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Abstract— Lately, Unmanned Aerial Vehicles (UAVs) have 

evolved considerably, and are proving to be very useful for many 

important applications in commercial, metropolitan, and military 

environments.  Typically, UAVs require the collaboration with 

other systems to achieve their mission. Wireless Sensor Networks 

(WSNs) constitute an example of such systems. In traditional 

applications, UAVs obtain the required data from specific 

sensors in a peer-to-peer network. However, this network 

architecture restricts the scalability and development of the 

application. This paper proposes a softwarization architecture 

for UAVs and WSNs collaboration based on the Internet of 

Things (IoT) model.  The higher layers are proposed to be a part 

of the cloud to take advantage of important and useful cloud 

services, while UAVs and WSNs are devices that interact with the 

real world. Our proposed architecture uses a combination of 

three paradigms which include network softwarization, Software 

Defined Networks (SDN), and Network Functional Virtualization 

(NFV). These strategies are associated with decoupling the 

hardware devices from the control layer that virtualizes the 

device resources for the higher layers. The architecture is 

illustrated with an agricultural example of a collaborative system 

that consists of multiple sensors and UAVs. A prototype system 

that consists of sensing nodes, UAVs, a WSN controller, a UAV 

controller, and an orchestration layer was implemented.  This 

implementation provides a proof of our architecture by 

implementing the layers and components and then testing the 

system operation.  

Keywords—WSN; UAVs; Softwarization; SDN; NFV; IoT; 

Cloud Computing;  

I. INTRODUCTION 

UAVs and WSNs have applications in many areas such as, 
agriculture, monitoring, surveillance for example. Usually, 
systems are developed for particular applications in a pre-
determined network of UAVs and WSNs. However, these 
restricted systems limit the usage of the resources for other 
applications. In closed network applications, resources are 
tightly coupled and depend on specific devices. Therefore, 
modifying the available resources becomes a nightmare for the 
system developers and may require shutting down the system 
during any maintenance. Furthermore, the system is fallible, 
which reduces the system reliability. However, the recent 
concepts of SDN and NFV represent the future of networks 
and services. SDN is associated with decoupling the control 
functions from the hardware using open interfaces, while NFV 
virtualizes the underlying functions and hardware to provide an 

abstract view of the network. These paradigms motivate the 
initiation of new research for utilizing the concept of 
softwarization to change the network without reinventing the 
network architecture.  

This paper continues the work of our previous research. In 
[1], we discussed the opportunities and challenges of 
integrating UAVs with the cloud. Then, we presented the 
integration protocol of UAVs to the cloud as an IoT technology 
in [2]. Next, in [3] we proposed an architecture for accessing 
UAVs through a third party. This was followed by [4], where 
we proposed a cloud platform for developing UAV 
applications for UAVs. This paper improves upon our previous 
research by presenting network softwarization for UAVs, as 
well as other heterogeneous systems such as WSNs, by 
decoupling UAV and WSN Devices from the control in a 
controller layer that virtualizes the device services to the higher 
layers and provides an abstract view to the higher layer. Then, 
the orchestration layer manages the mission. This layer deals 
with abstract   Application Programming Interface (API) to 
access UAVs and WSNs. As a result, the orchestration layer 
deals with the abstract services rather that the details of the 
devices’ protocols. This supports the scalability of the system.  

For illustration purposes, a simple irrigation scenario is 
used throughout the paper to represent the proposed 
architecture. In this scenario, the end user initiates an irrigation 
mission in a certain area through the application; this mission is 
executed using WSN to measure the land humidity and UAVs 
for irrigation. The mission is organized and managed through 
the middle layers, the controller layer and the orchestration 
layer. The proposed architecture is implemented using AR 
drones, humidity sensors, as well as a UAV controller, and 
WSN controller servers. The tasks are requested by another 
device to present the orchestration layer. 

The rest of the paper is organized as the following: Section 
Error! Reference source not found. is a literature review of 
motivation, background, and related work. Section  III 
describes the considerations and opportunities gained from the 
SDN, NFV, and softwarization concepts. A detailed 
description of the architecture is presented in Section  IV. An 
implementation is provided to evaluate the proposed 
architecture in Section  V. Section  VI concludes the paper.  



II. RELATED WORK 

There are many applications for UAVs such as the example 
presented by Varela et al. [5], where UAVs are used for 
environmental monitoring including collecting data on air 
quality in different layers of the atmosphere, as some 
information cannot be collected by ground systems due to 
gases or smoke from fires. In another example, Fausto et al. in 
[6] proposed an architecture for using UAVs and a Wireless 
Sensor Network (WSN) in agriculture applications. The 
researchers developed a system of collaborative UAVs to 
efficiently spray pesticides and fertilizers in agricultural areas 
that can be reached only with difficulty by humans without 
missing some areas in the spraying process, duplicating 
spraying areas, or spraying outside boundaries. Mohammed et 
al. [7] referred to UAV applications for smart cities. They also 
discussed some business applications of UAVs such as in 
Amazon Prime Air for delivering products and their use for 
restaurant services [8]. These various application opportunities 
of UAVs have encouraged researchers and developers to shift 
their focus to improve efficient frameworks to develop UAV 
applications easily, especially for multiple distributed UAVs 
that cooperate with each other. Therefore, different 
architectures and communication protocols for collaborative 
UAVs have been developed. 

Cloud computing is a new paradigm for hosting and 
delivering services over the Internet. Some research has been 
carried out to utilize the Cloud for some UAV applications [9]. 
Video Exploitation Tools is an example of an SOA application 
for UAVs as implemented by Se et al. [10]. More 
investigations were conducted to explore smart objects such as 
sensors, actuators, and embedded devices connected to the 
Internet through the IoT [11]. The main focus of IoT is 
establishing network connectivity between smart objects and 
the Internet, while the Web of Things (WoT) builds the 
application layer on top of the network [12]. Accordingly, the 
Web tools and protocols can be used for developing and 
interacting with these objects. In the IoT field, Guinard et al. 
[13] proposed the Representational State Transfer (REST) 
architecture by defining an object as a server that provides its 
resources in a Resource Oriented Architecture (ROA). Guinard 
et al. used the web tools as a solution for the WoT. These 
researchers proposed two methods for accessing objects [14]. 
First, they connected devices to a smart gateway for measuring 
power consumption. In this approach, objects that have no 
direct Internet connectivity are connected to the smart gateway 
through other protocols such as Bluetooth and ZigBee. The 
second method is a direct access to WSNs, where each node is 
considered as a web server that has a uniform interface that the 
client applications access. 

More recently, network research has been associated with 
SDNs that decouple the control plane and data plane from each 
other [15]. The control plane interacts both with the higher 
layer and lower layer. With the higher layer interaction, the 
control plane provides a common abstracted view of the 
network, while the lower layer interaction direction, the control 
plane programs the forwarding behavior, using device-level 
APIs of the physical network equipment distributed around the 
network. Moreover, Network-Function Virtualization enables 
the network devices to be virtualized as building block classes 

and functions managed by the orchestration layer [16]. In the 
literature, some papers have addressed the SDN for IoT and 
WSN. Qin et al. [17] designed an SDN architecture for the IoT 
environment focusing on developing a multi-network 
controller that serves scheduling algorithms for heterogeneous  
traffic patterns and network links. Caraguay et at. [18] 
surveyed the opportunities of developing IoT applications 
using SDN compared with the traditional architectures. 
Moreover, Jacobsson and Orfanidis [19] proposed an 
architecture for WSN based on the SDN principles. The SDN 
was used for building low-cost off-the-shelf hardware to 
achieve customized development. Jacobsson and Orfanidis 
discussed the reconfiguration of the network and used the 
collected information for several applications. Gante et al. [20] 
discussed the use of SDN for WSN smart management. They 
proposed a framework in which a controller resides in a base 
station to gather information from the distributed nodes to 
define routing rules. 

Although several investigations have adopted the SDN 
architecture for WSN, they are still at the early stages of 
developing a mature platform to develop applications on top of 
it. Our paper proposes an architecture that gains the benefit of 
SDN as well as NFV and softwarization. In addition, our 
proposed architecture extends the concept to include several 
types of physical resources that are managed by multiple 
controllers, so that the UAVs are separated from the WSNs and 
each has their specific tasks and services. 

Tightly Coupled Vs. Loosely Coupled Architectures  

In distributed systems, components access and interact with 
others to share and exchange data. System components can 
either be tightly coupled or loosely coupled. In tightly coupled 
systems, components and nodes have full knowledge about 
others with defined interactions and roles. This approach faces 
many limitations. It is difficult to reconfigure the network by 
adding or removing nodes from highly coupled systems. 
Dependencies increase the probability of failures in the tightly 
coupled systems, where a failure in one of the components 
affects the others due to interdependencies and data sharing. 
On the other hand, loosely coupled systems provide more 
flexibility in configuration. In this approach, components have 
either limited or no knowledge about other nodes. The 
component does not have to interact directly with the node that 
provides the data, since any component that satisfies the 
conditions may provide the required data or service. 

The loosely coupled system makes it easier to reconfigure 
the network or modify the nodes with less effort. Adding new 
components does not require reconfiguring the whole system; 
instead, only the new component needs to be registered and 
reconfigured in the control plane. In addition, modifying an 
existing component or replacing it could be done at run time 
without affecting the system operation. Moreover, loosely 
coupled architectures support redundancy for components and 
nodes, which improves system reaction to failures and 
increases its robustness and reliability. In IoT, smart objects are 
usually designed for a specific application in a coupled 
architecture where objects are configured together to perform 
some tasks in certain scenarios. However, this approach faces 



some difficulties of developing new applications as well as 
integrating current objects with other nodes. 

This paper continues our previous work and focuses on 
WSN as sensors that collect data from the real environment, 
and UAVs perform actions in accordance with the real 
environment to accomplish a mission. The collected sensing 
data from the WSN affects the actions of UAVs. According to 
the running scenario, in a tightly coupled system, sensor nodes 
interact directly with UAVs as shown in Figure 1; therefore, 
each sensor node has full knowledge about the UAV address, 
communication protocol, commands, and other criteria. In 
addition, to add or remove UAVs, it is necessary to notify the 
WSN of the new state of the system, which adds more overload 
on the system besides the mission coordinating 
communication. Furthermore, the overhead of the decision-
making should be considered, where the humidity sensors 
decide the need of spraying by UAVs, although the sensors’ 
capability is not sufficient to handle decision-making 
processing. On the other hand, in the loosely coupled 
architecture the WSN and the UAVs do not interact directly 
with each other. The middle layer takes the control of 
managing the cooperation between the WSN and the UAVs. 
This layer separates the WSN layer from the UAVs; therefore, 
the WSN does not have a detailed knowledge about the UAVs. 

 
Figure 1 UAVs and WSN in a tightly coupled architecture. 

III. SPECIAL ISSUES AND OPPORTUNITIES 

Before developing UAVs and a WSN framework, some 
considerations should be taken into account. These 
considerations are summarized as follows. 

A. Considerations Related to UAVs and WSNs 

a) Limited capabilities: Sensing devices in WSN have 

limited capabilities with respect to memory, processor 

capacity, and energy. Although UAVs have more powerful 

resources, they consume their internal resources more rapidly; 

therefore, they require lightweight software that does not 

heavily consume their resources. 

b) Context perspectives: The availability of some 

services depends on several contexts such as the device’s 

location, energy level, or specific sensor readings. Therefore, 

if an available UAV is currently near the mission location, it is 

preferable to choose it rather than a similar UAV that is far 

from the specified location. 

c) Real-time management: UAV task allocation, 

mission management, and flight control algorithms should be 

provided for real-time execution and path planning 

management, which requires reliable communications. 

d) Reliable connection: These devices require 

continuous connectivity to the cloud so that they can access 

the cloud and their resources to be invoked when required. 

The assumption of a reliable connection is valid for operations 

in city areas such as smart cities where networks are available 

for 3G/4G/LTE connections.  

e) Physical environment: The services provided by the 

UAVs are physical world services, thus they sense and affect 

the physical environment. UAV services that make changes in 

the environment such as spraying should be managed 

carefully, e.g. these services should not be duplicated over the 

same area. In case of a repeated request, there should be 

approval or acknowledgment before performing the service. 

B. SDN and NFV Opportunities for UAV and WSN 

The proposed architecture enables the SDN concept by 
separating the physical resource layer from the control layer as 
well as gaining the benefit from the NFV architecture by 
virtualizing the devices and its functions; this opens numerous 
opportunities for UAVs and WSN applications and 
development. In addition, the softwarization concept provides 
the service modeling.  

SDN, NFV, and softwarization provide several 
opportunities for the architecture model. To demonstrate that, a 
description of the system is discussed below without each of 
them following the agriculture example: 

a) Separating responsibilities: Without the SDN, the 

control plane and the service plane reside on the same 

component. In this case, the WSN and UAVs have the 

intelligence systems on them. Hence, the sensor collects the 

humidity of the soil and decides the need for spraying, which 

overloads the sensors processing. As a result, by separating the 

control plane from the sensing devices, each component has 

separate and specific responsibility. 

b) Virtualization: This allows the higher layer to view 

the physical devices as a single block system. WSN and UAVs 

can be homogeneous or heterogeneous. However, developing 

heterogeneous applications for UAV and WSN is a complex 

task without virtualization [21]. 

c) Abstraction: Without virtualization, the higher layers 

interact with the components by specifying the device 

explicitly. With virtualization, the higher layers view the WSN 

as a network of sensors regardless of their real distribution.   

d) Modularity: Softwarization utilizes the SDN and NFV 

and then provides the functions of the components as services 

so that the higher layer is re-programmed easily to modify the 

network mission according to predeveloped modules.  

e) Configurability: Without softwarization, it is difficult 

to reconfigure the control system. In the case of adding other 



types of components such as ground vehicles to the WSN and 

UAVs system, the softwarization architecture provides the 

ground vehicles’ services and registers their descriptions to be 

added to the system easily. Then, the higher layers deal with 

the components as services.  

f) Cloud advantages: Because the control plane resides in 

huge servers or in the cloud, it utilizes the powerful 

processing and storage available. Allocating the 

control plane on the cloud provides several advantages 

such as: 1) Ubiquity: The ubiquitous property of cloud 

computing that allows users to access the system from 

anywhere at any time. 2) Elasticity: The cloud has a 

huge and scalable infrastructure of processing power; 

the controller plane computations could be made on 

the cloud. Therefore, the reserved processing and 

storage of the higher layer are increased according to 

the current usage rather than reserving fixed processing 

servers. 3) Cloud services: Cloud computing provides 

ubiquitous services such as Google Earth 3D maps and 

computations that can be integrated with the system 

services to develop efficient applications. 4) Cloud-

level reliability: As the controller resides on the cloud, 

it allows duplication on multiple servers, so that in 

case of controller failure on one server, it switches to 

another working server. 5) Mobility: Devices are 

required to connect to the cloud through any access 

point. This allows the devices to move to different 

places as long as they are connected to the cloud. This 

can be compared with the central station where devices 

are connected to a single point, which restricts the area 

of movements. 6) Standardized communication 

protocols: The cloud uses standardized communication 

protocols to request services and exchange data such as 

Hypertext Transfer Protocol (HTTP). Therefore, 

versatile nodes can use these standards regardless of 

their operating systems, programming languages, and 

commands. The standardized protocols make the 

application development easier on top of the platform. 

g) Scalability: Adding more UAVs or resources 

becomes easier by registering these devices to the platform as 

plug-and-play without affecting the application layers, so that 

devices are attached to the mission in the run time of the 

operation.  

h) Component fault-tolerance: In case of a component 

failure in the lower layer, the component may be replaced with 

another similar component to perform the task without 

affecting the architecture or the flow of the mission. 

i) Reusability: The web service architectures support 

reusability so that the device resources are used for different 

applications according to their availability. For example, the 

agriculture humidity sensors could be used simultaneously for 

the spraying mission as well as for a soil quality mission that 

measures ability of the soil to reserve its water for a period of 

time.  

j) Cost efficiency: The reusability of the same component 

in different applications reduces the cost of owning the same 

component for each application, the CAPital EXpenditure 

(CAPEX) by reducing the hardware resources of multiple 

systems by reusability. In this case, it can be used easily 

without interfering between applications. In addition, the 

orchestration and management of the resources reduces the 

OPerational EXpenditures (OPEX) during the process. 

IV. SOFTWARIZATION ARCHITECTURE LAYERS 

In the near future, cloud computing will extend the cloud 
infrastructure to include terminals in the real world. The new 
research of the Software Defined Network evolves the client 
side to act as servers and provide services in the physical world 
through well-defined APIs [22].  

The softwarization architecture is shown in Figure 2. It is 
composed of the following layers: first, the bottom layer is the 
Physical Resource Layer. It consists of the WSN and the UAV 
sub-layers that provide services to interact with real world. 
Second, the Controller layer contains the WSN and UAV 
controllers as well as the database for data storage. This layer 
represents the abstract services of the physical resource layer to 
the higher layer. Thirdly, the Orchestration Layer is 
responsible for organizing and managing the mission. It 
requests the required services from the suitable controller. 
Finally, the top layer is the Application Layer where the user 
interacts through a browser and requests the mission.The 
general sequence diagram of the proposed model is presented 
in Figure 3. The roles and services of the architecture layers are 
summarized in Table 1. 

A. Physical Resource Layer 

These are the devices that provide services in the real 
environment. WSN are used to collect data from the soil, while 
UAVs sprays the area for irrigation. These services are 
provided on demand when requested by the higher layers. The 
service is similar to a web service that is requested through API 
or command then does measurements or actions and return 
values. The devices do not depend or interact with each other. 
Hence, each device is a standalone service.  However, the 
device has a local controller for internal processes. For 
example, a UAV has local controller for autonomous flight. 

1) WSN Devices Sub-layer 
First, a WSN node includes tiny sensing nodes that are 

distributed in one or more regions of the area. A node consists 
of several components of a local controller that is a tiny 
processor responsible of controlling the inner processing of the 
node, wireless communication system to interact with the 
higher layer, sensors to collect data from the physical world, 
and energy source to provide operation energy. Each node is 
registered to the WSN controller, then identified by a unique IP 
and allocated. They accumulate the required data from the 
physical environment and send it to the WSN controller when 
required. The WSN may be divided then clustered in groups 
according to the network area. 

The WSN provides sensing services to the WSN controller 
in a loosely coupled design. Each node provides its sensing 
data from the physical environment as services accessed 
through APIs, regardless of other nodes or components. In this 



scenario, WSN node senses the soil humidity and sends the 
reading to the WSN when requested. 

2) UAV Devices Sub-layer 
Second, UAVs are flying vehicles that perform actions to 

the real environment; their components include payloads such 
as spraying and camera, internal memory, processor for local 
control, communication system to interact with the ground 
station, and other resources. In this research, they are 
considered as actuators that sprays the specified area as 
requested. Each UAV provides several services that physically 
affect environment. UAVs receive requests from the UAV 
controller through standardized protocols and APIs. 

B. Controller Layer 

This layer is responsible of representing the physical 
resource layer and its services to the higher layer in an abstract 
view. Each device belongs to a certain controller so that they 
provide similar services. For example, UAVs belongs to the 
UAV controller, while sensing nodes belongs to the WSN 
controller. Hence, different service providers may provide their 
services independently from each other.  

The controller layer implies main roles: registering the 
entities, monitoring the status of the entities, analyzing the 
service requirements and allocating the most suitable one for 
the requested service. In addition it interacts with the 
orchestration layer for service requests and result replies. The 
controller roles could be in one layer or different sub layers. 

 Registration: The new device should be registered to 
the controller and define its service capabilities and 
interfaces. Then, it is registered in the controller 
database with a unique identifier, which allows it to be 
requested when needed. This sub layer allows multiple 
devices to be added or removed without affecting 
system performance. Furthermore, it facilitates the 
maintenance of the devices at the run time of the 
mission so that the device is removed temporary then 
returned easily. 

 Monitoring: during the mission, the status of some 
devices may change, for example, the availability of 
their services, the remaining power and the dynamic 
location in some situation. In addition, it monitors the 
workflow of the active devices to insure accomplishing 
the service. 

 Task allocation: This is one of the key roles of the 
controller to allocate the service to the suitable available 
entity. This role requires decision making and 
description analysis. When the controller receives the 
service request, it analyzes the service description, and 
then fetches the most suitable device to perform this 
service. The allocation depends on different properties, 
for instant, the device availability, location, power level 
and other parameters. Accordingly, the controller 
requests the service from that device and monitors it 
workflow. 

The controller layer interacts with higher and lower layers, 
as well as the database; the orchestration layer sends the 

service request to the controller layer by describing the service 
in a description language. Furthermore, the controller interacts 
with the lower layer -the physical resource layer- using the 
device resource APIs and commands. The databases hold the 
information and collected data during the mission. The 
controller layer provides an abstract view for the physical 
resource layer services, therefore, the higher layer does not 
require knowing the interaction language for each entity. 

1) WSN Controller Sub-layer 
The WSN controller resides in the cloud side, and it is 

responsible for registering the sensors in its database so that the 
available sensors can be distinguished from the ones currently 
in use.. In addition, it deals with the low-level communication 
protocols where different sensors may have different protocols. 
Subsequently, the WSN controller provides virtualized sensing 
services to the higher layer in abstract APIs. The importance of 
this layer is to hide the heterogeneity of the sensor interfaces 
from the higher layers to be viewed as sensing services without 
being concerned about the sensors’ configurations. 

 

Figure 2 Softwarization of UAV and WSN architecture. 

 
Figure 3 The general proposed sequence diagram for softwarization 

architecture 

2) UAV Controller Sub-layer 
Similarly, the UAV controller resides in the cloud which 

could be in the same or a different server. It provides 
virtualized services of UAVs in abstract APIs to the higher 



layer. It is also responsible for allocating the suitable available 
UAV for the required task requested by the higher layer.  

C. Orchestration Layer 

This layer acts as a middleware between the application and 
services. It is responsible of organizing the sequence of the 
tasks and linking the services according to their dependencies. 
This layer requires decision making and intelligence abilities. 
When the orchestration layer receives the tasks from the 
application, it generates a list of services and dependencies to 
link them. For example, the spraying mission requires sensing 
the soil humidity as well as irrigation action. The irrigation 
process depends on the humidity measurements. As a result, 
the orchestration layer requests the humidity service and then 
analyses the measured values to decide the irrigate process. 

When the orchestration layer generates the service list, it 
requests each service from the controller that provides the 
required service by describing its parameters in service 
description language. Next, it receives the service value or the 
acknowledgment of the service performance. 

The orchestration layer insures the isolation between 
service entities, therefore, no direct interaction between sensors 
and UAVs. This isolation allows the system to be elastic i.e. 
adding more service provides from deferent sources without 
affecting the higher layer. In this scenario, the services are not 
owned by the end user however, multiple providers may offer 
their devices as services. 

D. Application Layer 

This is the front end of the system where the user interacts 
with to request the mission and get the end results. For 
instance, the application allows the user to specify an area for 
irrigation. When taking into account that the application resides 
on the cloud side, the user will be able to access it ubiquitously. 
The user enters the requirements through a user friendly 
interface, and then the application translates the mission 
requirements into service description format. After that, the 
application sends the generated service description to the 
orchestration layer to organize the mission. In addition, the 
application notifies the user with the mission results at the end 
of the mission. The end user initiates the mission by identifying 
the mission parameters. In this case, the end user specifies the 
area that needs to irrigate. 

V. EVALUATION 

The system was implemented using several layers as shown 
in Figure 2 and discussed in Section  IV. First, the physical 
resource layer is composed of sensor nodes and UAVs.  

1) WSN Devices Implementation 
The sensors were implemented as shown in Figure 4 using 

Arduinos as a processor along with a DHT sensor for humidity 
measurements and Adafruit CC3000 for wireless connectivity. 
A 9 volt battery was used as the power source. 

 

Table 1 Summary of roles and services of the softwarization model layers 

Actor Description Role/ Service 

Physical 

Resources 
Layer 

The physical devices 

that provide services 
in real world  

- Collects measurements from 

real environment 
- Acts in real environment 

Controller 

Layer 

Provides device 
services in abstract 

format 

- Registers entities 

- Virtualizes resource layer 
- Monitors entities 

- Gets service requests 

- Allocates services 

Orchestrati

on Layer 

Organizes the 

sequence of the 

mission and links 
service dependencies 

- Creates service list and service 
description 

- Requests services from 

controllers 
- Analyzes values and make 

decisions  

Application 

Layer 

The front end user 
friendly interface that 

present the mission to 

the user 

-  Gets the mission specification  
-  Requests the mission 

-  Returns accomplishment to the 

user 

 
Figure 4 The conceptual view of a sensing node. 

2) UAV Device implementation 
Then, an AR drone was used to implement the UAV 

physical layer. The AR drone has pre-programmed commands 
for controlling the UAV but has no spraying service. Pre-
programmed commands were used instead to show the 
interaction between the UAV and the UAV controller server.  

AR Drone Configuration 

AR drones are configured in booting by default as a 
Dynamic Host Configuration Protocol (DHCP) server and 
access point. Then, a client such as laptop or smartphone 
connects to it and gets IPs from the UAV in order to 
communicate. However, this topology is not supporting our 
proposed architecture. The proposed architecture requires the 
UAV to connect to an access point that provides IPs. 

To connect UAVs to the access point we implemented the 
following steps: First, we connected the laptop to the UAV in 
the default protocol. Second, we accessed the UAV setup using 
PuTTY configuration tool and modified the default setup 
temporary so that the UAV become a client in the network. 
Then, we executed the BusyBox commands as shown in Figure 
5 and Figure 6 by implementing the following: 1) we shut 
down the DHCP. 2) We brought down the ath0 interface, and 
then brought it up in managed-mode. 3) We disconnected the 
UAV from the laptop connection and then connected it to the 
SSID. finally, we ran the DHCP client to get IP address for the 
UAV. 



  

Figure 5 PuTTY configuration tool to connect to the UAV using Telnet 

protocol 

 

Figure 6 Sending BusyBox commands for the UAV  to connect to an external 

access point and obtain an IP 

killall udhcpc 

ifconfig ath0 down 

iwconfig ath0 mode managed essid $DRONE_SSID 

NetworkName any channel auto commit 

ifconfig ath0 up 

udhcpc -b -i ath0 

By following these steps, the UAV can connect to the 
access point and get an IP address in the network. As a result, 
the UAV services are accessed through the provided IP 
address. 

After that we connected two AR drones to the access point 
to present the UAVs layer. Each UAV has a unique IP address 
known for the UAV controller so that the UAV controller can 
access the UAV services. 

3) WSN Controller and UAV Controller Implementation 
The controller layers were built in the NodeJS language for 

the WSN controller and the UAV controller. The controllers 
were installed in two different computers to simulate two 
servers. Devices and controllers were implemented in a local 
network for the purpose of simplicity. They were given local IP 
addresses.  

WSN Controller Implementation 

The WSN controller was implemented in the first 
computer, and it provides an HTTP API for providing an 
abstraction view of the nodes using following RESTful 
request: 

GET service/humidity HTTP/1.1 

Host: WSN_controller_address 

Accept: Application/json 

This API requests a humidity reading from the WSN 
controller without directly interacting with the sensing node. 
Then, the controller communicates with the sensing node 
according to its APIs and communication protocol to request 
the humidity as follows: 

GET /humidity HTTP/1.1 

Host: sensor_address 

Accept: Application/json 

 and returns the result to the requester. More specifications 
and requirements could be defined in a JavaScript Object 
Notation (JSON) object along with the HTTP request as 
follows: 

HTTP/1.1 200 OK 

Content-Type: application/json 

Server: humidity_sensor 

{Humidity: 33} 

This value is similarly returned to the requester: 

HTTP/1.1 200 OK 

Content-Type: application/json 

Server: WSN_controller_address 

{Humidity: 33} 

UAV Controller Implementation 

Next, the UAV controller was installed in the second 
computer and provides an abstract view of the UAVs’ services. 
For example, a GET operation with the HTTP request: 

GET service/spray HTTP/1.1 

Host: UAV_controller_address 

Accept: Application/json 

This HTTP RESTful request is the API for a spraying 
service from the UAV controller, then it interacts with the 
UAV to request the service and then the UAV returns the result 
to the UAV controller who consequently returns it to the 
requester. In our implementation, the UAV takes off, hovers 
around the area, and then lands. The UAV controller and the 
UAVs communicate in well-defined shell commands of the 
UAV, however, the requester and the UAV controller 
communicate in HTTP RESTful APIs. 

Similarly to the WSN controller, in order to define 
additional parameters, a JSON object could be provided along 
with the request. The orchestration layer was implemented in a 
mobile device to request the services from the controller layer. 
The orchestration layer requests an HTTP request for a 
humidity reading from the WSN controller, then receives a 
current value of the humidity level.  Accordingly, it sends a 
spraying service request as an HTTP request to the UAV 
controller. Although the HTTP APIs implemented in this 
prototype are GET requests, PUT requests could be used for 
security purposes to add authentication property in the request 
parameter. Therefore, only authorized users are allowed to 
request the service.  



The response time of the HTTP requests from the 
orchestration to the WSN controller and the UAV controller 
were measured ten times as shown in Figure 7. It is observed 
that the response time for the humidity sensor is higher than the 
response time for the UAV. That is due to the differences in the 
processing capabilities of the devices, where UAVs have more 
powerful resources and faster processing than the sensor node. 

 
Figure 7 Response time for Humidity sensor and UAV through the WSN 

controller and the UAV controller respectively. 

VI. CONCLUSION 

The proposed architecture uses the recent paradigms of 
SDN and NFV to adapt a novel architecture of softwarization 
for UAVs and WSNs. This architecture eliminates the 
restrictions of tightly coupled architectures and utilizes the 
benefits of the recent research topic of the softwarization of 
network resources. This platform allows the flexibility of 
developing applications on top of the platform from the 
available physical resource devices and services without 
reinventing the wheel due to the opportunities provided by 
these concepts. By decoupling the resources of UAVs and 
WSNs, the device is responsible for proving its services when 
invoked by the resource API regardless of the other devices’ 
services. Therefore, the physical resource layer is associated 
with collecting data and performing actions on the real world 
without being involved in decision-making or invoking other 
services. The system was implemented to provide a proof of 
concept using a sensing device and UAV along with their 
controllers to abstract the physical layer services. Then, the 
orchestration layer interacts with the controllers to request the 
required service. For future work, the system requires security 
considerations for the devices, the connection channel and 
higher layer. Additionally, the Orchestration Layer algorithms 
can be studied and compared to come up with optimal 
algorithms to organize and manage the available resources. 
Besides, the evaluation method is currently simple 
implemented for few devices. This can be enhanced by 
simulating the architecture by testing the scalability and 
performance for more devices. 
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