
On Balancing Middlebox Set-up Cost
and Bandwidth Consumption in NFV

Jie Wu
Center for Networked Computing

Temple University, USA

Roadmap
1. Introduction of Middlebox

2. Middlebox Placement Problems

3. Traffic Changing Effects

4. Our Model and Solutions

5. Simulation

6. Conclusion and Future Work

1. Introduction of Middlebox
l Network Function Virtualization (NFV)

¡ Technology of virtualizing network functions into software
building blocks

l Middlebox: software implementation of network services
¡ Improve the network performance:

l Web proxy and video transcoder, load balancer, …
¡ Enhance the security:

l Firewall, IDS/IPS, passive network monitor, …

l Examples

Firewall NATWeb Proxy

Middlebox Dependency Relations [1]

l Multiple middleboxes may/may not have a serving order
¡ Examples

l Firewall usually before Proxy
l Virus scanner either before or after NAT gateway

l Categories
¡ Non-ordered middlebox set
¡ Totally-ordered middlebox set (service chain)

¡ Partially-ordered middlebox set

[1] Dynamic Service Function Chaining in SDN-Enabled Networks with
Middleboxes (ICNP ’16)

2. Middlebox Placement Problems

¡ Graph embedding [2]
l Middlebox graph, Gm, of multiple service chains that

needs to be embedded in a give network graph, Gn.

Virtual network Physical network

Embedding

Virtual network

[2] Charting the Complexity Landscape of Virtual Network
Embedding (IFIP ’18)

Middlebox Placement Problems (cont’d)

¡ Graph flow routing [3]

l Shortest path or maximum flow between a given source and
destination that have to go through a given middlebox in Gn.

[3] Provably Efficient Algorithms for Joint Placement and Allocation of
Virtual Network Functions (INFOCOM ’17)

Middlebox Placement Problem (cont’d)

l Facility allocation [4]

¡ Optimal placement of facilities (i.e., middlebox) to minimize
transportation costs (i.e., traffic, including detour traffic from
flows to middleboxes).

l Cost

l Objective
¡ Minimizing sum of middlebox setup cost and communication cost

[4] Near Optimal Placement of Virtual Network Functions (INFOCOM ’15)

m
Communication cost

f1

f2

Setup cost

Middlebox Placement Problems (cont’d)

¡ Set covering
l Minimize the number of middleboxes used to cover all

flows.
l NP-hard

l Middleboxes may change flow rates in different ways

¡ Citrix CloudBridge WAN accelerator: 20% (diminishing)

¡ BCH(63,48) encoder: 130% (expanding)

l Objetive: minimizing total traffic

3. Traffic Changing Effects [5]

[5] Traffic Aware Placement of Interdependent NFV Middleboxes (INFOCOM ’17)

1 0 1 1 1 0 1 0
Data Checksum

Service Chain Models
l Objective

¡ Minimizing the total bandwidth consumption

l Solutions
¡ Consider traffic-changing effects
¡ Place middleboxes for a single flow

m1 m2 m3

Non-ordered
(Optimal greedy: sort

traffic-changing ratios
in increasing order)

m1 m2 m3

Totally-ordered
(Optimal DP: latter

middleboxes must be
after front ones)

m1 m2 m3

Partially-ordered
(NP-hard: reduced

from the Clique Problem)

4. Our Model and Solutions
l Problem

¡ Placing middleboxes to satisfy all flows’ network service requests

l Network service requests
¡ Multiple middleboxes

l Middlebox set with or without dependency relations

l Cost
¡ Middlebox setup

l Sum of middlebox setup cost (amortized over a period of time)
¡ Bandwidth consumption

l Sum of each flow’s bandwidth consumption cost on each link

l Objective
¡ Minimizing total cost of middlebox setup and bandwidth consumption

A Motivating Example

Independent middleboxes Dependent middleboxes: m’ before m

m: 0.8 (diminishing)
m’: 1.3 (expanding)

A flow covered by multiple middleboxes
(When additional setup cost is less than the reduced bandwidth consumption)

Red flow with
high rate

Problem Formulation
l Middlebox setup cost

¡

l cm: unit setup cost of middlebox m

l Bandwidth consumption cost
¡

l w(bf
e): bandwidth cost function of flow f on link e

¡

l rf: initial traffic rate of flow f
l : traffic-changing ratio of middlebox m

l Objective
¡ Minimizing c1+c2

Problem Formulation (cont’d)

l Translog bandwidth cost function on each link[6]

l Reasons
¡ Widely used in Cisco EIGRP and OSPF protocols
¡ Log-linear for easy calculation

l The weight of setup cost and bandwidth consumption
¡ Adjusting the traffic-changing ratios and unit setup costs of

middleboxes

[6] Computer Networking: A Top-Down Approach (Book)

Overview

l Optimal solutions for homogeneous flows
¡ Single middlebox

l Greedy

¡ Non-ordered middlebox set
l Greedy

¡ Totally-ordered middlebox set
l Dynamic Programming

l Performance-guaranteed solution for heterogeneous
flows

Topology Structure

l We focus on tree-structured topologies

ICPP’18, August 2018, Eugene, Oregon, USA Yang Chen and Jie Wu

are common. For the middleboxes, log � < 0, 8� 2 (0, 1) implies
that the tra�c-diminishing middleboxes decrease the bandwidth
consumption cost; log � = 0 if � = 1 implies that they do not in�u-
ence the �ow’s bandwidth; log � > 1, 8� 2 (1,1) implies that the
tra�c-expanding middleboxes increase the bandwidth consump-
tion cost. The cost of f 2 F on the edge e 2 pf can be calculated as
follows for allm satisfying:

w (bef) = log(b
e
f) = log(rf

Y

f�m=1
�m) = log(rf)+

X

f�m=1
log(�m) 8� � e (6)

Since log rf and log �m are frequently used, we simplify the
notations by replacing with rf and �m . Then, the cost of each �ow
is calculated as:

w (f) =
X

e 2pf
w (bef) = |pf |rf +

X

f�m=1
(|pf | � h� f)�m 8� � e (7)

Multiplication calculation is changed into summation by the selec-
tion of our link bandwidth cost function in Eq. (6), which is a linear
function of log �m . From Eq. (7), we �nd that the e�ects of middle-
boxes on di�erent edges are independent of �ows and middleboxes,
and that they only relate to the hop count h� f between f ’s source
and the e�ective middlebox. This simpli�es our analysis. Note that
we can also add a weight factor to each part in order to show the
di�erent importance of each middlebox.

3.3 NP-hardness Proof
In this subsection, we show that in general network topologies, it
is NP-hard to place middleboxes to minimize the cost.

T������ 3.1. Middlebox placement for multiple �ows is NP-hard
in a general topology, even when we place only one type of middleboxes
without any tra�c-changing e�ects.

Proof: We construct a polynomial reduction from the set-cover
problem. Assume we have the network (V ,E) and a set of �ows
F = { f } that each �ow only needs to be processed by one middlebox
m, i.e. Mf = {m},8f 2 F . Middleboxes with no tra�c-changing
e�ects mean that �f = 1 and log �f = 0,8f 2 F . This is the
special case of themiddlebox placement problemwith no bandwidth
consumption cost that is shown in Eq. (1). Our objective is reduced
to minimizing the cost of setting up middleboxes. Since there is only
one type of middlebox, the total setup cost is only related to the
number of middleboxes. Our problem is simpli�ed to placing the
smallest number of middleboxesm to ensure that each �ow passes
through at least onem. This problem is equivalent to the set-cover
problem. The elements are all the �ows F = { f }. A middleboxm on
a vertex� in the network can cover a set of �ows whose path passes
� , i.e. S� = { f |� 2 pf }. We need to �nd the minimum number of
subsets whose union equals the universe set. Since the set cover
problem is NP-hard, our placement problem is also NP-hard. ⌅

3.4 Tree Topologies
Since our problem is NP-hard in a general topology, we narrow
it to tree-structured networks, such as the one shown in Fig. 2(a).
(The vertices are numbered by Breadth-First Search (BFS).) Tree-
structured topologies are extremely common in streaming services,
Content Delivery Networks (CDNs) [24], and tree-based tiered

(a) Complete tree. (b) Hierarchical data center.

Figure 2: Tree-structured topologies in data centers.

topologies like Fat-tree [1] or BCube [11] in data centers. More gen-
erally, data centers always use symmetric, hierarchical topologies
to balance tra�c load [15]. Because of the bi-directional links, the
topology can be abstracted as two connected, complete trees, as
shown in Fig. 2(b). The up and down links separate a hierarchical
physical data center topology into two virtual tree-structured net-
works, whose two parts are separately shown in Figs. 3 (a) and (b).
We call this kind of structure a shared-root-double-tree topology.
The connection point of the two triangles is the highest level node
(core switch), and the two side nodes are the same. Each of the
triangles is also a complete tree topology, as shown in Fig. 2(a). The
source and destination of each �ow are two side nodes.

Here we introduce two classic structure de�nitions: “fork” and
“join” [26]. With �ows from the left-most side to the right-most
side, Fig. 2(b) can be treated as a precedence graph with the depen-
dence of �ows’ paths. Flows’ transmission process in the left-most
complete tree is the procedure of “join” because all the �ows will
merge at its connection point. For example, all �ows passing �2 or
�3 will meet at the node�1. After merging at�1, �ows start to sepa-
rate consistently until they reach their destinations; this process is
called a “fork”. Since we have already noted that tra�c-diminishing
middleboxes should be placed near �ows’ sources, we place them in
the left triangle. Similarly, we place tra�c-expanding middleboxes
in the right triangle. In the physical network view, either tra�c-
diminishing or tra�c-expanding middleboxes can be placed in one
node, but tra�c-diminishing middleboxes process �ows from their
sources to the root and tra�c-expanding middleboxes process �ows
from the root to their destinations.

4 PLACEMENT OF A SINGLE MIDDLEBOX
WITH HOMOGENEOUS FLOWS

In this section, we study the simple case of placing a single type of
middlebox for all �ows in a tree-structured topology. We treat all
�ows with the same source and destination as a single �ow with
a tra�c rate of the sum of their tra�c rates. First, we discuss the
conditions based on two parts of a shared-root-double-tree topology
and middlebox tra�c-changing e�ects. Then we propose optimal
solutions of two non-trivial conditions.

4.1 Conditions on Tra�c-changing E�ects
If the middleboxm is unable to change the tra�c rate (i.e. � = 1), the
bandwidth consumption cost is a constant number |pf |rf ,8f 2 F ,
because log �f = 0. Since all middleboxes of the same type have an
identical unit price, our objective is equivalent to minimizing the

Double-tree structure

Complete treePerfect tree

Left
Triangle

Right
Triangle

Each triangle is
mostly a perfect
or complete tree

Tree-based data centers

Placing a Single Middlebox

Solution
l Local Greedy Algorithm (LGA)

Steps
l Calculate the total cost of

placing middleboxes in a level

l Select the level with the
minimum total cost

l Convex function: sufficient to
select the local minimum

Total cost

LevelOptimal

Time complexity (|V|: #node)
¡ O(|V|) (O(log|V| for perfect tree)

Optimal for perfect tree topologies
¡ Symmetry of placement
¡ No multiple “coverage” situation

Also optimal for complete tree topologies
¡ Also no multiple “coverage” situation

Placing a Single Middlebox (cont’d)

Placing Multiple Middleboxes

Non-ordered middlebox set placement

l Solution
¡ Combined Local Greedy Algorithm (CLGA)

l Insight
¡ Place each middlebox independently by applying LGA

l Time complexity (|V|: #node, |M|: #middlebox)
¡ O(|M| |V|) or O(|M|log|V|)

l Optimal for perfect and complete trees

Totally-ordered Middlebox Set Placement
l Solution: Dynamic Programming (DP)

l Works for infinite and finite vertex capacity

l OPT(i, j)
¡ Minimum cost of subtree with root vi when placing first j

middleboxes in the set
¡ if capacity is not enough

First j middleboxes

(k+1)th to jth
middleboxes

l Left triangle

l Right triangle
¡ Similar to the left triangle’s formulation

Dynamic Programming Formulation

Left subtree

Right subtree

Newly placed
middleboxes

Changing rate
consumption

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Yang Chen and Jie Wu

Algorithm 2 Right Greedy Algorithm (RGA)
In: Sets of vertices V , edges E, �ows F and middleboxesm
Out: The placement plan;
1: Placing onem at root � costs RGA(�) = cm + 2H (H�m +Hrf);
2: for each non-root node � with depth h from bottom up do
3: Select the placement plan with RGA(�) =min{cm + 2h ⇥

(Hrf + (H � h)�m), RGA(� 0) + RGA(� 00)};
4: return The placement plan of the root.

which contradicts our assumption. Then, there is no need to place
two middleboxes along any �ow’s path. LGA is optimal because it
checks all the possible combinations of placement plans and selects
the one with the minimum cost. ⌅

4.3 Placing a Tra�c-expanding Middlebox
A tra�c-expanding middlebox should be placed in a right triangle,
which is illustrated in Fig. 3(b). All �ows are from the root to each
leaf node.We propose an algorithm, Right Greedy Algorithm (RGA),
shown in Alg. 2. We denote the minimum cost of placing all middle-
boxes above a node � as RGA(�). In line 1, the cost of placing one
middlebox at root � is RGA(�) = cm + 2H ⇥ (H ⇥ �m +H ⇥ rf). In
lines 2-3, for each internal node � , suppose H = |pf | and h = h� f ,
which is illustrated in Fig. 3(b). We have only two choices: (1) place
onem on � with the total cost cm + 2h ⇥ (H ⇥ rf + (H � h) ⇥ �m)
or (2) combine the placements of the subtrees of its left and right
children � 0 and � 00„ whose sum of costs is RGA(� 0)) + RGA(� 00).
The reasons are similar to the last subsection. Setting up a middle-
boxm costs cm ; the bandwidth consumption cost is equal to the
number of �ows times the cost of each �ow. The cost of each �ow
is H ⇥ rf + (H �h) ⇥ �m from Eq. (7). The number of �ows is equal
to the number of leaf nodes in the subtree of � , which is 2h shown
in the grey area in Fig. 3(b). We select a better placement with the
lower cost each time. The time complexity of Alg. 2 is also O (|V |).

5 PLACEMENT OF A MIDDLEBOX SET WITH
HOMOGENEOUS FLOWS

Based on the dependency relations among multiple types of mid-
dleboxes, we classify them into three situations: the non-ordered
middlebox set, the totally-ordered middlebox set, and the partially
dependent middlebox set.

5.1 Non-ordered Middlebox Set Placement
All types of middleboxes are independent in a non-ordered set. For
placing a non-ordered middlebox set, we propose an algorithm,
called Combined Local Greedy Algorithm (CLGA), which is ex-
tended from our LGA and RGA algorithms. CLGA applies LGA for
all tra�c-diminishing middleboxes in the left triangle and RGA for
all tra�c-expanding middleboxes in the right triangle, and com-
bines all the placements. We have:

T������ 5.1. CLGA is optimal for placing a non-ordered middle-
box set in a complete tree topology.

Proof: We can place each type of middlebox optimally by apply-
ing LGA and RGA. Because of the in�nite server capacities, each

type of middlebox can be placed in its optimal location indepen-
dently. The placement with the lowest cost is the integration of
each middlebox’s optimal placement. All middleboxes are placed
optimally, which indicates CLGA’s optimality. ⌅

5.2 Totally-ordered Middlebox Set Placement
Flows are likely to pass through several middleboxes in a particular
order, known as the service chain [13]. A service chain is a totally-
ordered middlebox set. We propose a Dynamic Programming (DP)
algorithm to achieve the optimal placement plan with a �nite server
capacity (in�nite as a special case). Each vertex is numbered se-
quentially by BFS and each middlebox is numbered in service chain
order. Suppose n = |V |. OPT(i, j) denotes the minimum cost of the
placement in tree with the root �i when we have placed the �rst
j middleboxes for all paths from leaf nodes to �i . If the capacity
is not enough to place j middleboxes, the cost is 1. The optimal
substructure gives a recursive formula in the left triangle:

OPT(i, j) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

min
0kj

{OPT(2i,k) + OPT(2i + 1,k)

+
P

k<l j
cl + blog ic

P
k<l j

log �l }, 1  i  b n2 c .

P
1l j

cl+blog ic log rf+blog ic
P

1l j
log �l , b n2 c < i  n.

1 if not enough node capacity.

(8)

OPT(i, j) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

min
0kj

{OPT(2i,k) + OPT(2i + 1,k)

+
P

k<l j
cl + blog ic

P
k<l j

log �l }, 1  i  b n2 c .

P
1l j

cl + blog ic log rf + blog ic
P

1l j
log �l , b n2 c < i  n.

1 if not enough node capacity.

(9)

After placing in the left triangle, we place the remaining middle-
boxes in the totally-ordered set in the right triangle in the reverse
order of the service chain. The nodes are also numbered by BFS.
The recursive formula for the placement in the right triangle is
shown in Eq. (10). Little di�erence exists between Eq. (9) and Eq.
(10). For simplicity, we only discuss Eq. (9) in the following.

OPT(i, j) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

min
0kj

{OPT(2i,k) + OPT(2i + 1,k) +P
k<l j

cl

+(blognc � blog ic)P
k<l j

�l } 1  i  b n2 c .

P
0l j

cl + blog icrf , b n2 c < i  n.

1 if not enough node capacity.

0 otherwise.

(10)

The insights of the dynamic programming methods are: for each
leaf node �i , as b n2 c  i  n, OPT(i, j) is simply the cost of placing
the �rst j middleboxes on the vertex�i . For an internal node�i , the
optimal placement of the tree with the root �i is selected from all

Base bandwidth
consumption

Totally-ordered Middlebox Set
Placement (cont’d)
Insights
l The optimal placement with root vi by placing first j and its

two subtrees by placing no more than j middleboxes

Perfect tree
¡ Transformed to a line
¡ Similar to a single flow placement

Complete tree
¡ No multiple “coverage” situation

Time complexity (|V|: #node, |M|:#middlebox)
¡ O(|M|3 |V|) or O(|M|3 log|V|)

An Example

l Dependency relations
¡ m1->m2->m3

l Initial traffic rate
¡ r1=r2=r3=1

m1 m2 m3

Traffic-changing ratio 0.5 0.8 1.1
Setup cost 0.2 0.4 0.3

Partially-ordered Middlebox Set Placement
l NP-hard even for a single flow [2]

l One heuristic solution
¡ Insight

l Transform into a totally-ordered middlebox set

¡ Steps (: traffic-changing ratio)

l Treat middleboxes with dependencies as a single middlebox
l Sort middleboxes in increasing order of

¡ Example
l Middlebox set

l Dependency relationship�m2 -> m3, m4 -> m5-> m6

[2] Traffic aware placement of interdependent NFV middleboxes (INFOCOM ’17)

m1 m2 m3 m4 m5 m6

0.7 1.1 0.8 1.1 0.5 1.4

m1
m2 m3m4 m5 m6

0.7 1.1*0.5*1.4=0.77 1.1*0.8=0.88

Partially-ordered Middlebox Set
Placement (cont’d)

l Another heuristic solution
¡ Insight

l Transform into a non-ordered middlebox set

¡ Steps
l Treat middleboxes with dependencies as a single middlebox by a

topological order
l No dependency relations among new middleboxes

¡ Example
l Middlebox set

l Dependency relationship�m2 -> m3, m4 -> m5-> m6

m1 m2 m3 m4 m5 m6

0.7 1.1 0.8 1.1 0.5 1.4

m1 m2 m3 m4 m5 m6

0.7 1.1*0.5*1.4=0.771.1*0.8=0.88

Combine

r1=1 r2=2 r3=3 r4=4 r5=6 r6=7

CLGA CLGA CLGA

Handling Heterogeneous flows for
Non-ordered Middlebox Set
l Group Flows by Initial Bandwidths (GFIB)

¡ Group flows by initial traffic rates (rf: f’s traffic rate)
l #group:
l The traffic rate range of the ith group:

¡ Treat flows in each group as homogeneous
¡ Apply CLGA for each group

l An example

max rf= 7
min rf= 1

Group 1: [1,2)
Group 2: [2,4)
Group 3: [4,8)

l Time complexity

l Performance-guaranteed algorithm

¡ Approximation ratio [6]:

[6] On Optimal Scheduling of Multiple Mobile Chargers in Wireless Sensor Networks (MSCC ’14)

Handling Heterogeneous Flows for
Non-ordered Middlebox Set (cont’d)

4. Simulation
l Our algorithms

¡ LGA
l Single middlebox
l Select the level with the minimum cost

¡ CLGA
l Non-ordered middlebox set
l Apply LGA independently

¡ DP
l Totally-ordered middlebox set
l Dynamic programming

¡ GFIB
l Heterogeneous flows
l Group flows by initial traffic rates
l Combine placement by applying CLGA for each group

5. Simulation
l Comparison algorithms

¡ Random-fit
l Randomly place middleboxes until all flows are satisfied

¡ NOSP [2]

l For single middlebox or non-ordered middlebox set
l Place middleboxes for each flow independently

¡ TOSP [2]

l For totally-ordered middlebox set with or without vertex capacity
l Dynamic programming based algorithm for each flow independently

[2] Traffic aware placement of interdependent NFV middleboxes (INFOCOM ’17)

Settings
l Topology

¡ Perfect 5-layer binary tree for each triangle

l Facebook data center traffic trace
¡ Single-flow initial traffic rate: 1~6 Mb

l Middlebox set

l Dependency relationship
¡ m2 -> m3 -> m1 -> m4

m1 m2 m3 m4

Traffic-changing ratio 0.7 0.8 1.1 1.2
Set-up cost 0.4 0.6 0.2 0.8

Simulation ResultsICPP’18, August 2018, Eugene, Oregon, USA Yang Chen and Jie Wu

Table 3: Middlebox settings.

Middlebox typesm m1 m2 m3 m4

Tra�c-changing ratio �m 0.7 0.8 1.1 1.2

Setup cost cm 0.4 0.6 0.2 0.8

initial rates (O (|V |) = O (|F |)). We have determined that the time
complexity of LGA is O (|V |). Line 3 only needs a constant time for
each group. Line 4 costsO (|V |(blog2

max rf
min rf c + 1)) for all groups. If

a group does not include a �ow, it is ignored.

T������ 6.1. Alg. 3 guarantees an approximation ratio of
blog2

max rf
min rf c + 1 to the optimal algorithm.

Proof: Let GFIB and OPT denote the costs of setting up middle-
boxes and bandwidth consumption taken by Alg. 3 and the opti-
mal algorithm, respectively. Let GFIBi denote the cost of placing
the middleboxes in the i-th �ow group of GFIB. By de�nition, we
have GFIB =

P
i GFIBi . Let OPTi denote the cost of the optimal

algorithm for only �ows in the i-th group. Since OPTi does not
ensure that all �ows will be served by the required middleboxes,
OPTi  OPT. We claim that GFIBi  OPTi . This is because CLGA
algorithm is optimal. Since Alg. 3 has at most blog2

max rf
min rf c + 1

groups, we have:

GFIB =
X

i
GFIBi 

X

i
OPTi 

X

i
OPT

 (blog2
max rf
min rf

c + 1) ⇥ OPT (10)

The proof completes. ⌅
The key insight of Theorem 6.1 is that �ows are divided into a lim-

ited number of groups. Flows in the same group have similar initial
bandwidths, and thus can be resolved by CLGA algorithm . Theorem
6.1 can be further improved by incorporating the �ows’ initial tra�c
rate distribution, which enlarges its range of application. For exam-
ple, ifdi is exponentially distributed, then blog2 maxdi

mindi c+1 becomes
a constant. To better understand Alg. 3, we propose a concrete ex-
ample. For all given �ows f 2 F ,min rf = 1 andmax rf = 64. Then,
we divide all �ows into blog2

max rf
min rf c+1 = blog2

64
1 c+1 = 7 groups.

If there is one �ow f with rf = 10, it belongs to the blog2 10
1 c+1 = 4

group. The approximation ratio of Alg. 3 is 7.

7 EXPERIMENTAL EVALUATION
7.1 Settings
Our experiments are divided into four parts to evaluate the four
proposed algorithms: LGA, CLGA, DP, and GFIB.We do simulations
in a perfect �ve-layer binary tree with 31 switches for LGA and
GFIB. All �ows’ sources are leaf nodes and all destinations are the
root. The simulations for CLGA and DP are in a shared-root-double-
tree topology, as shown in Fig. 2(b). The shared-root-double-tree
is symmetric so that each side is a perfect �ve-layer binary tree
with 31 switches in total. We adopt the �ow size distribution of
Facebook datacenters, which is collected in 10-minute packet traces
of three di�erent node types: a Web-server rack, a single cache

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

60

To
ta

l c
os

t v
al

ue

LGA
NOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

1

2

3

4

5

6

M
id

dl
eb

ox
 s

et
-u

p
co

st

LGA
NOSP
Random-fit

(b) Middlebox setup cost.

Figure 4: Single middlebox under bandwidth homogeneity.

follower and a Hadoop node [22]. More than 80% �ows are less
than 6Mbps. As a result, the tra�c rate ranges from 1 to 6Mbps
with a stride of 1Mbps in this paper. The sources of all �ows are the
leaf nodes and their destinations are the root. We assume each link
is bidirectional and has enough bandwidth to hold all �ows, which
eliminates congestion and ensures that the routing of all �ows is
successful. This is because routing failure is not the concern in this
paper. The selections of the parameters are based on [10].

For most cases, the capacities of all servers are in�nite since
the numbers of middleboxes are relatively small compared to the
servers’ volumes. When we test the in�uence of server capacity,
the capacity constraint is set to 2 for each server. We use two
performance metrics, the cost of middlebox placement and server’s
utilization, for benchmark comparisons. The cost of middlebox
placement is measured as the value of our objective function in Eq.
(1). We also evaluate the server’s utilization by using the cost of
setting up new middleboxes as the metric.

The setting is in accordance with our previous discussion. For
homogeneous �ows, we change the variability of the initial band-
width. We test the totally-ordered cases with and without the node
capacity constraint. For heterogeneous �ows, the initial bandwidth
of each �ow is generated randomly. Internet Engineering Task Force
(IETF) non-exhaustively list 10 middlebox types and show the ser-
vice chain length is usually small (3 to 5) [12]. As a result, we adopt
from [16] a single type of middlebox with a tra�c-diminishing ratio
of 0.7 and a setup cost of 0.4, and the set of multiple types of mid-
dleboxes with a tra�c-diminishing ratio of 0.7, 0.8, 1.1, and 1.2 and
setup costs 0.4, 0.6, 0.2 and 0.8. For anything but a totally-ordered
set, we assume the dependency relation is 0.8! 1.1! 0.7! 1.2.
The middlebox settings are listed in Tab. 3.

7.2 Comparison Algorithms
There are few existing works that study middlebox placement
with tra�c-changing middleboxes, and we include two benchmark
schemes in our simulations:

(1) Ma et al. propose NOSP for the non-ordered case and TOSP
for the totally-ordered case in [16]. NOSP sorts the middleboxes
based on their tra�c-changing ratios; it applies tra�c-diminishing
middleboxes near the �ow’s source and tra�c-expanding middle-
boxes near the �ow’s destination. TOSP is a dynamic programming
method.Since NOSP and TOSP are for single �ows, we assume they

NFV Middlebox Placement with Balanced Set-up Cost and Bandwidth Consumption ICPP’18, August 2018, Eugene, Oregon, USA

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

60

To
ta

l c
os

t v
al

ue

CLGA
NOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

5

10

15

20

25

30

M
id

dl
eb

ox
 s

et
-u

p
co

st

CLGA
NOSP
Random-fit

(b) Middlebox setup cost.

Figure 5: Non-ordered middlebox set.

only handle �ows one at a time. For each, we select one �ow and
run the algorithms until all �ows have been selected.

(2) Random-�t randomly places middleboxes on random nodes
on the paths until all �ows are “covered”. The middleboxes are
sorted by their tra�c-changing ratios.

7.3 Evaluation for Homogeneous Flows
We start with homogeneous �ows. The independent variable in
x-axis is the uni�ed bandwidth for all �ows. First, we evaluate a
single type of middlebox placement using LGA in Fig. 4. All curves
in Fig. 4(a) are increasing because heavier tra�c consumes more
bandwidths. LGA achieves the lowest cost value, and on average,
it costs about 20.3% less than NOSP and 35.1% less than Random-
�t. In the analysis in Section IV, we state that LGA is optimal
when placing a single type of middlebox for homogeneous �ows
in complete tree topologies. In terms of middlebox setup, the cost
of NOSP is a constant because it places a required middlebox in
the source of each �ow. If there are 16 leaf nodes, NOSP needs 16
middleboxes, which costs 16 ⇥ 0.4 = 6.4. This is the largest number
of middleboxes needed to ensure that all �ows are “covered”. Hence,
the middlebox setup cost of NOSP is the largest. The middlebox
setup of our algorithm is the smallest because LGA considers not
only bandwidth consumption, but also middlebox setup cost.

Second, we evaluate a slightly more complicated case of inde-
pendent middleboxes using CLGA in Fig. 5. As described in the last
subsection, all �ows need to be served by all middleboxes in the
non-ordered middlebox set {0.7, 0.8, 1.1, 1.2}. Because of the in�nite
server capacity and the independence of the middleboxes, we apply
LGA to each type of middlebox and the �nal optimal solution is
the combination of the optimal placement of each middlebox. As a
result, CLGA performs best in both total cost and middlebox setup
cost. The superiority of CLGA is more obvious in Fig. 4 than that of
LDA. This is because our algorithms perform better when the setup
cost is relatively large compared to NOSP, which only considers
the bandwidth consumption. The advantages of LGA and CLGA lie
in not only bandwidth consumption, but also in middlebox setup
cost. The performance of the Random-�t algorithm is not smooth
enough. When the tra�c load is heavy, the total cost of Random-�t
is 27.0% more than that of CLDA.

Next, we show the placement of a totally-ordered middlebox set
using DP with and without the node capacity constraint in Fig. 6
and Fig. 7. In both cases, with the desired optimality property of

Table 4: Di�erent dependencies with rf = 3Mbps.

Totally-ordered middleboxes Total cost Set-up cost
0.8! 1.1! 0.7! 1.2 20.9 10.4
1.1! 0.7! 0.8! 1.2 23.7 12.0
0.7! 1.2! 1.1! 0.8 22.8 9.6
0.7! 0.8! 1.1! 1.2 11.9 4.4
1.2! 1.1! 0.8! 0.7 24.7 10.2

1 2 3 4 5 6
Traffic rate (Mbps)

10

20

30

40

50

To
ta

l c
os

t v
al

ue

DP
TOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

8

10

12

14

16

18

20

M
id

dl
eb

ox
 s

et
-u

p
co

st

DP
TOSP
Random-fit

(b) Middlebox setup cost.

Figure 6: Totally-ordered set without node capacity.

the dynamic programming, our proposed DP has the lowest cost in
both metrics. The cost is a little larger than that of the non-ordered
middlebox set. This is because the dependency relations make it
more di�cult to place a single type of middlebox at its optimal
location. We also �nd that when the tra�c becomes larger, the
Random-�t algorithm performs much worse than it does with the
independent set. The dependency relations limit the placement
more, so the random placement needs more middleboxes. Random-
�t performs a little better in the second case. The limitation of the
server capacity eliminates the location possibilities of Random-�t’s
middleboxes. As a result, the performance di�erence among these
three methods is decreased, especially when the tra�c rate is large.

We also test the �rst case with no node capacity constraint under
di�erent dependency relationships, as shown in Table I. The table
illustrates that the dependency truly a�ects both of the metrics.
The set with the lowest cost is 0.7! 0.8! 1.1! 1.2. In the case
of the non-ordered middlebox set, the optimal placement sequence
is also 0.7 ! 0.8 ! 1.1 ! 1.2, which veri�es the correctness of
our DP. The largest total cost belongs to the sequence 1.2! 1.1!
0.8 ! 0.7, but its middlebox setup cost is not the largest. This is
because our objective is related not only to middlebox setup cost,
but also to bandwidth consumption.

7.4 Evaluation for Heterogeneous Flows
We show the case under �ow bandwidth heterogeneity with GFIB
in Fig. 8. The bandwidths of the �ows are generated randomly with
an average of 1 to 6Mbps and a stride of 1Mbps. Each time, we gen-
erate 300 �ows. The results show that GFIB consistently achieves
the smallest total cost and smallest middlebox setup cost. On aver-
age, the total cost is saved about 36.9% and 34.0% compared to the
NOSP and Random-�t algorithms, respectively. This is because the
dependency relations make it more di�cult to place a single type
of middlebox at its optimal location. Additionally, the middlebox

ICPP’18, August 2018, Eugene, Oregon, USA Yang Chen and Jie Wu

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

60

To
ta

l c
os

t v
al

ue

DP
TOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

5

10

15

20

25

M
id

dl
eb

ox
 s

et
-u

p
co

st

DP
TOSP
Random-fit

(b) Middlebox setup cost.

Figure 7: Totally-ordered middlebox set with node capacity.

1 2 3 4 5 6
Traffic rate (Mbps)

0

20

40

60

80

To
ta

l c
os

t v
al

ue

GFIB
NOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

M
id

dl
eb

ox
 s

et
-u

p
co

st

GFIB
NOSP
Random-fit

(b) Middlebox setup cost.

Figure 8: Non-ordered set under bandwidth heterogeneity.

setup cost of GFIB is much lower than that of the other two due
to it addressing the middlebox-sharing issue. Though it is not op-
timal, GFIB is still worth applying to the middlebox placement. It
demonstrates the e�ciency and e�ectiveness of our algorithms.

In summary, the experiments verify the correctness and e�-
ciency of our proposed algorithms in the complete tree topologies
and in the shared-root-double-tree topology. They also show that
only considering bandwidth consumption is too one-sided because
sharing middleboxes among �ows saves a lot of server resources.
Taking both the bandwidth consumption and the server resource
usage into consideration, it is worth mentioning that our LGA
and CLGA can be used as e�cient, greedy algorithms with signi�-
cant insights in all kinds of tree topologies and tra�c distributions.
Additionally, our shared-root-double-tree can be embedded in tree-
structured data centers using the up-and-down process. The sim-
ulation results show that our greedy algorithms and the dynamic
programming algorithm empirically perform excellent in trees.

8 CONCLUSION
We study the middlebox placement with the constraints, including
tra�c-changing e�ects and dependency relations of middleboxes.
Private middleboxes save more �ow bandwidth while shared mid-
dleboxes cut down the middlebox setup cost. We �rst formulate the
dilemma as a cost minimization problem. We prove it is NP-hard
to optimally place even a single middlebox in general topologies
and then narrow down to tree-structured networks. With homo-
geneous �ows, we propose three optimal algorithms for several
special cases: a single middlebox, a non-ordered middlebox set,
and a totally-ordered middlebox set. With heterogeneous �ows, we

introduce a performance-guaranteed algorithm. Extensive simula-
tions show e�ciency and e�ectiveness of our algorithms.

REFERENCES
[1] A��F����, M., L��������, A., ��� V�����, A. A scalable, commodity data center

network architecture. SIGCOMM Comput. Commun. Rev. 38, 4 (Aug. 2008), 63–74.
[2] C�����, M., K������, T., R���������, R., ��� S������, S. Virtualizing the

network forwarding plane. In Proceedings of the Workshop on Programmable
Routers for Extensible Services of Tomorrow (New York, NY, USA, 2010), PRESTO
’10, ACM, pp. 8:1–8:6.

[3] C����. Cisco eigrp protocol.
[4] C����. Cisco: Nat order of operation.
[5] C�����. Citrix cloudbridge product overview, 2015.
[6] C����, R., L�����E����, L., N���, J. S., ��� R��, D. Near optimal placement of

virtual network functions. In 2015 IEEE Conference on Computer Communications
(INFOCOM) (April 2015), pp. 1346–1354.

[7] D����, S. IP over WDM: building the next-generation optical Internet. John Wiley
& Sons, 2004.

[8] F����������, S., S����, V., Y�, M., ���M����, J. Flowtags: Enforcing network-
wide policies in the presence of dynamic middlebox actions. In Proceedings of the
Second ACM SIGCOMMWorkshop on Hot Topics in Software De�ned Networking
(New York, NY, USA, 2013), HotSDN ’13, ACM, pp. 19–24.

[9] G������J�������, A., V����������, R., P������, C., G�����, R., K�����,
J., D��, S., ��� A�����, A. Opennf: Enabling innovation in network function
control. In Proceedings of the 2014 ACM Conference on SIGCOMM (New York, NY,
USA, 2014), SIGCOMM ’14, ACM, pp. 163–174.

[10] G�������, R. Network Functions Virtualisation: An Introduction, Bene�ts, Enablers,
Challenges and Call for Action, Introductory white paper. 2012 SDN and OpenFlow
World Congress, 2012.

[11] G��, C., L�, G., L�, D., W�, H., Z����, X., S��, Y., T���, C., Z����, Y., ��� L�,
S. Bcube: A high performance, server-centric network architecture for modular
data centers. In Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (New York, NY, USA, 2009), SIGCOMM ’09, ACM, pp. 63–74.

[12] I��, C. S. Service function chaining (sfc) architecture, 2015.
[13] K��, T., L���, B., L��, K., ��� T���, M. Deploying chains of virtual network

functions: On the relation between link and server usage. In IEEE INFOCOM 2016
- The 35th Annual IEEE International Conference on Computer Communications
(April 2016), pp. 1–9.

[14] L�, Y., P���, L. T. X., ��� L��, B. T. Network functions virtualization with soft
real-time guarantees. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications (April 2016), pp. 1–9.

[15] L��, Y., M������, J., V������������, M., L��, D., ��� H����, M. Data center
networks: Topologies, architectures and fault-tolerance characteristics. Springer
Science & Business Media.

[16] M�, W., S�������, O., B������, J., P��, D., ��� P�������, N. Tra�c aware
placement of interdependent nfv middleboxes. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications (May 2017), pp. 1–9.

[17] M���������, S., K�����, M., ��� K���, H. Specifying and placing chains of
virtual network functions. In 2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet) (Oct 2014), pp. 7–13.

[18] M�����, M., V������, B., ��� B����, L. Satellite communications: mobile and
�xed services. Springer Science & Business Media, 1993.

[19] M��, J. Ospf version 2.
[20] P. Z���, P., F�������, R., Z��, X., M�������, M., ��� R������, J. Dynamic

service chaining with dysco. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (New York, NY, USA, 2017), SIGCOMM
’17, ACM, pp. 57–70.

[21] ����, P., ��� N�����, T. Service function chaining problem statement. Active
Internet-Draft, IETF Secretariat, Internet-Draft draft-ietf- sfcproblem-statement-
05, 2014, 2014.

[22] R��, A., Z���, H., B����, J., P�����, G., ��� S������, A. C. Inside the social
network’s (datacenter) network. In SIGCOMM 2015.

[23] S���, Y., J�, B., G����, G., D�, X., ��� Y�, L. Provably e�cient algorithms for
joint placement and allocation of virtual network functions. IEEE INFOCOM 2017
- IEEE Conference on Computer Communications (2017), 1–9.

[24] S������, S., ���A�����, B. Hybrid cdn-p2p architectures for live video streaming:
Comparative study of connected and unconnected meshes. In 2011 International
Symposium on Computer Networks and Distributed Systems (CNDS) (Feb 2011),
pp. 175–180.

[25] S�����, J., ��� R��������, S. A survey of enterprise middlebox deployments.
Tech. Rep. UCB/EECS-2012-24, EECS Department, University of California, Berke-
ley, Feb 2012.

[26] W�, J. Distributed system design. CRC press, 1999.

l LGA costs 20.3% less than NOSP and 35.1% less than Random-fit.
l CLGA performs the best even with heavy traffic.
l For heterogeneous flows, GFIB saves about 36.9% and 34.0%

compared to NOSP and Random-fit.

Single middlebox Non-ordered middlebox set Bandwidth heterogeneity
(LGA) (CLGA) (GFIB)

Simulation Results (cont’d)

NFV Middlebox Placement with Balanced Set-up Cost and Bandwidth Consumption ICPP’18, August 2018, Eugene, Oregon, USA

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

60

To
ta

l c
os

t v
al

ue

CLGA
NOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

5

10

15

20

25

30

M
id

dl
eb

ox
 s

et
-u

p
co

st

CLGA
NOSP
Random-fit

(b) Middlebox setup cost.

Figure 5: Non-ordered middlebox set.

only handle �ows one at a time. For each, we select one �ow and
run the algorithms until all �ows have been selected.

(2) Random-�t randomly places middleboxes on random nodes
on the paths until all �ows are “covered”. The middleboxes are
sorted by their tra�c-changing ratios.

7.3 Evaluation for Homogeneous Flows
We start with homogeneous �ows. The independent variable in
x-axis is the uni�ed bandwidth for all �ows. First, we evaluate a
single type of middlebox placement using LGA in Fig. 4. All curves
in Fig. 4(a) are increasing because heavier tra�c consumes more
bandwidths. LGA achieves the lowest cost value, and on average,
it costs about 20.3% less than NOSP and 35.1% less than Random-
�t. In the analysis in Section IV, we state that LGA is optimal
when placing a single type of middlebox for homogeneous �ows
in complete tree topologies. In terms of middlebox setup, the cost
of NOSP is a constant because it places a required middlebox in
the source of each �ow. If there are 16 leaf nodes, NOSP needs 16
middleboxes, which costs 16 ⇥ 0.4 = 6.4. This is the largest number
of middleboxes needed to ensure that all �ows are “covered”. Hence,
the middlebox setup cost of NOSP is the largest. The middlebox
setup of our algorithm is the smallest because LGA considers not
only bandwidth consumption, but also middlebox setup cost.

Second, we evaluate a slightly more complicated case of inde-
pendent middleboxes using CLGA in Fig. 5. As described in the last
subsection, all �ows need to be served by all middleboxes in the
non-ordered middlebox set {0.7, 0.8, 1.1, 1.2}. Because of the in�nite
server capacity and the independence of the middleboxes, we apply
LGA to each type of middlebox and the �nal optimal solution is
the combination of the optimal placement of each middlebox. As a
result, CLGA performs best in both total cost and middlebox setup
cost. The superiority of CLGA is more obvious in Fig. 4 than that of
LDA. This is because our algorithms perform better when the setup
cost is relatively large compared to NOSP, which only considers
the bandwidth consumption. The advantages of LGA and CLGA lie
in not only bandwidth consumption, but also in middlebox setup
cost. The performance of the Random-�t algorithm is not smooth
enough. When the tra�c load is heavy, the total cost of Random-�t
is 27.0% more than that of CLDA.

Next, we show the placement of a totally-ordered middlebox set
using DP with and without the node capacity constraint in Fig. 6
and Fig. 7. In both cases, with the desired optimality property of

Table 4: Di�erent dependencies with rf = 3 Mbps.

Totally-ordered middleboxes Total cost Set-up cost
0.8! 1.1! 0.7! 1.2 20.9 10.4
1.1! 0.7! 0.8! 1.2 23.7 12.0
0.7! 1.2! 1.1! 0.8 22.8 9.6
0.7! 0.8! 1.1! 1.2 11.9 4.4
1.2! 1.1! 0.8! 0.7 24.7 10.2

1 2 3 4 5 6
Traffic rate (Mbps)

10

20

30

40

50

To
ta

l c
os

t v
al

ue

DP
TOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

8

10

12

14

16

18

20

M
id

dl
eb

ox
 s

et
-u

p
co

st

DP
TOSP
Random-fit

(b) Middlebox setup cost.

Figure 6: Totally-ordered set without node capacity.

the dynamic programming, our proposed DP has the lowest cost in
both metrics. The cost is a little larger than that of the non-ordered
middlebox set. This is because the dependency relations make it
more di�cult to place a single type of middlebox at its optimal
location. We also �nd that when the tra�c becomes larger, the
Random-�t algorithm performs much worse than it does with the
independent set. The dependency relations limit the placement
more, so the random placement needs more middleboxes. Random-
�t performs a little better in the second case. The limitation of the
server capacity eliminates the location possibilities of Random-�t’s
middleboxes. As a result, the performance di�erence among these
three methods is decreased, especially when the tra�c rate is large.

We also test the �rst case with no node capacity constraint under
di�erent dependency relationships, as shown in Table I. The table
illustrates that the dependency truly a�ects both of the metrics.
The set with the lowest cost is 0.7! 0.8! 1.1! 1.2. In the case
of the non-ordered middlebox set, the optimal placement sequence
is also 0.7 ! 0.8 ! 1.1 ! 1.2, which veri�es the correctness of
our DP. The largest total cost belongs to the sequence 1.2! 1.1!
0.8 ! 0.7, but its middlebox setup cost is not the largest. This is
because our objective is related not only to middlebox setup cost,
but also to bandwidth consumption.

7.4 Evaluation for Heterogeneous Flows
We show the case under �ow bandwidth heterogeneity with GFIB
in Fig. 8. The bandwidths of the �ows are generated randomly with
an average of 1 to 6Mbps and a stride of 1Mbps. Each time, we gen-
erate 300 �ows. The results show that GFIB consistently achieves
the smallest total cost and smallest middlebox setup cost. On aver-
age, the total cost is saved about 36.9% and 34.0% compared to the
NOSP and Random-�t algorithms, respectively. This is because the
dependency relations make it more di�cult to place a single type
of middlebox at its optimal location. Additionally, the middlebox

ICPP’18, August 2018, Eugene, Oregon, USA Yang Chen and Jie Wu

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

60

To
ta

l c
os

t v
al

ue

DP
TOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

5

10

15

20

25

M
id

dl
eb

ox
 s

et
-u

p
co

st

DP
TOSP
Random-fit

(b) Middlebox setup cost.

Figure 7: Totally-ordered middlebox set with node capacity.

1 2 3 4 5 6
Traffic rate (Mbps)

0

20

40

60

80

To
ta

l c
os

t v
al

ue

GFIB
NOSP
Random-fit

(a) Total cost value.

1 2 3 4 5 6
Traffic rate (Mbps)

0

10

20

30

40

50

M
id

dl
eb

ox
 s

et
-u

p
co

st

GFIB
NOSP
Random-fit

(b) Middlebox setup cost.

Figure 8: Non-ordered set under bandwidth heterogeneity.

setup cost of GFIB is much lower than that of the other two due
to it addressing the middlebox-sharing issue. Though it is not op-
timal, GFIB is still worth applying to the middlebox placement. It
demonstrates the e�ciency and e�ectiveness of our algorithms.

In summary, the experiments verify the correctness and e�-
ciency of our proposed algorithms in the complete tree topologies
and in the shared-root-double-tree topology. They also show that
only considering bandwidth consumption is too one-sided because
sharing middleboxes among �ows saves a lot of server resources.
Taking both the bandwidth consumption and the server resource
usage into consideration, it is worth mentioning that our LGA
and CLGA can be used as e�cient, greedy algorithms with signi�-
cant insights in all kinds of tree topologies and tra�c distributions.
Additionally, our shared-root-double-tree can be embedded in tree-
structured data centers using the up-and-down process. The sim-
ulation results show that our greedy algorithms and the dynamic
programming algorithm empirically perform excellent in trees.

8 CONCLUSION
We study the middlebox placement with the constraints, including
tra�c-changing e�ects and dependency relations of middleboxes.
Private middleboxes save more �ow bandwidth while shared mid-
dleboxes cut down the middlebox setup cost. We �rst formulate the
dilemma as a cost minimization problem. We prove it is NP-hard
to optimally place even a single middlebox in general topologies
and then narrow down to tree-structured networks. With homo-
geneous �ows, we propose three optimal algorithms for several
special cases: a single middlebox, a non-ordered middlebox set,
and a totally-ordered middlebox set. With heterogeneous �ows, we

introduce a performance-guaranteed algorithm. Extensive simula-
tions show e�ciency and e�ectiveness of our algorithms.

REFERENCES
[1] A��F����, M., L��������, A., ��� V�����, A. A scalable, commodity data center

network architecture. SIGCOMM Comput. Commun. Rev. 38, 4 (Aug. 2008), 63–74.
[2] C�����, M., K������, T., R���������, R., ��� S������, S. Virtualizing the

network forwarding plane. In Proceedings of the Workshop on Programmable
Routers for Extensible Services of Tomorrow (New York, NY, USA, 2010), PRESTO
’10, ACM, pp. 8:1–8:6.

[3] C����. Cisco eigrp protocol.
[4] C����. Cisco: Nat order of operation.
[5] C�����. Citrix cloudbridge product overview, 2015.
[6] C����, R., L�����E����, L., N���, J. S., ��� R��, D. Near optimal placement of

virtual network functions. In 2015 IEEE Conference on Computer Communications
(INFOCOM) (April 2015), pp. 1346–1354.

[7] D����, S. IP over WDM: building the next-generation optical Internet. John Wiley
& Sons, 2004.

[8] F����������, S., S����, V., Y�, M., ���M����, J. Flowtags: Enforcing network-
wide policies in the presence of dynamic middlebox actions. In Proceedings of the
Second ACM SIGCOMMWorkshop on Hot Topics in Software De�ned Networking
(New York, NY, USA, 2013), HotSDN ’13, ACM, pp. 19–24.

[9] G������J�������, A., V����������, R., P������, C., G�����, R., K�����,
J., D��, S., ��� A�����, A. Opennf: Enabling innovation in network function
control. In Proceedings of the 2014 ACM Conference on SIGCOMM (New York, NY,
USA, 2014), SIGCOMM ’14, ACM, pp. 163–174.

[10] G�������, R. Network Functions Virtualisation: An Introduction, Bene�ts, Enablers,
Challenges and Call for Action, Introductory white paper. 2012 SDN and OpenFlow
World Congress, 2012.

[11] G��, C., L�, G., L�, D., W�, H., Z����, X., S��, Y., T���, C., Z����, Y., ��� L�,
S. Bcube: A high performance, server-centric network architecture for modular
data centers. In Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (New York, NY, USA, 2009), SIGCOMM ’09, ACM, pp. 63–74.

[12] I��, C. S. Service function chaining (sfc) architecture, 2015.
[13] K��, T., L���, B., L��, K., ��� T���, M. Deploying chains of virtual network

functions: On the relation between link and server usage. In IEEE INFOCOM 2016
- The 35th Annual IEEE International Conference on Computer Communications
(April 2016), pp. 1–9.

[14] L�, Y., P���, L. T. X., ��� L��, B. T. Network functions virtualization with soft
real-time guarantees. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications (April 2016), pp. 1–9.

[15] L��, Y., M������, J., V������������, M., L��, D., ��� H����, M. Data center
networks: Topologies, architectures and fault-tolerance characteristics. Springer
Science & Business Media.

[16] M�, W., S�������, O., B������, J., P��, D., ��� P�������, N. Tra�c aware
placement of interdependent nfv middleboxes. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications (May 2017), pp. 1–9.

[17] M���������, S., K�����, M., ��� K���, H. Specifying and placing chains of
virtual network functions. In 2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet) (Oct 2014), pp. 7–13.

[18] M�����, M., V������, B., ��� B����, L. Satellite communications: mobile and
�xed services. Springer Science & Business Media, 1993.

[19] M��, J. Ospf version 2.
[20] P. Z���, P., F�������, R., Z��, X., M�������, M., ��� R������, J. Dynamic

service chaining with dysco. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (New York, NY, USA, 2017), SIGCOMM
’17, ACM, pp. 57–70.

[21] ����, P., ��� N�����, T. Service function chaining problem statement. Active
Internet-Draft, IETF Secretariat, Internet-Draft draft-ietf- sfcproblem-statement-
05, 2014, 2014.

[22] R��, A., Z���, H., B����, J., P�����, G., ��� S������, A. C. Inside the social
network’s (datacenter) network. In SIGCOMM 2015.

[23] S���, Y., J�, B., G����, G., D�, X., ��� Y�, L. Provably e�cient algorithms for
joint placement and allocation of virtual network functions. IEEE INFOCOM 2017
- IEEE Conference on Computer Communications (2017), 1–9.

[24] S������, S., ���A�����, B. Hybrid cdn-p2p architectures for live video streaming:
Comparative study of connected and unconnected meshes. In 2011 International
Symposium on Computer Networks and Distributed Systems (CNDS) (Feb 2011),
pp. 175–180.

[25] S�����, J., ��� R��������, S. A survey of enterprise middlebox deployments.
Tech. Rep. UCB/EECS-2012-24, EECS Department, University of California, Berke-
ley, Feb 2012.

[26] W�, J. Distributed system design. CRC press, 1999.

l The total cost is larger than the non-ordered middlebox set.
l Limited vertex capacity increases the minimum cost.

Without vertex capacity With vertex capacity Middlebox order effect at 3 Mbps (DP)

Totally-ordered middlebox set with (2) and without vertex capacity

5. Conclusion and Future Work
l Middlebox constraints

¡ Traffic-changing effects, dependency relations, and flow sharing

l Middlebox placement
¡ Balancing middlebox set-up cost and bandwidth consumption

l Tree-structured topologies
¡ Optimal algorithms for homogeneous flows
¡ Performance-guaranteed algorithm for heterogeneous flows

l Future work
¡ General tree-structure and other topologies

Future Work: Other Chain Models

Minimizing Transmission and Processing Delay in a
NFV-based Network

Yang Chen and Jie Wu
Center for Networked Computing, Temple University, USA

Email: {yang.chen, jiewu}@temple.edu

Abstract—Software middleboxes, also called Virtual Network
Functions (VNFs), are replacing expensive traditional hardwares
in implementing network services. Multiple middleboxes pro-
cessing flows in a specific order form a service chain. Flows
request to be served by several middleboxes. Current works
pay little attention to the flow processing order of the service
chain, resulting in a poor control of the flow completion time.
However, the requirements of high performance networks are
becoming more and more intense. In this paper, we build a
transmission and processing delay model to formulate latency
behaviours and aim to minimize the flow completion time in
two aspects respectively: the makespan (the longest completion
time) and the average completion time. We propose two optimal
solutions when there are only two services in the service chain.
With a service chain of an arbitrary length, we first prove the
NP-hardness of our problem and two heuristic algorithms are
designed with insights. Real testbed experiments and extensive
simulations are conducted to evaluate the performance of our
proposed algorithms in various scenarios.

Index Terms—Middleboxes, delay, processing sequence, service
chain.

I. INTRODUCTION

Network Function Virtualization (NFV) is changing the
way we implement the network functions from expensive
hardwares to software middleboxes, called Virtual Network
Functions (VNFs) [1]. These (software) middleboxes are ex-
ecuted on switch-connected servers. Middleboxes play an in-
creasingly important role in modern networks [2]. As Software
Defined Networking (SDN) emerges, so does a tendency to
incorporate SDN and NFV in concerted ecosystems [3]. With
the intense requirement of high performance networks, SDN
manoeuvres through NFV traffic and allows the flow order to
be processed by the middleboxes [4].

Multiple middleboxes processing flows in a specific order
form a service chain. Most current works mainly study the
middlebox placement problem of choosing service locations
in the network. Stratos [5] is proposed as a controllable and
scalable framework for the efficient deployment of virtual
middleboxes. OpenNF [6] enforces the functions of NFV with
SDN, and provides a rich set of NFV/SDN APIs (move, copy,
share, etc.) for software middleboxes management, which
makes it feasible to dynamically schedule the middleboxes
according to the changing traffic. ClickOS [7] is put forward
to improve the running efficiency of virtual middleboxes by
optimizing the underlying Virtual Machines. ClickOS can
launch the middlebox software within about 30ms, which
makes it possible for dynamically deployment (add, delete,

m1 m2
d1
... ...

m3
d2

s

s'

d

d'

f

f'

Fig. 1: An illustrating example.

XXXXXXXXFlows
Middleboxes

m1 m2 m3

f 3 4 5
f 0 4 3 2

TABLE I: Processing times.

etc.) of middleboxes according to online changing traffic.
However, they pay little attention to the flow scheduling
sequence of the middleboxes, resulting in a poor control
of the flow completion time. The flow completion time is
important to evaluate the performance of the network, which is
highly demanded nowadays. The service chain with multiple
middleboxes makes the flow scheduling more complicated
because of various processing times of different flows on each
middlebox. Link transmission delays between the locations of
deployed middleboxes are necessarily taken into consideration.

We illustrate the importance of scheduling order in an
example, shown in Fig. 1. Circles denote the switches and
rectangles denote middleboxes deployed on switch-connected
servers. Suppose there are three middleboxes m1,m2 and m3

in the service chain and two flows f (source s, destination
d, and dash-line path) and f

0 (source s
0, destination d

0, and
dot-line path) request to be processed by the service chain. We
omit the drawings of servers and switches with no middlebox
deployed. The processing time of each flow on each middlebox
is shown in the Tab. I. The transmission delay between m1

and m2 is d1 = 1 and the transmission delay between m2

and m3 is d2 = 2. Because of the transmission delay between
two middleboxes, a flow cannot start (finish) being processed
in the middlebox mi before its starting (finishing) time of
the middlebox mi�1 plus the transmission delay between
two middleboxes. If flow f is scheduled before flow f

0, the
makespan is 10, which is shown in Fig. 2(a). If flow f

0 is
scheduled before flow f , the makespan is 12, which is shown
in Fig. 2(b). The difference comes from the constraint of
the completion times between adjacent middleboxes in the
service chain. More specifically, the completion time of f

0

d1

fm1

m2

m3

d2

f

f

.

f '

f '

f '

(a) f before f 0.

m1

m2

m3

d2

f

f

d1 d1 d2
..

f '

f '

f '

f

(b) f 0 before f .

Fig. 2: Different scheduling orders.

in middlebox m2 cannot be less than the completion time of
f
0 in middlebox m1 plus the delay d1, which is 4 + 1 = 5.

The same situation happens to the completion time of f
0 in

middlebox m3, which is 5 + 2 = 7. This illustrates that the
processing times of f 0 in middleboxes m2 and m3 are longer
than the given times, because of the transmission delays.

In this paper, we aim at minimizing the transmission delay
and processing delay in two aspects: makespan and the total
completion time. We build a transmission and processing
delay model to formulate latency behaviours and control the
flow processing sequence in the network. We are given a
deployed service chain with the processing times of flows
and transmission delays between middleboxes. We propose
two optimal solutions when there are only two services in
the service chain. With a service chain of an arbitrary length,
two heuristic algorithms are designed with insights. Extensive
simulations and experiments are conducted to evaluate the
performance of our proposed algorithms in various scenarios.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model and
formulates the problem. Section IV introduces our optimal
algorithms to arrange flows for a service chain with only two
middleboxes. In Section V, we handle cases with an arbitrary
number of middleboxes in a service chain and propose two
heuristic algorithms with insights. Section VI includes the
experiments and simulations. Section VII concludes the paper.

II. RELATED WORK

Many data centre applications are sensitive to latencies.
One source of latency is network congestion as throughput-
intensive applications cause queueing at switches that delays
traffic from latency-sensitive applications. Existing techniques
to combat queueing are to prioritise flows such that pack-
ets from latency-sensitive flows can jump the queue [8]; to
centrally schedule all flows for every server so that no flow
has to queue [9]; or to pace end host packets to achieve
guaranteed bandwidth for guaranteed queueing [10]. These
techniques assume shortest path forwarding. Today‘s data
center fabrics have rich path-redundancy in nature, so non-
shortest paths can be exploited to use path redundancy and
spare capacity for mitigating network congestion [11]. As
policy rules chaining can effectively shape the network traffic
(packets need to follow policy path), they can be chained over
non-shortest paths to mitigate congestion-led queueing since
propagation delay on physical links is predictable and smaller
than queueing delay.

Most researches on middlebox placement focus on de-
ploying a chain of middlebox instances whose middleboxes

m2
p2j

d1
m1
p1j

(a) Two ordered services.

m1 mi m(i+1)
di

... ... m(2i)
p1j pij pi+1j p2ij

(b) Multiple ordered services.

Fig. 3: A service chain.

conform to a strict serving sequence as a totally-ordered set.
In [12], they propose a context-free language to formalize
the chaining of network functions and describe the middlebox
resource allocation problem as a mixed integer quadratically
constrained program. Rami et al. [13] locate middleboxes in
a way that minimizes both the new middlebox setup cost and
the distance cost between flows’ paths and middleboxes and
provide near optimal approximation algorithms to guarantee a
placement with a theoretical-proven performance. Flowtag [3]
uses SDN to support service chaining by redefining certain
packet header fields as tags to track flows for middleboxes.
Both [14] and [15] aim to maximize the number of requests
for each service chain. [14] proposes a systematic way to tune
the proper link and server resource usages in the joint problem
of middleboxmiddleboxes placement and path selection. Li el
at. [15] present the design and implementation of NFV-RT,
a system that dynamically provisions resources in an NFV
environment to provide timing guarantees so that the assigned
flows meet their deadlines.

A classic problem, flow shop [16], inspires our work. Flow
shop assumes that all phases are set up in series and that
jobs have to follow the same route to be executed. When we
ignore the transmission delay, our problem is similar to the
flow shop. [17] provides an optimal solution for minimizing
the makespan with only two phases. It also proves that the
general flow shop problem with k phases (k > 2) is NP-
complete. In contrast to the makespan objective, results with
regard to the average completion time objective are much
harder to obtain. Minimizing the average completion time with
two phases is already strongly NP-hard. Almost all existing
work focus on heuristic algorithms [18, 19]. Zheng et al.
in [20] provide an optimal solution when all jobs can be
strong paired, which is restrictive. Furthermore, there is no
transmission delay between phases.

III. MODEL AND FORMULATION

In this section, we first propose our network model and then
formulate our problem.

A. Network Model

Before formulating the problem, we first present our model
of the directed network, G = (V,E), where V = {v} is a set
of vertices (i.e., switches) and E = {e} is a set of directed
edges (i.e., links). We use v to denote a single vertex, and
evv0 as the edge from vertex v to vertex v

0. Middleboxes
are deployed in the network. A service chain M = {mi}
is an ordered middlebox set, where each flow needs to be
processed in a fixed order. We are given a set of unsplittable
flows F = {fj}, because flow splitting may not be feasible
for applications that are sensitive to TCP packet ordering (e.g.

d1

fm1

m2

m3

d2

f

f

.

f '

f '

f '

(a) f before f 0.

m1

m2

m3

d2

f

f

d1 d1 d2
..

f '

f '

f '

f

(b) f 0 before f .

Fig. 2: Different scheduling orders.

in middlebox m2 cannot be less than the completion time of
f
0 in middlebox m1 plus the delay d1, which is 4 + 1 = 5.

The same situation happens to the completion time of f
0 in

middlebox m3, which is 5 + 2 = 7. This illustrates that the
processing times of f 0 in middleboxes m2 and m3 are longer
than the given times, because of the transmission delays.

In this paper, we aim at minimizing the transmission delay
and processing delay in two aspects: makespan and the total
completion time. We build a transmission and processing
delay model to formulate latency behaviours and control the
flow processing sequence in the network. We are given a
deployed service chain with the processing times of flows
and transmission delays between middleboxes. We propose
two optimal solutions when there are only two services in
the service chain. With a service chain of an arbitrary length,
two heuristic algorithms are designed with insights. Extensive
simulations and experiments are conducted to evaluate the
performance of our proposed algorithms in various scenarios.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model and
formulates the problem. Section IV introduces our optimal
algorithms to arrange flows for a service chain with only two
middleboxes. In Section V, we handle cases with an arbitrary
number of middleboxes in a service chain and propose two
heuristic algorithms with insights. Section VI includes the
experiments and simulations. Section VII concludes the paper.

II. RELATED WORK

Many data centre applications are sensitive to latencies.
One source of latency is network congestion as throughput-
intensive applications cause queueing at switches that delays
traffic from latency-sensitive applications. Existing techniques
to combat queueing are to prioritise flows such that pack-
ets from latency-sensitive flows can jump the queue [8]; to
centrally schedule all flows for every server so that no flow
has to queue [9]; or to pace end host packets to achieve
guaranteed bandwidth for guaranteed queueing [10]. These
techniques assume shortest path forwarding. Today‘s data
center fabrics have rich path-redundancy in nature, so non-
shortest paths can be exploited to use path redundancy and
spare capacity for mitigating network congestion [11]. As
policy rules chaining can effectively shape the network traffic
(packets need to follow policy path), they can be chained over
non-shortest paths to mitigate congestion-led queueing since
propagation delay on physical links is predictable and smaller
than queueing delay.

Most researches on middlebox placement focus on de-
ploying a chain of middlebox instances whose middleboxes

m2
p2j

d1
m1
p1j

(a) Two ordered services.

m1 mi m(i+1)
di

... ... m(2i)
p1j pij pi+1j p2ij

(b) Multiple ordered services.

Fig. 3: A service chain.

conform to a strict serving sequence as a totally-ordered set.
In [12], they propose a context-free language to formalize
the chaining of network functions and describe the middlebox
resource allocation problem as a mixed integer quadratically
constrained program. Rami et al. [13] locate middleboxes in
a way that minimizes both the new middlebox setup cost and
the distance cost between flows’ paths and middleboxes and
provide near optimal approximation algorithms to guarantee a
placement with a theoretical-proven performance. Flowtag [3]
uses SDN to support service chaining by redefining certain
packet header fields as tags to track flows for middleboxes.
Both [14] and [15] aim to maximize the number of requests
for each service chain. [14] proposes a systematic way to tune
the proper link and server resource usages in the joint problem
of middleboxmiddleboxes placement and path selection. Li el
at. [15] present the design and implementation of NFV-RT,
a system that dynamically provisions resources in an NFV
environment to provide timing guarantees so that the assigned
flows meet their deadlines.

A classic problem, flow shop [16], inspires our work. Flow
shop assumes that all phases are set up in series and that
jobs have to follow the same route to be executed. When we
ignore the transmission delay, our problem is similar to the
flow shop. [17] provides an optimal solution for minimizing
the makespan with only two phases. It also proves that the
general flow shop problem with k phases (k > 2) is NP-
complete. In contrast to the makespan objective, results with
regard to the average completion time objective are much
harder to obtain. Minimizing the average completion time with
two phases is already strongly NP-hard. Almost all existing
work focus on heuristic algorithms [18, 19]. Zheng et al.
in [20] provide an optimal solution when all jobs can be
strong paired, which is restrictive. Furthermore, there is no
transmission delay between phases.

III. MODEL AND FORMULATION

In this section, we first propose our network model and then
formulate our problem.

A. Network Model

Before formulating the problem, we first present our model
of the directed network, G = (V,E), where V = {v} is a set
of vertices (i.e., switches) and E = {e} is a set of directed
edges (i.e., links). We use v to denote a single vertex, and
evv0 as the edge from vertex v to vertex v

0. Middleboxes
are deployed in the network. A service chain M = {mi}
is an ordered middlebox set, where each flow needs to be
processed in a fixed order. We are given a set of unsplittable
flows F = {fj}, because flow splitting may not be feasible
for applications that are sensitive to TCP packet ordering (e.g.

f before f’ f‘ before f

d1 = 1 d2 = 2
Processing time

t = 10 t’ = 12

prolong

• Minimizing the makespan (similar to flow shop)
• Minimizing the average completion time

Q & A

Y. Chen and J. Wu, " NFV Middlebox Placement with Balanced Set-up Cost
and Bandwidth Consumption," Proc of ICPP, August 13-16, 2018.

Y. Chen, J. Wu, and B. Ji, " Virtual Network Function Deployment in Tree-
structured Networks," Proc. of ICNP, September 24-27, 2018.

Other Service Chain Models
l One box with different volumes/costs

l SolutionsCompared to Fig. 1(a), one more instance is deployed since
v1 can deploy only one instance. In order to fully process all
flows before destinations, both instances on v1 and v4 waste
1 processing volume while the one on v3 wastes 2. The waste
is unavoidable because of the vertex capacity limitation and
the service requirement.

The main challenges of our deployment problem lie in
the selection of VNF locations and the allocation of each
deployed VNF processing volume. The vertex capacity con-
straint complicates the deployment, since flows have to be
fully processed before reaching their destinations. Intuitively,
if we deploy the instances too close to the root of the tree, the
processing volume is more likely to be used up, while flows
with destinations far from the root may not be processed; if
too far from the root, the opportunity of sharing the processing
volume of an instance is scarce so that some will be wasted
and more VNFs are needed. Additionally, heterogeneous VNF
types of configurations for a network function, which have
not been studied in the deployment problem, offer more
deployment options and make the problem more complex.

In this paper, we first solve the heterogeneous VNF deploy-
ment problem in a tree topology with a dynamic programming
based method. Because of NP-hardness of the problem, the
solution is pseudo-polynomial and its time complexity is not
easily tractable. Then we study a special case of homogeneous
VNF deployment and improve the dynamic programming
solution with an acceptable time complexity. Additionally,
the heterogeneous VNF deployment problem in a linear line
topology can be transformed to the classic submodular set
cover problem so that we introduce a performance-guaranteed
greedy strategy. An optimal greedy algorithm is designed for
the simple case: homogeneous VNF deployment in a linear
line topology.

Our main contributions are summarized as follows:
• We prove the NP-hardness of the heterogeneous VNF

deployment problem in the tree-structured network.
• We propose four pseudo-polynomial algorithms in dif-

ferent settings of topologies and VNF types of con-
figurations, shown in Tab. I with properties and time
complexities1. Since |M | (total number of VNF types
of configurations) and cmax (largest vertex capacity) are
small and integer-valued, while wmax (largest single VNF
instance setup cost) is in an arbitrary precision and order
of magnitude, the first algorithm is computationally hard,
and the complexities of the rest of the three algorithms
are dramatically improved.

• Extensive simulations are conducted to evaluate the effi-
ciency of our proposed algorithms.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model,
formulates the problem, and shows hardness. Section IV intro-

1An algorithm has pseudo-polynomial time if its running time is a polyno-
mial in the numeric value of the input (the largest integer present in the input)
(e.g., cmax in Tab. I), instead of the length of the input (the number of bits
required to represent it) (e.g., V in Tab. I), which is the case for polynomial
time algorithms.

TABLE I: Our proposed solutions and time complexities.
H

H
H
H

Topo
Type Heterogeneous Homogeneous

Tree DP Optimal DP Optimal
O(|V |4⇥(cmax⇥wmax)3) O(|V |4⇥(cmax)3)

Line Greedy Approximate Greedy Optimal
O(|V |2⇥|M |⇥cmax) O(|V |⇥cmax)

duces our deployment algorithms in tree-structured topologies.
In Section V, we handle cases in line topologies. Section VI
includes the experiments, and Section VII concludes the paper.

II. RELATED WORK

NFV frameworks have drawn a lot of attention, especially
in the area of VNF deployment problem. Various objectives
with different backgrounds are conduced in recent years. In
this section, we give a brief review of state-of-art works.

Casado et al. [12] propose a model for deploying a single
type of VNFs and present a heuristic algorithm to solve
the deployment problem. [10] studies the joint deployment
and allocation of a single type of VNFs, where flows can
be split and fractionally served by several VNF instances.
They propose several performance-guaranteed algorithms to
minimize the number of VNF instances. However, they treat
all servers with unlimited capacities such that they are able
to hold an arbitrary number of VNF instances, which is
not practical. [13] is the first to study the VNF deployment
problems taking the effects of changing traffic volume into
consideration. It also studies the multiple VNF deployment of
different dependency relationships. They target load balancing
through VNF deployment and flow-routing path selection.
However, this work only processes a single flow and takes
no consideration of the limited VNF processing volume. It
results in exclusive instances for each flow, which is wasteful
of server resources.

There are other types of service coverage for each flow,
such as service chain where each flow has to be covered by a
sequence of services with or without particular order, instead
of single service used in our model. Rost et al. [14] prove the
NP-completeness and inapproximability of the service chain
deployment under different constraint settings, extended from
the virtual network embedding problem. They initiate the
study of approximation algorithms and propose a performance-
guaranteed solution under the offline setting (given multiple
flows), based on randomized rounding of Linear Programming,
to maximize the total profit of satisfied flows in [15]. Since our
model is special with one service in a service chain, the results
obtained in this paper are more specific. In tree-structured
networks, we propose optimal DP-based solutions of the VNF
deployment.

III. MODEL AND FORMULATION

A. Network Model

We first present our model of the directed tree-structured
network, T = (V,E), where V = {v} is a set of vertices (i.e.,
switches), and E = {e} is a set of directed edges (i.e., links).

Heterogeneous (NP-hard)

V: set of vertices M: set of box types (<10)
cmax: Max box number per vertex (<30) wmax: Max box cost scale (tunable)

