 𝑇 -workload balancing every 𝑇 time, in which 𝑡 < 𝑇 .
he result is a new deployment scheme as shown in Figs. 5(c) and
(d). The 𝑡-workload balancing adjusts workload partitions for the
nstances of a primitive and the 𝑇 -workload balancing adds or removes
nstances of a primitive. 4⃝ S-Balancer then informs S-Runtime to apply

5

4

he scheme changes. ⃝ Query results are sent to the user finally.
.3. Deployment problem formulation

In this subsection, we formally present the pipeline deployment
roblem. Main notations are listed in Table 2 for quick reference.

Denote the set of edge devices by 𝑉 . Without loss of generality, we
ssume edge devices are connected through switches by using wired
ables, thus pairwise bandwidth is relatively sufficient. We model the
uery pipeline as a directed acyclic graph 𝐷 = (𝑀,𝐸), where a node
∈ 𝑀 represents a pipeline primitive (e.g., object detection or gender

lassification) as well as the video data source and the result collector.
We want to maximize the number of frames processed per sec-

nd. To achieve the goal, we want to fully utilize the heterogeneous
esources across all edge devices. We break the pipeline DAG into
rimitives with each of them having a fixed memory consumption 𝑀𝑔 .

Let 𝐶𝑔 be the computation workload of primitive 𝑔 in a single
ideo frame, which is quantified by the amount of computations
e.g., FLOPS). We assume for now that each primitive has a fixed
orkload according to a given throughput 𝑓 , then the workload of 𝑔 per

econd at throughput 𝑓 is 𝐶𝑔 ⋅ 𝑓 . As shown in Fig. 5(b), each primitive
an have multiple instances that run on different edge devices, and the
aximum possible number of instances of each primitive is |𝑉 |. Let the
umber of all possible deployment schemes (also DAGs) be 𝑁 . We use
𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑁 , to indicate whether the 𝑖th deployment scheme is
sed.

The corresponding DAG 𝑖 is 𝐷𝑖 = (𝑀𝑖, 𝐸𝑖). For the 𝑖th DAG, each
nstance 𝑚 in 𝑀𝑖 should undertake a part of the computing workload of
he original primitive. The specific portion depends on which device it
ill be deployed on and the instances already deployed on that device.
et 𝑠𝑖𝑚 denote 𝑚’s workload share of the original primitive 𝑔. 𝑥𝑖𝑚,𝑔 serves
s an indicator of whether 𝑚 is an instance of 𝑔. 𝑝𝑖𝑚,𝑢 indicates that if
will be placed on device 𝑢. Then the computation constraints can be
ritten as follows:

∑

∈𝑉

∑

𝑖∈𝑁

∑

𝑚∈𝑀𝑖

𝑐𝑖𝐶𝑔𝑓𝑠
𝑖
𝑚𝑥

𝑖
𝑚,𝑔𝑝

𝑖
𝑚,𝑢 ≤ 𝐶𝑢, ∀𝑢 ∈ 𝑉 , (1)

∑

∈𝑉

∑

𝑖∈𝑁

∑

𝑚∈𝑀𝑖

𝑐𝑖𝑀𝑔𝑥
𝑖
𝑚,𝑔𝑝

𝑖
𝑚,𝑢 ≤ 𝑀𝑢, ∀𝑢 ∈ 𝑉 , (2)

𝑖
𝑚,𝑔 ∈ {0, 1}, ∀𝑚 ∈ 𝑀𝑖,∀𝑔 ∈ 𝑉 ,∀𝑖 ∈ 𝑁, (3)

𝑝𝑖𝑚,𝑢 ∈ {0, 1}, ∀𝑚 ∈ 𝑀𝑖,∀𝑖 ∈ 𝑁,∀𝑢 ∈ 𝑀, (4)

𝑠𝑖𝑚 ∈ [0, 1], ∀𝑚 ∈ 𝑀𝑖,∀𝑖 ∈ 𝑁, (5)

where 𝐶𝑢 and 𝑀𝑢 represent the computing and memory capacity of
device 𝑢 respectively. Eqs. (1) and (2) ensure that the computation and
memory requirements of instances deployed on device 𝑢 cannot exceed
its capacity 𝐶𝑢 and 𝑀𝑢, respectively.

The workload share of all instances of a primitive 𝑔 should be
exactly 1, and each instance 𝑚 must be deployed on exactly one device.
We have the following constraints:
𝑀𝑖
∑

𝑚=1
𝑠𝑖𝑚𝑥

𝑖
𝑚,𝑔 = 1, ∀𝑔 ∈ 𝑉 ,∀𝑖 ∈ 𝑁, (6)

𝑉
∑

𝑢=1
𝑝𝑖𝑚,𝑢 = 1, ∀𝑚 ∈ 𝑀𝑖,∀𝑖 ∈ 𝑁. (7)

And our objective is

max 𝑓. (8)

Combining Eqs. (1) and (8) forms the pipeline deployment problem.
The deployment scheme consists of 𝑐𝑖, 𝑝𝑖𝑚,𝑢 and 𝑠𝑖𝑚. Fig. 5(b) shows an
example of a deployment, in which 2𝑎0.4 means it is an instance of
primitive 2 and instance 1 should send 40% of its processing results

to 2𝑎0.4 .
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Table 2
Main notations for reference.

Notation Description

𝑉 Set of edge devices
𝐷 Query pipeline of DAG structure
𝑀 Set of pipeline primitives
𝐸 Set of data dependencies among primitives
𝑀𝑔 Memory consumption of primitive 𝑔 ∈ 𝑀
𝐶𝑔 Computation workload of primitive 𝑔 ∈ 𝑀
𝑓 Number of frames processed per second
𝑁 Number of all the possible deployment schemes
𝑐𝑖 Whether the i𝑡ℎ deployment scheme will be used
𝐷𝑖 The 𝑖th deployment scheme
𝑀𝑖 Set of primitive instances in 𝐷𝑖
𝐸𝑖 Set of data dependencies among instances in 𝐷𝑖
𝑠𝑖𝑚 Workload share of instance 𝑚 ∈ 𝑀𝑖

𝑥𝑖𝑚,𝑔 Whether 𝑚 is an instance of primitive 𝑔

𝑝𝑖𝑚,𝑢 Whether instance 𝑚 will be placed on device 𝑢 ∈ 𝑉
𝐶𝑢 Computation capacity of device 𝑢 ∈ 𝑉
𝑀𝑢 Memory capacity of device 𝑢 ∈ 𝑉

Algorithm 1: Initial deployment generation
Input: Primitive confgs., device confgs.

1 𝑠𝑐ℎ𝑒𝑚𝑒 ← ∅; 𝑓 ← 0; 𝑖 ← 1;
2 while 𝑖 ≤ 𝑘 do
3 𝑓 ← 𝑓 + 𝛿; 𝑠𝑐ℎ𝑒𝑚𝑒′ ←GetDeploymentScheme(𝑓 );
4 if 𝑠𝑐ℎ𝑒𝑚𝑒′ ≠ ∅ then
5 𝑠𝑐ℎ𝑒𝑚𝑒 ← 𝑠𝑐ℎ𝑒𝑚𝑒′;
6 break;
7 𝑖 ← 𝑖 + 1;
8 if 𝑠𝑐ℎ𝑒𝑚𝑒 = ∅ then
9 𝑠𝑐ℎ𝑒𝑚𝑒 ←randomly deployment;
10 return scheme;

4. SplitStream details

In this section, we provide details of S-Scheduler and S-Balancer,
which generates the initial deployment scheme and handles workload
dynamics, respectively.

4.1. S-scheduler: initial deployment generation

As the mixed integer linear programming (MILP) problem is NP-
Hard and its solution space grows exponentially, it is hard to search
all possible solutions to find the optimal one. Besides, achieving the
optimal solution is not cost-efficient due to the workload dynamics,
thus, we adopt a simple but efficient way.

Simultaneously considering 𝑓 , 𝑐𝑖, 𝑝𝑖𝑚,𝑢 and 𝑠𝑖𝑚 is very difficult. How-
ver, we find it easy to find a feasible deployment scheme under a fixed
hroughput 𝑓 . Once 𝑓 is given, the computation resource 𝐶𝑔 for each
rimitive 𝑔 can be estimated. The user can manually set the number of
asks to be processed in a single frame.

Alg. 1 describes the idea. We continuously increase the throughput
with a small step 𝛿 and calculate the computation and memory

equirement of each primitive, then try GetDeploymentScheme at most
times to achieve a feasible scheme. The loop terminates when all 𝑘

imes of trials fail to achieve a feasible scheme.
The GetDeploymentScheme algorithm depicted in Alg. 2 traverses

rimitives of the pipeline (e.g., Fig. 5(a)) except for the data source
nd the result collector in topological order. For each primitive, it
ontinuously selects available devices that have enough resources. It
eploys instances on these available devices one by one and accordingly
ssigns computing tasks to them until the requirement of workload
omputation is satisfied. If the throughput cannot be satisfied, the
lgorithm will return the empty set.
5

Algorithm 2: GetDeploymentScheme(𝑓 )
Input: Throughput 𝑓

1 𝑀 ← sort the primitives in topological order;
2 𝑠𝑐ℎ𝑒𝑚𝑒 ← ∅;
3 for each primitive 𝑔 in 𝑀 do
4 𝑉 ← get the set of edge devices;
5 𝑤 ← 𝐶𝑔 ⋅ 𝑓 ;
6 while 𝑉 ≠ ∅ and 𝑤 > 0 do
7 𝑢 ← a randomly selected device from 𝑉 ;
8 if 𝑢 has enough resources to deploy 𝑔 then
9 𝜃 ← min{𝑤,available resources of 𝑢} ;
10 allocate 𝜃 resources of 𝑢 to create an instance of 𝑔;
11 𝑤 ← 𝑤 − 𝜃;
12 update the available resources of 𝑢;
13 update 𝑠𝑐ℎ𝑒𝑚𝑒;
14 𝑉 ← 𝑉 − {𝑢};
15 if 𝑤 > 0 then
16 return ∅;

17 return 𝑠𝑐ℎ𝑒𝑚𝑒;

Pre-profiling. The key to implement Alg. 1 is estimating the work-
load 𝐶𝑔 of primitive 𝑔 incurred by one frame. However, it is not trivial
o achieve appropriate estimations due to the workload dynamics. A
ommon way is manually setting an average 𝐶𝑔 according to previous
xperiences, and it may not achieve a good result because of the
ynamics of future video clips. Instead, we use a pre-profiling technique
o handle this. During the video capture time or before running Alg.
, the pre-profiler samples video clips to be queried with fixed time
ntervals, generating results and averaging them as the estimations of
𝑔 and 𝑀𝑔 .

.2. S-Balancer: adaptive balancer

S-Balancer in Fig. 3 gathers workload states from S-Runtime and
pplies the new scheme to S-Runtime. However, balancing the workload
n each device is not trivial due to the complexity of mutual dependen-
ies: one device can have instances of different primitives, which means
djusting the workload of a primitive (including multiple instances)
ay easily affect co-located instances of other primitives.

Building an accurate model is too expensive to implement, so we
dopt a simple but efficient solution: two-level workload balancing.
he first level is to adjust the workload assignments of the instances
elonging to the same primitive, and the second level is to add or
emove instances of a primitive.

We observe that the second level balancing should be adopted
arefully for the following reasons. Firstly, creating a new instance
or some primitive is costly. Secondly, the workload dynamics contain
any spikes, which may easily mislead the decisions of S-Balancer.

To tackle the problems, we divide time into intervals of equal length
. Let 𝑇 = 𝑛𝑡 and 𝑛 > 1. We adjust the workload assignments of the
nstances belonging to the same primitive every 𝑡 seconds and create
r invoke instance every 𝑇 seconds.

To model the state (busy or idle) of instances, we use the informa-
ion gathered by S-Balancer, which are the task queue length 𝑙𝑒𝑛𝑚, task

arrival rate 𝑖𝑛𝑚, and task processing rate 𝑜𝑢𝑡𝑚 of each instance 𝑚. An
instance can be considered overloaded when the tasks in the queue and
the tasks arrived per second exceeds the processing rate. Thus, we can
define the imbalance index of instance 𝑚 as

𝑖𝑏𝑚 =
𝑖𝑛𝑚 + 𝑙𝑒𝑛𝑚∕𝑡

𝑜𝑢𝑡𝑚
. (9)

When the 𝑖𝑏𝑚 is greater than a threshold 𝛽, the instance 𝑚 can be

considered overloaded.
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Algorithm 3: 𝑡-workload balancing
Input: 𝑄𝑔 for each primitive 𝑔

1 𝑄 ← ∅;
2 for each instance 𝐼𝑔𝑢 do
3 calculate 𝑖𝑏𝑔𝑢 using Eq. (9);
4 insert 𝑖𝑏𝑔𝑢 into 𝑄𝑔 ;
5 for each 𝑄𝑔 do
6 if 𝑄𝑔 .top ≥ 𝛽 then
7 insert 𝑄𝑔 .top into 𝑄;

8 while 𝑄 ≠ ∅ do
9 ̂𝑖𝑏𝑔𝑢 ← 𝑄.top;
10 let �̂�, �̂� be the device and the pipeline primitive of ̂𝑖𝑏𝑔𝑢 ;
11 if exists relatively idle 𝐼 �̂�𝑢′ then
12 spare part of 𝐼 �̂��̂� ’s task to 𝐼 �̂�𝑢′ ;
13 return;
14 𝑄.pop;

4.2.1. 𝑡-workload balancing
S-Balancer maintains an instance status ordered list for each prim-

tive, which records each instance’s imbalance index (i.e., Eq. (9)).
n the beginning of each time interval 𝑡, S-Balancer calculates each
ode instance’s imbalance index and updates the instance lists. Then,
-Balancer puts the largest imbalance index of each logical node into
priority queue. If the largest imbalance index in the queue is greater

han a threshold 𝛽, S-Balancer then tries to adjust the workload assign-
ents of the instances.

Let 𝐼𝑔𝑢 denote an instance of logical node 𝑔 deployed on device
, and the imbalance index is 𝑖𝑏𝑔𝑢 . Alg. 3 shows the algorithm. As
he instances on devices are interdependent, S-Balancer tries to select
nstances with a higher imbalance index in each time slice 𝑡 for ad-

justment. As long as the adjustment is successful, S-Balancer quits the
procedure. In other words, at most only one primitive’s instances can
be adjusted every 𝑡 seconds in order to reduce the mutual influences
between different primitives.

4.2.2. 𝑇 -workload balancing
Similarly, S-Balancer adjusts the number of instances of at most

ne primitive every 𝑇 seconds, and at most one more instance would
e added. Each newly-deployed instance has a lease term of 𝑇 , which
eans the algorithm should check the newly-deployed instances every
seconds and remove the instance when its workload is below a

hreshold.
To filter out workload spikes, we adopt a delayed reaction method.

pecifically, we maintain two queues. Instances that are detected with
high workload are added to the tier 1 queue but not immediately

eployed. Instances that are detected with high workloads twice in two
djacent time intervals are moved to the tier 2 queue. In each interval,
-Balancer attempts to deploy a new instance for the highest instance
n the tier 2 queue. Alg. 4 summarizes our idea. We maintain two
orted queue: 𝑄1 and 𝑄2. Every 𝑇 seconds, we calculate each instance’s
mbalance index and move them into or out of the two queues and try
o deploy a new instance for the most imbalanced primitive.

The removal of instances is the same as Alg. 4. We also maintain two
iers of queues and remove the idlest instance. We utilize the resources
n a greedy way, which means in every 𝑇 seconds, we perform the
nstance creation first and remove the idlest instance if the creation
s infeasible.
6

Algorithm 4: 𝑇 -workload balancing
Input: 𝑄1 and 𝑄2

1 for each instance 𝐼𝑔𝑢 do
2 calculate 𝑖𝑏𝑔𝑢 using Eq. (9);
3 if 𝑖𝑏𝑔𝑢 ≥ 𝛽 then
4 if instance 𝐼𝑔𝑢 ∈ 𝑄2 then
5 continue;
6 if instance 𝐼𝑔𝑢 ∈ 𝑄1 then
7 𝑄1.remove(𝐼𝑔𝑢 ); 𝑄2.insert(𝐼𝑔𝑢 );
8 else
9 𝑄1.insert(𝐼𝑔𝑢 );

10 else
11 if 𝑖𝑏𝑔𝑢 ∈ 𝑄1 then
12 𝑄1.remove(𝑖𝑏𝑔𝑢);
13 if 𝑖𝑏𝑔𝑢 ∈ 𝑄2 then
14 𝑄2.remove(𝑖𝑏𝑔𝑢); 𝑄1.insert(𝑖𝑏𝑔𝑢);

15 while 𝑄2 ≠ ∅ do
16 ̂𝑖𝑏𝑔𝑢 ← 𝑄2.front;
17 let �̂�, �̂� be the device and the primitive of ̂𝑖𝑏𝑔𝑢 ;
18 𝑑𝑒𝑣𝑖𝑐𝑒𝑆𝑒𝑡 ← devices with enough memory;
19 if 𝑑𝑒𝑣𝑖𝑐𝑒𝑆𝑒𝑡 ≠ ∅ then
20 𝑢′ ← device with the most available resource in

𝑑𝑒𝑣𝑖𝑐𝑒𝑆𝑒𝑡;
21 create an instance 𝐼 �̂�𝑢′ ;
22 return;
23 𝑄2.pop;

5. Performance evaluation

5.1. Evaluation settings

We implement SplitStream using Python. Message queues based
on ZeroMQ (2022) are used to communicate between different mod-
ules. The instances of primitives are implemented using Python threads.

Pipelines. We evaluate the performance of SplitStream using two
video analytics pipelines, shown in Fig. 1 of this paper and Fig. 1
in Zeng et al. (2020). We use the core codes of Yolo-v5s (YoloV5, 2022)
as the object detector and prune out unneeded functional modules.
The gender classifier and behavior classifier on the person branch
are implemented using Resnet18 (He et al., 2015), while the vehicle
color, type, and maker classifiers as well as explosive classifier are
implemented using Resnet34 (He et al., 2015).

Metrics. We use ‘‘retrieval rate’’ (Xu et al., 2021) and ‘‘resource
utilization’’ in performance comparison. In video query tasks, a query
result is a target in a frame, with related information obtained from
pipeline processing. As we know, users usually want to obtain as
analytics results as fast as possible, thus, we use retrieval rate to
indicate the analytics speed of a pipeline. In our evaluation, we set the
percentage marks of results obtained as 50%, 75%, 95%, and 100%, in
which 100% means all results are collected. For resource utilization, we
only consider the average normalized utilization of GPU accelerators on
edge devices.

Baselines. Central deploys the full query pipeline on the most
powerful device, i.e., an Nvidia Xavier AGX in our experiment, which
is commonly used in many existing systems such as NoScope (Kang
et al., 2017) and VideoStorm (Zhang et al., 2017). Distream adaptively
balances the workloads across smart cameras and partition the work-
loads between cameras and the edge cluster uses partition points of
pipeline DAGs. Furthermore, we also want to know the contribution of
each component of SplitStream, thus, we use SplitStream-mi to represent
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Fig. 6. Retrieval rate comparison.

Fig. 7. Contribution of each component of SplitStream on retrieval rate.

SplitStream without the multi-instance feature, hence each primitive of
the query pipeline can only have one instance; we use SplitStream-wa
to represent workload-agnostic SplitStream, i.e., it does not perform 𝑡-

orkload and 𝑇 -workload balancing; we use SplitStream-rp to represent
plitStream without pre-profiling.
Devices and Datasets. We evaluate the performance in two set-

ings: Small-S and Setting-L. The first one consists of 1 Nvidia Jetson
ano 4 GB equipped with a 128-core Maxwell GPU, 1 Nvidia AGX
avier with limited 8 GB memory, and a CPU server equipped with
Intel E5 2640v4 CPUs. Two video clips shown in Fig. 2 are used for

valuation. The results on Setting-S are averaged over these two video
lips. The second one is large-scale simulation, in which we simulate
n edge environment with 4 Nvidia Jetson Nano 4 GB, 4 Nvidia AGX
avier, and 2 CPU server equipped with 2 Intel E5 2640v4 CPUs.
e use publicly available live video streams from six traffic cameras

eployed at different traffic intersections and roads in Jackson Hole,
Y (JacksonHole, 2019). The results on Setting-L are averaged over

hese six videos.

.2. Retrieval rate

Fig. 6 shows the comparison on retrieval rate of Central, Distream,
nd SplitStream in two experiment settings. We see that, SplitStream
utperforms Distream and Central significantly in either setting. For
xample, in Setting-S, the time for Distream and Central to retrieve
ll objects is 113% and 119%, respectively, of that of Splitstream. The
ain reason is that, SplitStream may split a video analytics primi-

ive into multiple instances and assign different portions of tasks to
aximize the throughput, while Distream uses partition points on
DAG. Furthermore, SplitStream uses a two-level workload balance
echanism to handle video content dynamics, while Distream only dy-
amically updates the partition points. Note that, since there are more
esources in Setting-L than Setting-S, the retrieval time is relatively
mall in Setting-L.

Fig. 7 shows the contribution of each component of SplitStream in
erms of retrieval rate in two settings. In general, SplitStream achieves
he best performance, while SplitStream-mi has the worst. This is
ecause SplitStream-mi disable the multi-instance feature, thus it is
7

eaningless to do workload balancing. Besides, without the workload
Fig. 8. The effect of re-profiling interval under Setting-S. Increasing re-profiling
frequency improves the performance.

balancing mechanism, SplitStream-mi suffers from huge performance
degradation. SplitStream-wa deploys the pipeline with multi-instance
enabled but without workload balancing, which means it heavily de-
pends on the initial deployment schema. We know, S-Scheduler takes
DAG configurations and device resources into account and generates
an initial deployment. Note that the policy is fixed and relies on the
constants we set up at the beginning, which is hard to estimate without
pre-profiling.

The comparison between SplitStream-rp and SplitStream in Fig. 7
shows the effect of pre-profiling. Pre-profiling catches the overall work-
load of each primitive and assigns the nodes that tend to have a high
workload more resources. Our strategy of workload balance would
not attempt to add or remove the instances of the initial deployment
scheme, thus the pre-reserved resources (which means more instances
for the potential high primitives) help improve the throughput.

We are also interested in evaluating the effect of the re-profiling
interval. Fig. 8 shows the results under Setting-S; the results under
Setting-L is similar and thus is omitted. We can see that, increasing
re-profiling frequency indeed reduces the retrieval time.

5.3. Resource utilization

Table 3 shows the evaluations results in terms of resource utiliza-
tion. The utilization is achieved by averaging the normalized resource
utilization of all devices. A higher utilization means making full use of
heterogeneous resources.

The CPU/GPU utilization roughly shows the utilization of comput-
ing resources on all devices, including the GPU/accelerators on the
cameras and the CPUs on the storage servers. Central and SplitStream-
mi have low utilization because both of them do not create multiple
instances for each primitive. Without workload balancing, the total
amount of CPU or GPU computing resources used is not much different.
SplitStream-wa outperforms Central and Distream; it splits the task
stream of a single primitive into many instances on different devices,
which means there is more than one device sharing its tasks, and the
computing resources of CPU or GPU on these devices are used, resulting
in much higher utilization. In both settings, SplitStream achieves the
best resource utilization. Since there are more resources in Setting-L
than Setting-S, the resource utilization under Setting-L is smaller than
that under Setting-S.

The memory utilization results is basically consistent with the
CPU/GPU utilization results. The memory usage is almost entirely de-
termined by the number of instances deployed. Central and
SplitStream-mi have the almost same memory utilization because they
have the same number of instances. Compared with SplitStream-wa and
SplitStream-rp, they only use no more than half of all the available
memories and leave a lot of memory idle. SplitStream uses a two-level
workload balance mechanism to handle video content dynamics and
thus may create more instances of video analytics primitives, while
Distream only dynamically updates the partition points, therefore,

SplitStream achieves the highest resource utilization.
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Table 3
Resource utilization results.

Setting Central Distream SplitStream SplitStream-mi SplitStream-wa SplitStream-rp

GPU/CPU Setting-S 0.41 0.78 0.96 0.53 0.82 0.87
Setting-L 0.23 0.52 0.75 0.36 0.65 0.70

Memory Setting-S 0.56 0.73 0.94 0.62 0.78 0.82
Setting-L 0.30 0.43 0.72 0.39 0.59 0.62
6. Related work

Related studies can be roughly grouped into 3 types.
The first type of existing studies assumes that the camera is not

equipped with accelerators like GPUs and cannot run DNN tasks but
can only run simple tasks such as tracking algorithms, and the actual
DNN inferences are processed in the cloud server. Because all of the
main work is on the cloud, their main concern is to save network
costs. AWStream (Zhang et al., 2018) adjusts the video encode quality,
resolution, and frame rate to adapt to the dynamic change of network
bandwidth, trading off between accuracy and bandwidth. Reducto Li
et al. (2020) only sends frames that have relatively large inter-frame
difference to the cloud server. Chameleon (Jiang et al., 2018) uniformly
samples frames in a video stream, adjusts the frame resolution, and
decides an appropriate DNN model to achieve bandwidth-accuracy
tradeoff.

The second type assumes that the camera has some capability
of running light-weight DNNs, thus using the camera to run cheap
DNN models to reduce inference cost and save bandwidth. However,
the light-weight DNNs on the camera are usually used to filter out
frames/regions with low confidence. NoScope (Kang et al., 2017) uses
specialized DNN models to reduce inference overheads for through-
put gain with small accuracy loss. Focus (Hsieh et al., 2018) uses
the camera to run a cheap DNN model to generate the object in-
dex, enabling fast retrospective queries on the cloud. O3 (Hanyao
et al., 2021) combines camera-side lightweight tracking with edge-side
computation-intensive detection to improve object detection perfor-
mance.

The third type also assumes the camera has accelerators like GPUs
and can run cheap DNNs, but they split the video query pipeline
across the camera and the cloud servers. VideoEdge (Hung et al., 2018)
partitions the pipeline on cameras and multi-level clusters according
to their respective computational power. ATTEN (Yan et al., 2022)
proposes attention-aware on-device object detection. Distream (Zeng
et al., 2020) is the closest work to SplitStream. Although both Distream
and SplitStream are built upon a distributed architecture at the edge
and consider the workload balance across cameras and video content
dynamics, they have three main differences. First, SplitStream targets
more general video query pipelines that may be unable to be fully
deployed on a single camera, while Distream uses a fine-tuned and
pruned pipeline that can be fully deployed on each camera. Second,
SplitStream splits some DAG nodes into multiple instances and assigns
different portions of tasks to maximize the throughput, while Distream
uses partition points on DAG to realize that. For workload balance,
SplitStream uses a two-level workload balance mechanism to handle
video content dynamics, while Distream only dynamically updates the
partition points. In addition, SplitStream is built up for cheap and fast
queries, so it does not need powerful edge clusters if the edge devices
can hold a full query pipeline.

7. Conclusion and future work

In this paper, we present the motivation, design, and evaluation
of SplitStream. SplitStream intelligently deploys these primitives on
different edge devices and adaptively adjusts the deployment when nec-
essary. Evaluations show that, SplitStream reduces the result retrieval
8

time by up to 19% and improves the resource utilization by up to 234%.
In future, we may attempt to combine SplitStream with CEVAS
(Zhang et al., 2021) and VideoEdge (Hung et al., 2018) to build a
complete framework across edge devices and the cloud. By applying a
message agency, the worker instances on each device can be accessed
transparently, which may reduce the workload balancing overheads
and enhance the scalability. Moreover, it will be easier to handle
bandwidth constraints in the wireless environment and the backbone
network between the cloud and the edge by adjusting video configura-
tion knobs and applying pipeline modules with different costs (cheap
but inaccurate models or expensive but accurate models) to make
bandwidth-accuracy tradeoffs in the network-sensitive environment.
Besides, we may incorporate intelligent frame filters (Li et al., 2020;
Yuan et al., 2023) into SplitStream to reduce unnecessary analytics
workloads.
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