
UAV and WSN Softwarization and Collaboration

Using Cloud Computing

Sara Mahmoud
1
, Imad Jawhar

1
, Nader Mohamed

2
, and Jie Wu

3

1
College of Information Technology, United Arab Emirates University, Al Ain. UAE

2
Middleware Technologies Lab, Bahrain

3
Department of Computer and Information Sciences, Temple University, Philadelphia, Pennsylvania, USA

{201370014, ijawhar}@uaeu.ac.ae; nader@middleware-tech.net; jiewu@temple.edu

Abstract— Lately, Unmanned Aerial Vehicles (UAVs) have

evolved considerably, and are proving to be very useful for many

important applications in commercial, metropolitan, and military

environments. Typically, UAVs require the collaboration with

other systems to achieve their mission. Wireless Sensor Networks

(WSNs) constitute an example of such systems. In traditional

applications, UAVs obtain the required data from specific

sensors in a peer-to-peer network. However, this network

architecture restricts the scalability and development of the

application. This paper proposes a softwarization architecture

for UAVs and WSNs collaboration based on the Internet of

Things (IoT) model. The higher layers are proposed to be a part

of the cloud to take advantage of important and useful cloud

services, while UAVs and WSNs are devices that interact with the

real world. Our proposed architecture uses a combination of

three paradigms which include network softwarization, Software

Defined Networks (SDN), and Network Functional Virtualization

(NFV). These strategies are associated with decoupling the

hardware devices from the control layer that virtualizes the

device resources for the higher layers. The architecture is

illustrated with an agricultural example of a collaborative system

that consists of multiple sensors and UAVs. A prototype system

that consists of sensing nodes, UAVs, a WSN controller, a UAV

controller, and an orchestration layer was implemented. This

implementation provides a proof of our architecture by

implementing the layers and components and then testing the

system operation.

Keywords—WSN; UAVs; Softwarization; SDN; NFV; IoT;

Cloud Computing;

I. INTRODUCTION

UAVs and WSNs have applications in many areas such as,
agriculture, monitoring, surveillance for example. Usually,
systems are developed for particular applications in a pre-
determined network of UAVs and WSNs. However, these
restricted systems limit the usage of the resources for other
applications. In closed network applications, resources are
tightly coupled and depend on specific devices. Therefore,
modifying the available resources becomes a nightmare for the
system developers and may require shutting down the system
during any maintenance. Furthermore, the system is fallible,
which reduces the system reliability. However, the recent
concepts of SDN and NFV represent the future of networks
and services. SDN is associated with decoupling the control
functions from the hardware using open interfaces, while NFV
virtualizes the underlying functions and hardware to provide an

abstract view of the network. These paradigms motivate the
initiation of new research for utilizing the concept of
softwarization to change the network without reinventing the
network architecture.

This paper continues the work of our previous research. In
[1], we discussed the opportunities and challenges of
integrating UAVs with the cloud. Then, we presented the
integration protocol of UAVs to the cloud as an IoT technology
in [2]. Next, in [3] we proposed an architecture for accessing
UAVs through a third party. This was followed by [4], where
we proposed a cloud platform for developing UAV
applications for UAVs. This paper improves upon our previous
research by presenting network softwarization for UAVs, as
well as other heterogeneous systems such as WSNs, by
decoupling UAV and WSN Devices from the control in a
controller layer that virtualizes the device services to the higher
layers and provides an abstract view to the higher layer. Then,
the orchestration layer manages the mission. This layer deals
with abstract Application Programming Interface (API) to
access UAVs and WSNs. As a result, the orchestration layer
deals with the abstract services rather that the details of the
devices’ protocols. This supports the scalability of the system.

For illustration purposes, a simple irrigation scenario is
used throughout the paper to represent the proposed
architecture. In this scenario, the end user initiates an irrigation
mission in a certain area through the application; this mission is
executed using WSN to measure the land humidity and UAVs
for irrigation. The mission is organized and managed through
the middle layers, the controller layer and the orchestration
layer. The proposed architecture is implemented using AR
drones, humidity sensors, as well as a UAV controller, and
WSN controller servers. The tasks are requested by another
device to present the orchestration layer.

The rest of the paper is organized as the following: Section
Error! Reference source not found. is a literature review of
motivation, background, and related work. Section III
describes the considerations and opportunities gained from the
SDN, NFV, and softwarization concepts. A detailed
description of the architecture is presented in Section IV. An
implementation is provided to evaluate the proposed
architecture in Section V. Section VI concludes the paper.

II. RELATED WORK

There are many applications for UAVs such as the example
presented by Varela et al. [5], where UAVs are used for
environmental monitoring including collecting data on air
quality in different layers of the atmosphere, as some
information cannot be collected by ground systems due to
gases or smoke from fires. In another example, Fausto et al. in
[6] proposed an architecture for using UAVs and a Wireless
Sensor Network (WSN) in agriculture applications. The
researchers developed a system of collaborative UAVs to
efficiently spray pesticides and fertilizers in agricultural areas
that can be reached only with difficulty by humans without
missing some areas in the spraying process, duplicating
spraying areas, or spraying outside boundaries. Mohammed et
al. [7] referred to UAV applications for smart cities. They also
discussed some business applications of UAVs such as in
Amazon Prime Air for delivering products and their use for
restaurant services [8]. These various application opportunities
of UAVs have encouraged researchers and developers to shift
their focus to improve efficient frameworks to develop UAV
applications easily, especially for multiple distributed UAVs
that cooperate with each other. Therefore, different
architectures and communication protocols for collaborative
UAVs have been developed.

Cloud computing is a new paradigm for hosting and
delivering services over the Internet. Some research has been
carried out to utilize the Cloud for some UAV applications [9].
Video Exploitation Tools is an example of an SOA application
for UAVs as implemented by Se et al. [10]. More
investigations were conducted to explore smart objects such as
sensors, actuators, and embedded devices connected to the
Internet through the IoT [11]. The main focus of IoT is
establishing network connectivity between smart objects and
the Internet, while the Web of Things (WoT) builds the
application layer on top of the network [12]. Accordingly, the
Web tools and protocols can be used for developing and
interacting with these objects. In the IoT field, Guinard et al.
[13] proposed the Representational State Transfer (REST)
architecture by defining an object as a server that provides its
resources in a Resource Oriented Architecture (ROA). Guinard
et al. used the web tools as a solution for the WoT. These
researchers proposed two methods for accessing objects [14].
First, they connected devices to a smart gateway for measuring
power consumption. In this approach, objects that have no
direct Internet connectivity are connected to the smart gateway
through other protocols such as Bluetooth and ZigBee. The
second method is a direct access to WSNs, where each node is
considered as a web server that has a uniform interface that the
client applications access.

More recently, network research has been associated with
SDNs that decouple the control plane and data plane from each
other [15]. The control plane interacts both with the higher
layer and lower layer. With the higher layer interaction, the
control plane provides a common abstracted view of the
network, while the lower layer interaction direction, the control
plane programs the forwarding behavior, using device-level
APIs of the physical network equipment distributed around the
network. Moreover, Network-Function Virtualization enables
the network devices to be virtualized as building block classes

and functions managed by the orchestration layer [16]. In the
literature, some papers have addressed the SDN for IoT and
WSN. Qin et al. [17] designed an SDN architecture for the IoT
environment focusing on developing a multi-network
controller that serves scheduling algorithms for heterogeneous
traffic patterns and network links. Caraguay et at. [18]
surveyed the opportunities of developing IoT applications
using SDN compared with the traditional architectures.
Moreover, Jacobsson and Orfanidis [19] proposed an
architecture for WSN based on the SDN principles. The SDN
was used for building low-cost off-the-shelf hardware to
achieve customized development. Jacobsson and Orfanidis
discussed the reconfiguration of the network and used the
collected information for several applications. Gante et al. [20]
discussed the use of SDN for WSN smart management. They
proposed a framework in which a controller resides in a base
station to gather information from the distributed nodes to
define routing rules.

Although several investigations have adopted the SDN
architecture for WSN, they are still at the early stages of
developing a mature platform to develop applications on top of
it. Our paper proposes an architecture that gains the benefit of
SDN as well as NFV and softwarization. In addition, our
proposed architecture extends the concept to include several
types of physical resources that are managed by multiple
controllers, so that the UAVs are separated from the WSNs and
each has their specific tasks and services.

Tightly Coupled Vs. Loosely Coupled Architectures

In distributed systems, components access and interact with
others to share and exchange data. System components can
either be tightly coupled or loosely coupled. In tightly coupled
systems, components and nodes have full knowledge about
others with defined interactions and roles. This approach faces
many limitations. It is difficult to reconfigure the network by
adding or removing nodes from highly coupled systems.
Dependencies increase the probability of failures in the tightly
coupled systems, where a failure in one of the components
affects the others due to interdependencies and data sharing.
On the other hand, loosely coupled systems provide more
flexibility in configuration. In this approach, components have
either limited or no knowledge about other nodes. The
component does not have to interact directly with the node that
provides the data, since any component that satisfies the
conditions may provide the required data or service.

The loosely coupled system makes it easier to reconfigure
the network or modify the nodes with less effort. Adding new
components does not require reconfiguring the whole system;
instead, only the new component needs to be registered and
reconfigured in the control plane. In addition, modifying an
existing component or replacing it could be done at run time
without affecting the system operation. Moreover, loosely
coupled architectures support redundancy for components and
nodes, which improves system reaction to failures and
increases its robustness and reliability. In IoT, smart objects are
usually designed for a specific application in a coupled
architecture where objects are configured together to perform
some tasks in certain scenarios. However, this approach faces

some difficulties of developing new applications as well as
integrating current objects with other nodes.

This paper continues our previous work and focuses on
WSN as sensors that collect data from the real environment,
and UAVs perform actions in accordance with the real
environment to accomplish a mission. The collected sensing
data from the WSN affects the actions of UAVs. According to
the running scenario, in a tightly coupled system, sensor nodes
interact directly with UAVs as shown in Figure 1; therefore,
each sensor node has full knowledge about the UAV address,
communication protocol, commands, and other criteria. In
addition, to add or remove UAVs, it is necessary to notify the
WSN of the new state of the system, which adds more overload
on the system besides the mission coordinating
communication. Furthermore, the overhead of the decision-
making should be considered, where the humidity sensors
decide the need of spraying by UAVs, although the sensors’
capability is not sufficient to handle decision-making
processing. On the other hand, in the loosely coupled
architecture the WSN and the UAVs do not interact directly
with each other. The middle layer takes the control of
managing the cooperation between the WSN and the UAVs.
This layer separates the WSN layer from the UAVs; therefore,
the WSN does not have a detailed knowledge about the UAVs.

Figure 1 UAVs and WSN in a tightly coupled architecture.

III. SPECIAL ISSUES AND OPPORTUNITIES

Before developing UAVs and a WSN framework, some
considerations should be taken into account. These
considerations are summarized as follows.

A. Considerations Related to UAVs and WSNs

a) Limited capabilities: Sensing devices in WSN have

limited capabilities with respect to memory, processor

capacity, and energy. Although UAVs have more powerful

resources, they consume their internal resources more rapidly;

therefore, they require lightweight software that does not

heavily consume their resources.

b) Context perspectives: The availability of some

services depends on several contexts such as the device’s

location, energy level, or specific sensor readings. Therefore,

if an available UAV is currently near the mission location, it is

preferable to choose it rather than a similar UAV that is far

from the specified location.

c) Real-time management: UAV task allocation,

mission management, and flight control algorithms should be

provided for real-time execution and path planning

management, which requires reliable communications.

d) Reliable connection: These devices require

continuous connectivity to the cloud so that they can access

the cloud and their resources to be invoked when required.

The assumption of a reliable connection is valid for operations

in city areas such as smart cities where networks are available

for 3G/4G/LTE connections.

e) Physical environment: The services provided by the

UAVs are physical world services, thus they sense and affect

the physical environment. UAV services that make changes in

the environment such as spraying should be managed

carefully, e.g. these services should not be duplicated over the

same area. In case of a repeated request, there should be

approval or acknowledgment before performing the service.

B. SDN and NFV Opportunities for UAV and WSN

The proposed architecture enables the SDN concept by
separating the physical resource layer from the control layer as
well as gaining the benefit from the NFV architecture by
virtualizing the devices and its functions; this opens numerous
opportunities for UAVs and WSN applications and
development. In addition, the softwarization concept provides
the service modeling.

SDN, NFV, and softwarization provide several
opportunities for the architecture model. To demonstrate that, a
description of the system is discussed below without each of
them following the agriculture example:

a) Separating responsibilities: Without the SDN, the

control plane and the service plane reside on the same

component. In this case, the WSN and UAVs have the

intelligence systems on them. Hence, the sensor collects the

humidity of the soil and decides the need for spraying, which

overloads the sensors processing. As a result, by separating the

control plane from the sensing devices, each component has

separate and specific responsibility.

b) Virtualization: This allows the higher layer to view

the physical devices as a single block system. WSN and UAVs

can be homogeneous or heterogeneous. However, developing

heterogeneous applications for UAV and WSN is a complex

task without virtualization [21].

c) Abstraction: Without virtualization, the higher layers

interact with the components by specifying the device

explicitly. With virtualization, the higher layers view the WSN

as a network of sensors regardless of their real distribution.

d) Modularity: Softwarization utilizes the SDN and NFV

and then provides the functions of the components as services

so that the higher layer is re-programmed easily to modify the

network mission according to predeveloped modules.

e) Configurability: Without softwarization, it is difficult

to reconfigure the control system. In the case of adding other

types of components such as ground vehicles to the WSN and

UAVs system, the softwarization architecture provides the

ground vehicles’ services and registers their descriptions to be

added to the system easily. Then, the higher layers deal with

the components as services.

f) Cloud advantages: Because the control plane resides in

huge servers or in the cloud, it utilizes the powerful

processing and storage available. Allocating the

control plane on the cloud provides several advantages

such as: 1) Ubiquity: The ubiquitous property of cloud

computing that allows users to access the system from

anywhere at any time. 2) Elasticity: The cloud has a

huge and scalable infrastructure of processing power;

the controller plane computations could be made on

the cloud. Therefore, the reserved processing and

storage of the higher layer are increased according to

the current usage rather than reserving fixed processing

servers. 3) Cloud services: Cloud computing provides

ubiquitous services such as Google Earth 3D maps and

computations that can be integrated with the system

services to develop efficient applications. 4) Cloud-

level reliability: As the controller resides on the cloud,

it allows duplication on multiple servers, so that in

case of controller failure on one server, it switches to

another working server. 5) Mobility: Devices are

required to connect to the cloud through any access

point. This allows the devices to move to different

places as long as they are connected to the cloud. This

can be compared with the central station where devices

are connected to a single point, which restricts the area

of movements. 6) Standardized communication

protocols: The cloud uses standardized communication

protocols to request services and exchange data such as

Hypertext Transfer Protocol (HTTP). Therefore,

versatile nodes can use these standards regardless of

their operating systems, programming languages, and

commands. The standardized protocols make the

application development easier on top of the platform.

g) Scalability: Adding more UAVs or resources

becomes easier by registering these devices to the platform as

plug-and-play without affecting the application layers, so that

devices are attached to the mission in the run time of the

operation.

h) Component fault-tolerance: In case of a component

failure in the lower layer, the component may be replaced with

another similar component to perform the task without

affecting the architecture or the flow of the mission.

i) Reusability: The web service architectures support

reusability so that the device resources are used for different

applications according to their availability. For example, the

agriculture humidity sensors could be used simultaneously for

the spraying mission as well as for a soil quality mission that

measures ability of the soil to reserve its water for a period of

time.

j) Cost efficiency: The reusability of the same component

in different applications reduces the cost of owning the same

component for each application, the CAPital EXpenditure

(CAPEX) by reducing the hardware resources of multiple

systems by reusability. In this case, it can be used easily

without interfering between applications. In addition, the

orchestration and management of the resources reduces the

OPerational EXpenditures (OPEX) during the process.

IV. SOFTWARIZATION ARCHITECTURE LAYERS

In the near future, cloud computing will extend the cloud
infrastructure to include terminals in the real world. The new
research of the Software Defined Network evolves the client
side to act as servers and provide services in the physical world
through well-defined APIs [22].

The softwarization architecture is shown in Figure 2. It is
composed of the following layers: first, the bottom layer is the
Physical Resource Layer. It consists of the WSN and the UAV
sub-layers that provide services to interact with real world.
Second, the Controller layer contains the WSN and UAV
controllers as well as the database for data storage. This layer
represents the abstract services of the physical resource layer to
the higher layer. Thirdly, the Orchestration Layer is
responsible for organizing and managing the mission. It
requests the required services from the suitable controller.
Finally, the top layer is the Application Layer where the user
interacts through a browser and requests the mission.The
general sequence diagram of the proposed model is presented
in Figure 3. The roles and services of the architecture layers are
summarized in Table 1.

A. Physical Resource Layer

These are the devices that provide services in the real
environment. WSN are used to collect data from the soil, while
UAVs sprays the area for irrigation. These services are
provided on demand when requested by the higher layers. The
service is similar to a web service that is requested through API
or command then does measurements or actions and return
values. The devices do not depend or interact with each other.
Hence, each device is a standalone service. However, the
device has a local controller for internal processes. For
example, a UAV has local controller for autonomous flight.

1) WSN Devices Sub-layer
First, a WSN node includes tiny sensing nodes that are

distributed in one or more regions of the area. A node consists
of several components of a local controller that is a tiny
processor responsible of controlling the inner processing of the
node, wireless communication system to interact with the
higher layer, sensors to collect data from the physical world,
and energy source to provide operation energy. Each node is
registered to the WSN controller, then identified by a unique IP
and allocated. They accumulate the required data from the
physical environment and send it to the WSN controller when
required. The WSN may be divided then clustered in groups
according to the network area.

The WSN provides sensing services to the WSN controller
in a loosely coupled design. Each node provides its sensing
data from the physical environment as services accessed
through APIs, regardless of other nodes or components. In this

scenario, WSN node senses the soil humidity and sends the
reading to the WSN when requested.

2) UAV Devices Sub-layer
Second, UAVs are flying vehicles that perform actions to

the real environment; their components include payloads such
as spraying and camera, internal memory, processor for local
control, communication system to interact with the ground
station, and other resources. In this research, they are
considered as actuators that sprays the specified area as
requested. Each UAV provides several services that physically
affect environment. UAVs receive requests from the UAV
controller through standardized protocols and APIs.

B. Controller Layer

This layer is responsible of representing the physical
resource layer and its services to the higher layer in an abstract
view. Each device belongs to a certain controller so that they
provide similar services. For example, UAVs belongs to the
UAV controller, while sensing nodes belongs to the WSN
controller. Hence, different service providers may provide their
services independently from each other.

The controller layer implies main roles: registering the
entities, monitoring the status of the entities, analyzing the
service requirements and allocating the most suitable one for
the requested service. In addition it interacts with the
orchestration layer for service requests and result replies. The
controller roles could be in one layer or different sub layers.

 Registration: The new device should be registered to
the controller and define its service capabilities and
interfaces. Then, it is registered in the controller
database with a unique identifier, which allows it to be
requested when needed. This sub layer allows multiple
devices to be added or removed without affecting
system performance. Furthermore, it facilitates the
maintenance of the devices at the run time of the
mission so that the device is removed temporary then
returned easily.

 Monitoring: during the mission, the status of some
devices may change, for example, the availability of
their services, the remaining power and the dynamic
location in some situation. In addition, it monitors the
workflow of the active devices to insure accomplishing
the service.

 Task allocation: This is one of the key roles of the
controller to allocate the service to the suitable available
entity. This role requires decision making and
description analysis. When the controller receives the
service request, it analyzes the service description, and
then fetches the most suitable device to perform this
service. The allocation depends on different properties,
for instant, the device availability, location, power level
and other parameters. Accordingly, the controller
requests the service from that device and monitors it
workflow.

The controller layer interacts with higher and lower layers,
as well as the database; the orchestration layer sends the

service request to the controller layer by describing the service
in a description language. Furthermore, the controller interacts
with the lower layer -the physical resource layer- using the
device resource APIs and commands. The databases hold the
information and collected data during the mission. The
controller layer provides an abstract view for the physical
resource layer services, therefore, the higher layer does not
require knowing the interaction language for each entity.

1) WSN Controller Sub-layer
The WSN controller resides in the cloud side, and it is

responsible for registering the sensors in its database so that the
available sensors can be distinguished from the ones currently
in use.. In addition, it deals with the low-level communication
protocols where different sensors may have different protocols.
Subsequently, the WSN controller provides virtualized sensing
services to the higher layer in abstract APIs. The importance of
this layer is to hide the heterogeneity of the sensor interfaces
from the higher layers to be viewed as sensing services without
being concerned about the sensors’ configurations.

Figure 2 Softwarization of UAV and WSN architecture.

Figure 3 The general proposed sequence diagram for softwarization

architecture

2) UAV Controller Sub-layer
Similarly, the UAV controller resides in the cloud which

could be in the same or a different server. It provides
virtualized services of UAVs in abstract APIs to the higher

layer. It is also responsible for allocating the suitable available
UAV for the required task requested by the higher layer.

C. Orchestration Layer

This layer acts as a middleware between the application and
services. It is responsible of organizing the sequence of the
tasks and linking the services according to their dependencies.
This layer requires decision making and intelligence abilities.
When the orchestration layer receives the tasks from the
application, it generates a list of services and dependencies to
link them. For example, the spraying mission requires sensing
the soil humidity as well as irrigation action. The irrigation
process depends on the humidity measurements. As a result,
the orchestration layer requests the humidity service and then
analyses the measured values to decide the irrigate process.

When the orchestration layer generates the service list, it
requests each service from the controller that provides the
required service by describing its parameters in service
description language. Next, it receives the service value or the
acknowledgment of the service performance.

The orchestration layer insures the isolation between
service entities, therefore, no direct interaction between sensors
and UAVs. This isolation allows the system to be elastic i.e.
adding more service provides from deferent sources without
affecting the higher layer. In this scenario, the services are not
owned by the end user however, multiple providers may offer
their devices as services.

D. Application Layer

This is the front end of the system where the user interacts
with to request the mission and get the end results. For
instance, the application allows the user to specify an area for
irrigation. When taking into account that the application resides
on the cloud side, the user will be able to access it ubiquitously.
The user enters the requirements through a user friendly
interface, and then the application translates the mission
requirements into service description format. After that, the
application sends the generated service description to the
orchestration layer to organize the mission. In addition, the
application notifies the user with the mission results at the end
of the mission. The end user initiates the mission by identifying
the mission parameters. In this case, the end user specifies the
area that needs to irrigate.

V. EVALUATION

The system was implemented using several layers as shown
in Figure 2 and discussed in Section IV. First, the physical
resource layer is composed of sensor nodes and UAVs.

1) WSN Devices Implementation
The sensors were implemented as shown in Figure 4 using

Arduinos as a processor along with a DHT sensor for humidity
measurements and Adafruit CC3000 for wireless connectivity.
A 9 volt battery was used as the power source.

Table 1 Summary of roles and services of the softwarization model layers

Actor Description Role/ Service

Physical

Resources
Layer

The physical devices

that provide services
in real world

- Collects measurements from

real environment
- Acts in real environment

Controller

Layer

Provides device
services in abstract

format

- Registers entities

- Virtualizes resource layer
- Monitors entities

- Gets service requests

- Allocates services

Orchestrati

on Layer

Organizes the

sequence of the

mission and links
service dependencies

- Creates service list and service
description

- Requests services from

controllers
- Analyzes values and make

decisions

Application

Layer

The front end user
friendly interface that

present the mission to

the user

- Gets the mission specification
- Requests the mission

- Returns accomplishment to the

user

Figure 4 The conceptual view of a sensing node.

2) UAV Device implementation
Then, an AR drone was used to implement the UAV

physical layer. The AR drone has pre-programmed commands
for controlling the UAV but has no spraying service. Pre-
programmed commands were used instead to show the
interaction between the UAV and the UAV controller server.

AR Drone Configuration

AR drones are configured in booting by default as a
Dynamic Host Configuration Protocol (DHCP) server and
access point. Then, a client such as laptop or smartphone
connects to it and gets IPs from the UAV in order to
communicate. However, this topology is not supporting our
proposed architecture. The proposed architecture requires the
UAV to connect to an access point that provides IPs.

To connect UAVs to the access point we implemented the
following steps: First, we connected the laptop to the UAV in
the default protocol. Second, we accessed the UAV setup using
PuTTY configuration tool and modified the default setup
temporary so that the UAV become a client in the network.
Then, we executed the BusyBox commands as shown in Figure
5 and Figure 6 by implementing the following: 1) we shut
down the DHCP. 2) We brought down the ath0 interface, and
then brought it up in managed-mode. 3) We disconnected the
UAV from the laptop connection and then connected it to the
SSID. finally, we ran the DHCP client to get IP address for the
UAV.

Figure 5 PuTTY configuration tool to connect to the UAV using Telnet

protocol

Figure 6 Sending BusyBox commands for the UAV to connect to an external

access point and obtain an IP

killall udhcpc

ifconfig ath0 down

iwconfig ath0 mode managed essid $DRONE_SSID

NetworkName any channel auto commit

ifconfig ath0 up

udhcpc -b -i ath0

By following these steps, the UAV can connect to the
access point and get an IP address in the network. As a result,
the UAV services are accessed through the provided IP
address.

After that we connected two AR drones to the access point
to present the UAVs layer. Each UAV has a unique IP address
known for the UAV controller so that the UAV controller can
access the UAV services.

3) WSN Controller and UAV Controller Implementation
The controller layers were built in the NodeJS language for

the WSN controller and the UAV controller. The controllers
were installed in two different computers to simulate two
servers. Devices and controllers were implemented in a local
network for the purpose of simplicity. They were given local IP
addresses.

WSN Controller Implementation

The WSN controller was implemented in the first
computer, and it provides an HTTP API for providing an
abstraction view of the nodes using following RESTful
request:

GET service/humidity HTTP/1.1

Host: WSN_controller_address

Accept: Application/json

This API requests a humidity reading from the WSN
controller without directly interacting with the sensing node.
Then, the controller communicates with the sensing node
according to its APIs and communication protocol to request
the humidity as follows:

GET /humidity HTTP/1.1

Host: sensor_address

Accept: Application/json

 and returns the result to the requester. More specifications
and requirements could be defined in a JavaScript Object
Notation (JSON) object along with the HTTP request as
follows:

HTTP/1.1 200 OK

Content-Type: application/json

Server: humidity_sensor

{Humidity: 33}

This value is similarly returned to the requester:

HTTP/1.1 200 OK

Content-Type: application/json

Server: WSN_controller_address

{Humidity: 33}

UAV Controller Implementation

Next, the UAV controller was installed in the second
computer and provides an abstract view of the UAVs’ services.
For example, a GET operation with the HTTP request:

GET service/spray HTTP/1.1

Host: UAV_controller_address

Accept: Application/json

This HTTP RESTful request is the API for a spraying
service from the UAV controller, then it interacts with the
UAV to request the service and then the UAV returns the result
to the UAV controller who consequently returns it to the
requester. In our implementation, the UAV takes off, hovers
around the area, and then lands. The UAV controller and the
UAVs communicate in well-defined shell commands of the
UAV, however, the requester and the UAV controller
communicate in HTTP RESTful APIs.

Similarly to the WSN controller, in order to define
additional parameters, a JSON object could be provided along
with the request. The orchestration layer was implemented in a
mobile device to request the services from the controller layer.
The orchestration layer requests an HTTP request for a
humidity reading from the WSN controller, then receives a
current value of the humidity level. Accordingly, it sends a
spraying service request as an HTTP request to the UAV
controller. Although the HTTP APIs implemented in this
prototype are GET requests, PUT requests could be used for
security purposes to add authentication property in the request
parameter. Therefore, only authorized users are allowed to
request the service.

The response time of the HTTP requests from the
orchestration to the WSN controller and the UAV controller
were measured ten times as shown in Figure 7. It is observed
that the response time for the humidity sensor is higher than the
response time for the UAV. That is due to the differences in the
processing capabilities of the devices, where UAVs have more
powerful resources and faster processing than the sensor node.

Figure 7 Response time for Humidity sensor and UAV through the WSN

controller and the UAV controller respectively.

VI. CONCLUSION

The proposed architecture uses the recent paradigms of
SDN and NFV to adapt a novel architecture of softwarization
for UAVs and WSNs. This architecture eliminates the
restrictions of tightly coupled architectures and utilizes the
benefits of the recent research topic of the softwarization of
network resources. This platform allows the flexibility of
developing applications on top of the platform from the
available physical resource devices and services without
reinventing the wheel due to the opportunities provided by
these concepts. By decoupling the resources of UAVs and
WSNs, the device is responsible for proving its services when
invoked by the resource API regardless of the other devices’
services. Therefore, the physical resource layer is associated
with collecting data and performing actions on the real world
without being involved in decision-making or invoking other
services. The system was implemented to provide a proof of
concept using a sensing device and UAV along with their
controllers to abstract the physical layer services. Then, the
orchestration layer interacts with the controllers to request the
required service. For future work, the system requires security
considerations for the devices, the connection channel and
higher layer. Additionally, the Orchestration Layer algorithms
can be studied and compared to come up with optimal
algorithms to organize and manage the available resources.
Besides, the evaluation method is currently simple
implemented for few devices. This can be enhanced by
simulating the architecture by testing the scalability and
performance for more devices.

REFERENCES

[1] S. Mahmoud and N. Mohamed, “Collaborative UAVs Cloud,” in
Unmanned Aircraft Systems (ICUAS), 2014 International Conference

on, 2014, pp. 365–373.

[2] S. Mahmoud, N. Mohamed, and J. Al-Jaroodi, “Integrating UAVs into
the Cloud Using the Concept of the Web of Things,” J. Robot., vol.

2015, 2015.

[3] S. Mahmoud and N. Mohamed, “Broker Architecture for Collaborative

UAVs Cloud Computing,” presented at the The 2015 International
Conference on Collaboration Technologies and Systems (CTS 2015),

Atlanta, Georgia, USA, 2015.

[4] S. Mahmoud and N. Mohamed, “Toward a Cloud Platform for UAV
Resources and Services,” presented at the IEEE 4th Symposium on

Network Cloud Computing and Applications, Munich, Germany.

[5] G. Varela, P. Caamamo, F. Orjales, A. Deibe, F. López-Peña, and R. J.
Duro, “Swarm intelligence based approach for real time UAV team

coordination in search operations,” in Nature and Biologically Inspired

Computing (NaBIC), 2011 Third World Congress on, 2011, pp. 365–
370.

[6] F. G. Costa, J. Ueyama, T. Braun, G. Pessin, F. S. Osório, and P. A.

Vargas, “The use of unmanned aerial vehicles and wireless sensor
network in agricultural applications,” in Geoscience and Remote Sensing

Symposium (IGARSS), 2012 IEEE International, 2012, pp. 5045–5048.

[7] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar,
“UAVs for smart cities: Opportunities and challenges,” in Unmanned

Aircraft Systems (ICUAS), 2014 International Conference on, 2014, pp.

267–273.
[8] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar,

“Opportunities and Challenges of Using UAVs for Dubai Smart City,”

in 2014 6th International Conference on New Technologies, Mobility
and Security (NTMS), 2014, pp. 1–4.

[9] C. E. Lin, C.-R. Li, and Y.-H. Lai, “UAS Cloud Surveillance System,”

in Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, 2012, pp. 173–178.

[10] S. Se, C. Nadeau, and S. Wood, “Automated UAV-based video
exploitation using service oriented architecture framework,” in SPIE

Defense, Security, and Sensing, 2011, p. 80200Y–80200Y.

[11] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[12] S. Gustafson and A. Sheth, “Web of Things,” Comput. Now, vol. 7, no.

3, 2014.
[13] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for

the web of things,” in Internet of Things (IOT), 2010, 2010, pp. 1–8.

[14] D. Guinard, V. M. Trifa, and E. Wilde, Architecting a mashable open
world wide web of things. ETH, Department of Computer Science, 2010.

[15] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, and

others, “A survey of software-defined networking: Past, present, and
future of programmable networks,” Commun. Surv. Tutor. IEEE, vol.

16, no. 3, pp. 1617–1634, 2014.

[16] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” Commun. Mag. IEEE, vol.

51, no. 11, pp. 24–31, 2013.

[17] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N.
Venkatasubramanian, “A Software Defined Networking Architecture for

the Internet-of-Things,” in Network Operations and Management

Symposium (NOMS), 2014 IEEE, 2014, pp. 1–9.
[18] A. L. Valdivieso Caraguay, A. Benito Peral, L. I. Barona Lopez, and L.

J. García Villalba, “SDN: Evolution and Opportunities in the

Development IoT Applications,” Int. J. Distrib. Sens. Netw., vol. 2014,
2014.

[19] M. Jacobsson and C. Orfanidis, “Using software-defined networking

principles for wireless sensor networks,” in 11th Swedish National
Computer Networking Workshop (SNCNW), May 28-29, 2015, Karlstad,

Sweden, 2015.

[20] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor
network management based on software-defined networking,” in

Communications (QBSC), 2014 27th Biennial Symposium on, 2014, pp.

71–75.
[21] S. Hadim, J. Al-Jaroodi, and N. Mohamed, “Middleware issues and

approaches for mobile ad hoc networks,” in The IEEE Consumer

Communications and Networking Conf.(CCNC 2006), 2006, pp. 431–
436.

[22] C.-S. Li and W. Liao, “Software defined networks [guest editorial],”

Commun. Mag. IEEE, vol. 51, no. 2, pp. 113–113, 2013.

