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The Generalized 3-Connectivity of Some
Regular Networks

Shu-Li Zhao1, Rong-Xia Hao1 and Jie-Wu2

Abstract—For a vertex set S with cardinality at least two, we need a tree to connect them, where this tree is usually called an S-Steiner
tree (or a tree connecting S). Two S-Steiner trees T and T ′ are said to be internally disjoint if E(T )∩E(T ′) = ∅ and V (T )∩V (T ′) = S.
Let κG(S) denote the maximum number r of internally disjoint S-Steiner trees in G. For an integer k with 2 ≤ k ≤ n, the generalized
k-connectivity of a graph G is defined as κk(G) = min{κG(S)|S ⊆ V (G) and |S| = k}. It is proved NP-complete to determine κk(G)

for a general graph G. So far, the exact values of κk(G) are known for small classes of graphs and most of them are about k = 3.
In this paper, we introduce a family of m-regular and m-connected graph Gn which are constructed recursively and contains many
important interconnection networks such as the alternating group graph AGn, the k-ary n-cube Qk

n, the split-star network S2
n and the

bubble-sort-star graph BSn. We study the generalized 3-connectivity of Gn and show that κ3(Gn) = m − 1, which attains the upper
bound of κ3(G) given by Li et al. for G = Gn. As applications, the generalized 3-connectivity of AGn, Qk

n, S2
n and BSn etc., can be

obtained directly.

Index Terms—Interconnection network; Generalized connectivity; Fault-tolerance; Regular Network.

✦

1 INTRODUCTION

In the modern society, Big Data and Internet of Things
are prevailing in computer systems and information
technology. In recent years, due to the popularization of
mobile devices, the prevailing of social networks and the
improvement of cloud computing, enormous amount of
data is produced in great speed. Internet of Things, for
instance, every device is equipped with sensors. These
devices are able to collect every kind of data extensively
in large amount. Thus, the parallel and distributed sys-
tem is an important technique for developing Big Data.
Related researches about interconnection network for the
most parts have applied to the parallel and distributed
system. In a distributed computer system, a network
structure represents the layout of the processors and the
links. The topological structure of a computer network is
usually represented by a graph, where vertices represent
processors and edges represent links between processors.
The internally disjoint S-Steiner trees of graphs do exist
in information engineering design and telecommunica-
tion networks [28]. The research about internally disjoint
S-Steiner trees of graphs plays a key role in effective
information transportation in terms of parallel routing
design for large-scale networks.

The connectivity κ(G) is an important parameter to
evaluate the reliability and fault tolerance of a graph G.
As we know, κ(G) has two equivalent definitions, one
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is the cut version and the other is the path version. For
the cut version, it is defined as the minimum number of
vertices whose deletion results in a disconnected graph.
For the path version, Whitney [32] defined it from a local
point of view, that is, for any subset S = {u, v} ⊆ V (G),
let κG(S) denote the maximum number of internally
disjoint paths between u and v in G. Then κ(G) =
min{κG(S)|S ⊆ V (G) and |S| = 2}.

The generalized k-connectivity κk(G) was first men-
tioned by Hager [9] in 1985, it can be used to measure
the reliability of a network G that connect any k vertices
in G. For a vertex set S with cardinality at least two,
we need a tree to connect them, where this tree is
called an S-Steiner tree (or a tree connecting S). Two
S-Steiner trees T and T ′ are said to be internally disjoint
if E(T )∩E(T ′) = ∅ and V (T )∩V (T ′) = S. For S ⊆ V (G)
and |S| ≥ 2, the κG(S) is the maximum number of
internally disjoint S-Steiner trees in G. For an integer
k with 2 ≤ k ≤ n, the generalized k-connectivity is
defined as κk(G) = min{κG(S)|S ⊆ V (G), |S| = k}, that
is, κk(G) is the minimum value of κG(S) when S runs
over all k-subsets of V (G). Clearly, when |S| = 2, κ2(G)
is just the connectivity κ(G) of G, that is, κ2(G) = κ(G)
and corresponding to the definition of κ(G) for the path
version. This is the reason why one addresses κk(G) as
a generalization of κ(G).

The internally disjoint S-Steiner trees have applica-
tions in VLSI circuit design [28], that is, a Steiner tree
is needed to share an electronic signal by a set of
terminal nodes. In addition, the S-Steiner trees are used
in computer communication networks and optical wire-
less communication networks, which is of prominent
importance. Imagine that a given graph G represents
a network. We choose arbitrary k vertices as nodes.
Suppose one of the nodes in G is a broadcaster, and
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all other nodes are either users or routers (also called
switches). The broadcaster wants to broadcast as many
streams of movies as possible, so that the users have the
maximum number of choices. Each stream of movie is
broadcasted via a tree connecting all the users and the
broadcaster. In essence, we need to find the maximum
number of internally disjoint Steiner trees connecting all
the users and the broadcaster, namely, we want to get
κG(S), where S is the set of the k nodes. Furthermore, if
we want to know whether for any k nodes the network
G has the above properties, we need to compute κk(G)=
min{κG(S)} in order to prescribe the reliability and the
security of the network.

Determining κk(G) for general graphs is a non-trivial
problem. Li et al. [19] derived that for any fixed integer
l ≥ 2, a given graph G and a subset S ⊆ V (G), deciding
whether there are l internally disjoint trees connecting
S, namely deciding whether κG(S) ≥ l, is NP-complete.
So far, the upper bounds and lower bounds of the
generalized connectivity of graphs have been studied by
the authors in Refs. [17], [21], [22]; the upper bounds and
lower bounds of the generalized connectivity of Carte-
sian product and Lexicographic product of graphs have
been studied by the authors in Refs. [13], [20]; the charac-
terization of graphs with given generalized connectivity
have been studied by the authors in Ref. [23]; the exact
values of κk(G) are known for small classes of graphs
such as the complete graphs [6], the hypercubes [13],
the star graphs and bubble-sort graphs [18], the Cayley
graph generated by trees and cycles [16], the complete
bipartite graphs [24], the exchanged hypercubes [40] etc..
For k = |V (G)|, the generalized k-connectivity of a
graph G is exactly the maximum number of edge disjoint
spanning trees in G. There are some results about edge
disjoint spanning trees of networks [10], [12], [25], [27],
[29], [31], [35]–[38]. For more results about generalized
connectivity of graphs, one can refer to [14].

Overall, the exact values of κk(G) are known for small
classes of graphs and most of them are about k = 3.
In this paper, we introduce a family of m-regular and
m-connected graph Gn that has exactly two outside
neighbors and contains many important interconnection
networks such as AGn, Qk

n, S2
n and BSn. We show that

κ3(Gn) = m − 1, which attains the upper bound of
κ3(G) given by Li et al. for G = Gn. As applications,
the generalized 3-connectivity of AGn, Qk

n, S2
n and BSn

etc., can be obtained directly.
The paper is organized as follows. In section 2,

some terminologies and notations needed for the dis-
cussion are introduced. In section 3, the generalized
3-connectivity of the regular graph Gn is determined,
which is the main result. In section 4, as an application
of the main result, the generalized 3-connectivity of
the alternating group graph AGn, the k-ary n-cube Qk

n,
the split-star network S2

n and the bubble-sort-star graph
BSn etc., can be obtained directly as they are contained
in Gn. In section 5, an algorithm to find the 2n − 4
internally disjoint S-Steiner trees in BSn is presented,

TABLE 1
Notations needed for the discussion

Notation Meaning

G = (V,E) A graph with vertex set V and edge set E
κ(G) The connectivity of a graph G
κk(G) The generalized k-connectivity of a graph G
|V (G)| The order of the vertex set of a graph G
|E(G)| The size of the edge set of a graph G
NG(v) The neighborhood of the vertex v in G
NG[v] NG(v)

⋃
{v}, where v ∈ V (G)

NG(U)
⋃

v∈U

NG(v) − U , where U ⊆ V (G)

dG(v) The degree of the vertex v in G
δ(G) The minimum degree of the graph G
G[V ′] The subgraph induced by V ′ in G, where

V ′ ⊆ V (G)
[n] The integer set from 1 to n
Γ A finite group

Cay(Γ, S) The Cayley graph with vertex set Γ and edge set
{(g, g.s)|g ∈ Γ, s ∈ S}, where S is a subset of Γ
and the identity of the group does not belong to

S.

where S = {x, y, z}, x, y and z are any three distinct
vertices of BSn. In section 6, the limitations of the work
are discussed and in section 7, the paper is concluded.

2 TERMINOLOGY AND NOTATION

In this section, we will introduce some terminologies
and notations needed for our discussion. For terminolo-
gies and notations undefined here, one can follow the
reference [1]. For convenience, we use interconnection
networks and graphs interchangeably.

The notations needed for our discussion are listed in
Table 1 and we will introduce the terminologies needed
for our discussion.

A graph is said to be k-regular if for any vertex v of G,
dG(v) = k. The (x, y)-paths P and Q in G are internally
disjoint if they have no common internal vertices, that
is V (P )

⋂
V (Q) = {x, y}. Meanwhile, two xy- paths P

and Q in G are edge disjoint if E(P ) ∩ E(Q) = ∅. Let
Y ⊆ V (G) and X ⊂ V (G) \ Y , the (X,Y )-paths is a
family of internally disjoint paths starting at a vertex
x ∈ X , ending at a vertex y ∈ Y and whose internal
vertices belong to neither X nor Y . If X = {x}, the
(X,Y )-paths is a family of internal disjoint paths whose
starting vertex is x and the terminal vertices are distinct
in Y , which is referred to as a k-fan from x to Y .

Following, we will introduce the definition of the
graph Gn.

Definition 2.1. Let n, r, a be integers and pi ≥ 2 be integers
for i ∈ [n] \ {1}, where r ≤ a− 1. Let Gn be an n-th regular
graph, which can be constructed recursively as follows:

(1) The 1-th regular graph, say G1, is a r-regular and r-
connected graph with order a.

(2) For n ≥ 2, the n-th regular graph, say Gn, is a
regular graph that consists of pn copies of Gn−1, say
G1

n−1, G
2
n−1, · · · , G

pn

n−1.
(3) For each u ∈ V (Gi

n−1), it has two different neighbors
outside Gi

n−1, which are called outside neighbors of u.
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In addition, the two outside neighbors of u belong to
two different (Gj

n−1)
′s for j 6= i and i, j ∈ [pn].

(4) There are same number of independent edges between
Gi

n−1 and Gj
n−1 for i 6= j and i, j ∈ [pn]. It can be

checked that there are 2ap2p3···pn−1

pn−1 cross edges between

Gi
n−1 and Gj

n−1.

(5) 2ap2p3···pn−1

pn−1 ≥ r+2(n−2)+2, where r+2(n−2) ≥ 4.
(6) Gn is m-regular and m-connected, where m = r+2(n−

1).

For convenience, let Gn = G1
n−1

⊕
G2

n−1

⊕
· · ·

⊕

Gpn

n−1. By the definition of Gn, |Gn| = N = ap2p3 · · · pn.

3 THE GENERALIZED 3-CONNECTIVITY OF G
n

In this section, we will study the generalized 3-
connectivity of Gn. The following lemmas are useful to
our main result.

In [21], Li et al. showed the following upper bound of
generalized 3-connectivity of a connected graph.

Lemma 3.1. ( [21]) Let G be a connected graph and δ be its
minimum degree. Then κ3(G) ≤ δ. Further, if there are two
adjacent vertices of degree δ, then κ3(G) ≤ δ − 1.

In [21], Li et al. showed the relationship between κ(G)
and κ3(G) of a connected graph.

Lemma 3.2. ( [21]) Let G be a connected graph with n
vertices. If κ(G) = 4k + r, where k and r are two integers
with k ≥ 0 and r ∈ {0, 1, 2, 3}, then κ3(G) ≥ 3k + ⌈ r2⌉.
Moreover, the lower bound is sharp.

The following lemma is a useful property of k-
connected graphs.

Lemma 3.3. ( [1]) Let G = (V,E) be a k-connected graph,
and let X and Y be subsets of V (G) of cardinality at least k.
Then there exists a family of k pairwise disjoint (X,Y )-paths
in G.

In order to prove our main result, we need the follow-
ing main theorems and lemmas.

Theorem 3.4. ( [1]) Let G be a k-connected graph, and let
x and y be a pair of distinct vertices in G. Then there exist
k internally disjoint paths P1, P2, · · · , Pk in G connecting x
and y.

Lemma 3.5. (Fan Lemma [1]) Let G = (V,E) be a k-
connected graph, let x be a vertex of G, and let Y ⊆ V \ {x}
be a set of at least k vertices of G. Then there exists a k-fan
in G from x to Y , that is, there exists a family of k internally
disjoint (x, Y )-paths whose terminal vertices are distinct in
Y .

To prove κ3(Gn), the connectivity of a subgraph H of
Gn is considered.

Lemma 3.6. Let Gn and r be the same as in Defini-
tion 2.1. Let Gn = G1

n−1

⊕
G2

n−1

⊕
. . .

⊕
Gpn

n−1 and H =

Gi1
n−1

⊕
Gi2

n−1

⊕
. . .

⊕
Gil

n−1 be the induced subgraph of Gn

on
⋃l

m=1 V (Gim
n−1) for 2 ≤ l ≤ pn − 1. Then κ(H) ≥

r + 2(n− 2), where r + 2(n− 2) ≥ 4 and pn ≥ 3.

Proof: Without loss of generality, let H =
G1

n−1

⊕
G2

n−1

⊕
. . .

⊕
Gl

n−1. To prove the result, we just
need to show that there are r + 2(n − 2) internally
disjoint paths for any two distinct vertices of H . Let
v1, v2 ∈ V (H) and v1 6= v2, then the following two cases
are considered.

Case 1. v1 and v2 belong to the same copy of Gn−1.
Without loss of generality, let v1, v2 ∈ V (G1

n−1). By
Definition 2.1(6), κ(G1

n−1) = r+2(n− 2). Then there are
r + 2(n− 2) internally disjoint paths between v1 and v2
in G1

n−1.
Case 2. v1 and v2 belong to two different copies of

Gn−1.
Without loss of generality, let v1 ∈ V (G1

n−1) and
v2 ∈ V (G2

n−1). Select r + 2(n − 2) vertices from
G1

n−1 \ {v1}, say u1, u2, u3, · · · , ur+2(n−2), such that
the outside neighbor u′

i of ui belongs to G2
n−1 \ {v2}

for each i ∈ [r + 2(n − 2)]. By Definition 2.1(5), this
can be done. Let S = {u1, u2, u3, · · · , ur+2(n−2)} and
S′ = {u′

1, u
′
2, u

′
3, · · · , u

′
r+2(n−2)}. By Definition 2.1(6),

κ(G1
n−1) = κ(G2

n−1) = r + 2(n − 2). By Lemma 3.5,
there exists a family of r + 2(n − 2) internally dis-
joint (v1, S)-paths P1, P2, · · · , Pr+2(n−2) such that the
terminal vertex of Pi is ui. Similarly, there exists a
family of r + 2(n − 2) internally disjoint (v2, S

′) paths
P ′
1, P

′
2, · · · , P

′
r+2(n−2) such that the terminal vertex of P ′

i

is u′
i. Let P̂i = Pi

⋃
uiu

′
i

⋃
P ′
i for each i ∈ [r + 2(n − 2)],

then r+2(n−2) internally disjoint paths between v1 and
v2 are obtained in H .

In the following lemma, we will show the property of
a subgraph H of Gn, which is important to prove the
main result.

Lemma 3.7. Let Gn and r be the same as in Definition 2.1
and let H = Gi1

n−1

⊕
Gi2

n−1

⊕
Gi3

n−1

⊕
· · ·

⊕
Gil

n−1 be the

induced subgraph of Gn on
⋃l

j=1 V (G
ij
n−1) and x ∈ V (H),

where l ≥ 2 and n ≥ 5. If dH(x) = k and Y ⊆ V (H) \ {x}

with |Y | = k such that |Y
⋂
V (G

ij
n−1)| ≤ r + 2(n − 2) for

each j ∈ [l]. Then there exists a k-fan in H from x to Y .

Proof: Without loss of generality, let
H = G1

n−1

⊕
G2

n−1

⊕
G3

n−1

⊕
· · ·

⊕
Gl

n−1. Let
x ∈ V (H), dH(x) = k and Y ⊆ V (H) \ {x} with
|Y | = k such that |Y

⋂
V (Gj

n−1)| ≤ r + 2(n− 2) for each
j ∈ [l]. Clearly, r + 2(n− 2) ≤ k ≤ r + 2(n− 1). To prove
the result, the following three cases are considered.

Case 1. k = r + 2(n− 2).
By Lemma 3.6, κ(H) ≥ r + 2(n − 2). By Lemma 3.5,

there exists a [r+2(n− 2)]-fan in H from x to Y and the
result is desired.

Case 2. k = r + 2(n− 1).
Since dH(x) = r+2(n−1), then V (H) contains the two

outside neighbors x′ and x′′ of x. By Definition 2.1(3),
x′ and x′′ belong to different copies of Gn−1. Without
loss of generality, let x ∈ V (G1

n−1), x
′ ∈ V (G2

n−1) and

x′′ ∈ V (G3
n−1). Let Y

⋂
V (Gj

n−1) = Aj and |Aj | = aj
for 1 ≤ j ≤ l. Then aj ≤ r + 2(n − 2) and

∑l
j=1 aj =

r+2(n−1). As |Y | = r+2(n−1) and |A1| ≤ r+2(n−2),
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there are at least two vertices of Y outside G1
n−1. We

prove the result by considering aj for j = 2, 3 and the
following two subcases are considered.

Subcase 2.1. a2 ≥ 1 and a3 ≥ 1.
Let a′j = aj−1 for j = 2, 3 and a′j = aj for j ∈ [l]\{2, 3}.

Then
∑l

j=1 a
′
j = r+2(n−2). Now select l−1 pairwise dis-

joint vertex sets M2,M3, · · · ,Ml in G1
n−1 such that |Mj| =

a′j and for any vertex v of Mj , one of the two outside

neighbors of v belongs to Gj
n−1 and Mj

⋂
(A1

⋃
{x}) = ∅

for j ∈ {2, 3, · · · , l}. By Definition 2.1(5), this can be done.
Let M = A1

⋃
M2

⋃
· · ·

⋃
Ml. As |M | = r + 2(n − 2)

and κ(G1
n−1) = r + 2(n − 2). By Lemma 3.5, there exist

l fans F1, F2, · · · , Fl in G1
n−1 from x to A1,M2, · · · ,Ml,

respectively, where F1 is a family of a1 internally disjoint
(x,A1)-paths whose terminal vertices are distinct in A1

and Fj is a family of a′j internally disjoint (x,Mj)-paths
whose terminal vertices are distinct in Mj for 2 ≤ j ≤ l.
See Fig.1. Let M ′

j = {y′|y′ is the outside neighbor of y

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

G1
n−1

Gl
n−1

G3
n−1

G2
n−1

E2

F3

Fl

M3

Ml

El

E3

x

· · ·

· · ·

x
′

M
′′

3

A3

M
′

3
x
′′

M
′

l

Al

M2
A1

· · ·

F1F2

· · ·

· · ·

A2

M
′′

2

M
′

2

Fig. 1. Illustration of Subcase 2.1 for Aj0 = ∅ for each
j ∈ {2, 3 · · · , l} in Lemma 3.7

such that y′ ∈ V (Gj
n−1) for each y ∈ Mj} and Ej =

{yy′ ∈ E(Gn)|y ∈ Mj and y′ ∈ M ′
j} for 2 ≤ j ≤ l. Let

M ′′
2 = M ′

2

⋃
{x′} and M ′′

3 = M ′
3

⋃
{x′′}, then |M ′′

2 | = a2
and |M ′′

3 | = a3. Let M ′′
j

⋂
Aj = Aj0 for j = 2, 3 and

M ′
j

⋂
Aj = Aj0 for 4 ≤ j ≤ l. Let M ′′

j \ Aj0 = Aj1 for
j = 2, 3 and M ′

j \ Aj0 = Aj1 for 4 ≤ j ≤ l, and let Aj \
Aj0 = Aj2 for 2 ≤ j ≤ l. Then |Aj1| = |Aj2| = aj − |Aj0|
for 2 ≤ j ≤ l. By Definition 2.1(6), κ(Gj

n−1) = r+2(n−2).

As κ(Gj
n−1 \Aj0) ≥ r + 2(n− 2)− |Aj0| ≥ aj − |Aj0|. By

Lemma 3.3, there exists a family of aj − |Aj0| pairwise
disjoint (Aj1, Aj2)-paths F ′

j in Gj
n−1 for 2 ≤ j ≤ l.

Finally, by combining the l fans F1, F2, · · · , Fl, the
edge sets E2, · · · , El, the edges xx′, xx′′ and the paths
F ′
2, · · · , F

′
l , we can obtain a [r + 2(n − 1)]-fan from x to

Y in H .
Subcase 2.2. At least one of a2, a3 = 0.
Without loss of generality, we assume a2 = 0 and the

following three subcases are considered.
Subcase 2.2.1. a2 = 0 and a3 ≥ 2.
Since a2 = 0 and a3 ≥ 2, see Fig.2. Let a′j = aj − 2

for j = 3 and a′j = aj for j ∈ [l] \ {3}. Then se-
lect l − 2 pairwise disjoint vertex sets M3,M4, · · · ,Ml

in G1
n−1 such that |Mj| = a′j and for any vertex v

of Mj , one of the two outside neighbors of v be-
longs to Gj

n−1 and Mj

⋂
(A1

⋃
{x}) = ∅ for each j ∈

{3, 4, · · · , l}. By Definition 2.1(5), this can be done. Let
M = A1

⋃
M3

⋃
· · ·

⋃
Ml. As |M | = r + 2(n − 2)

and κ(G1
n−1) = r + 2(n − 2) by Definition 2.1(6). By

Lemma 3.5, there exist l − 1 fans F1, F3, · · · , Fl in G1
n−1

from x to A1,M3, · · · ,Ml, respectively. Let M ′
j = {y′|y′

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

G1
n−1

Gl
n−1

G3
n−1

G2
n−1

A1

F1

F3

Fl

M3

Ml

El

E3

x

· · ·

· · ·

x
′

P
′

w

A3

M
′′

3

A3

M
′

3
w

′ x
′′

M
′

l

Al

Fig. 2. Illustration of Subcase 2.2.1 for Aj0 = ∅ for each
j ∈ {3, 4 · · · , l} in Lemma 3.7

is the outside neighbor of y such that y′ ∈ V (Gj
n−1) for

each y ∈ Mj} and Ej = {yy′ ∈ E(Gn)|y ∈ Mj and
y′ ∈ M ′

j} for 3 ≤ j ≤ l. Let w ∈ V (G2
n−1) and one

of the outside neighbors w′ of w belongs to V (G3
n−1)

and w′ /∈ {x′′}
⋃
M ′

3. By Definition 2.1(5), this can be
done. Then there exists a path P ′ between x′ and w. Let
M ′′

3 = M ′
3

⋃
{x′′, w′}, then |M ′′

3 | = a3. Let M ′′
j

⋂
Aj = Aj0

for j = 3 and M ′
j

⋂
Aj = Aj0 for 4 ≤ j ≤ l. Let

M ′′
j \ Aj0 = Aj1 for j = 3 and M ′

j \ Aj0 = Aj1 for
4 ≤ j ≤ l, and let Aj \ Aj0 = Aj2 for 3 ≤ j ≤ l.
Then |Aj1| = |Aj2| = aj − |Aj0| for 3 ≤ j ≤ l. By
Definition 2.1 (6), κ(Gj

n−1) = r + 2(n− 2). We also have

κ(Gj
n−1 \ Aj0) ≥ r + 2(n − 2) − |Aj0| ≥ aj − |Aj0|. By

Lemma 3.3, there exists a family of aj − |Aj0| pairwise
disjoint (Aj1, Aj2)-paths F ′

j in AGj
n−1 for 3 ≤ j ≤ l.

Next, by combining the l − 1 fans F1, F3 · · · , Fl, the
edge sets E3, E4, · · · , El, the edges xx′, xx′′, ww′, the
path P ′ and the paths F ′

3, · · · , F
′
l , we can obtain a

[r + 2(n− 1)]-fan from x to Y in H .
Subcase 2.2.2. a2 = 0 and a3 = 1.
Since a2 = 0 and a3 = 1, there must exist a part Gk

n−1
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such that ak ≥ 1 for k ∈ {4, 5, · · · , l}. Let a′j = aj − 1 for
j = 3, k and a′j = aj for j ∈ [l] \ {3, k}.

Then select l − 2 pairwise disjoint vertex sets
M3,M4, · · · ,Ml in G1

n−1 such that |Mj | = a′j and for
any vertex v of Mj , one of the two outside neighbors
of v belongs to Gj

n−1 and Mj

⋂
(A1

⋃
{x}) = ∅ for each

j ∈ {3, 4, · · · , l}. Let M = A1

⋃
M3

⋃
· · ·

⋃
Ml. By Defini-

tion 2.1(6), κ(G1
n−1) = r+2(n−3). As |M | = r+2(n−2),

by Lemma 3.5, there exist l−1 fans F1, F3, · · · , Fl in G1
n−1

from x to M , where Fj is a family of a′j internally disjoint
(x,Mj)-paths whose terminal vertices are distinct in Mj

for 3 ≤ j ≤ l.

Let M ′
j = {y′|y′ is the outside neighbor of y such

that y′ ∈ V (Gj
n−1) for each y ∈ Mj} and Ej = {yy′ ∈

E(Gn)|y ∈ Mj and y′ ∈ M ′
j} for 3 ≤ j ≤ l. Let

w ∈ V (G2
n−1) such that one of the outside neighbors

w′ of w belongs to Gk
n−1 and w′ /∈M ′

k. Then there exists
a path P ′ from x′ to w in G2

n−1. Let M ′′
k = M ′

k

⋃
{w′} and

M ′′
3 = M ′

3

⋃
{x′′}, then |M ′′

k | = ak and |M ′′
3 | = a3. Then

prove the result similar as Subcase 2.1, we can obtain a
[r + 2(n− 1)]-fan from x to Y in H .

Subcase 2.2.3. a2 = 0 and a3 = 0.

In this case, there exists a part Gk
n−1 such that ak ≥ 2

for k ∈ {4, 5, · · · , l} or there exist two parts Gi
n−1 and

Gm
n−1 such that ai, am ≥ 1 for i,m ∈ {4, 5, · · · , l}.

Subcase 2.2.3.1. There exists a part Gk
n−1 such that

ak ≥ 2 for k ∈ {4, 5, · · · , l}.

For this case, see Fig.3. Let a′j = aj − 2 for j = k and
a′j = aj for j 6= k. Then select l−3 pairwise disjoint vertex
sets M4,M5, · · · ,Ml in G1

n−1 such that |Mj | = a′j and for
any vertex v of Mj , one of the two outside neighbors
of v belongs to Gj

n−1 and Mj

⋂
(A1

⋃
{x}) = ∅ for each

j ∈ {4, · · · , l}. Let M = A1

⋃
M4

⋃
· · ·

⋃
Ml. As |M | =

r+2(n−2) and κ(G1
n−1) = r+2(n−2) by Definition 2.1(6).

By Lemma 3.5, there exist l−2 fans F1, F4, · · · , Fl in G1
n−1

from x to M , where Fj is a family of a′j internally disjoint
(x,Mj)-paths whose terminal vertices are distinct in Mj

for 4 ≤ j ≤ l. Let M ′
j = {y

′|y′ is the outside neighbor of

y such that y′ ∈ V (Gj
n−1) for each y ∈ Mj} and Ej =

{yy′ ∈ E(Gn)|y ∈ Mj and y′ ∈ M ′
j} for 4 ≤ j ≤ l. Let

u ∈ V (G2
n−1) and one of the outside neighbors u′ of u

belongs to V (Gk
n−1) and u′ /∈ M ′

k. Let v ∈ V (G3
n−1) and

one of the outside neighbors v′ of v belongs to V (Gk
n−1)

and v′ /∈ {u′}
⋃
M ′

k. Then there exists a path P1 between
x′ and u in G2

n−1 and a path P2 between x′′ and v in
G3

n−1. Let M ′′
k = M ′

k

⋃
{u′, v′}, then |M ′′

k | = ak. Then
prove the result similar as Subcase 2.2.1, we can obtain
a [r + 2(n− 1)]-fan from x to Y in H .

Subcase 2.2.3.2. There exist two parts Gi
n−1 and Gm

n−1

such that ai, am ≥ 1 for i,m ∈ {4, 5, · · · , l}.

For this case, see Fig.4. Let a′j = aj−1 for j = i,m and
a′j = aj for j 6= i,m. Then select l − 3 pairwise disjoint
vertex sets M4,M5, · · · ,Ml in G1

n−1 such that |Mj| = a′j
and for any vertex v of Mj , one of the two outside
neighbors of v belongs to Gj

n−1 and Mj

⋂
(A1

⋃
{x}) = ∅

for each j ∈ {4, · · · , l}. Let M = A1

⋃
M4

⋃
· · ·

⋃
Ml. As

|M | = r + 2(n − 2) and κ(G1
n−1) = r + 2(n − 2) by

· · ·

G1
n−1

Gk
n−1

Fl

Mk

x
′′

M
′′

k

· · ·

· · ·

Al

M
′

l

P2

A1

· · ·

· · ·

Gl
n−1

G3
n−1

G2
n−1

x

x
′

u

P1

v

Fk

F1

· · ·
· · ·

· · ·

Ml

Ak

M
′

k

v
′

u
′

· · ·

· · ·

· · ·

Fig. 3. Illustration of Subcase 2.2.3.1 in Lemma 3.7

Definition 2.1(6). By Lemma 3.5, there exist l − 2 fans
F1, F4, · · · , Fl in G1

n−1 from x to M , where Fj is a family
of a′j internally disjoint (x,Mj)-paths whose terminal
vertices are distinct in Mj for 4 ≤ j ≤ l. Let M ′

j = {y
′|y′ is

the outside neighbor of y such that y′ ∈ V (Gj
n−1) for each

y ∈ Mj} and Ej = {yy′ ∈ E(Gn)|y ∈ Mj and y′ ∈ M ′
j}

for 4 ≤ j ≤ l. Let u ∈ V (G2
n−1) and one of the outside

neighbors u′ of u belongs to V (Gi
n−1) and u′ /∈ M ′

i . Let
v ∈ V (G3

n−1) and one of the outside neighbors v′ of
v belongs to V (Gm

n−1) and v′ /∈ M ′
m. Then there exists

a path P1 between x′ and u in G2
n−1 and a path P2

between x′′ and v in G3
n−1. Let M ′′

i = M ′
i

⋃
{u′} and

M ′′
m = M ′

m

⋃
{v′}, then |M ′′

i | = ai and |M ′′
m| = am. Then

prove the result similar as Subcase 2.2.1, we can obtain
a [r + 2(n− 1)]-fan from x to Y in H .

G1
n−1

Gi
n−1

x
′′M

′′

i

Fl

P2

· · ·

· · ·

Gl
n−1

G3
n−1

G2
n−1

x

x
′

u

P1

v

Ml

· · ·

Ai

M
′

m

v
′

u
′

· · ·

· · ·

· · ·Gm
n−1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Al

M
′

i

M
′′

m

Am

· · ·

· · ·

· · ·

M
′

l

Fm

Fi

F1

MiMm

A1

Fig. 4. Illustration of Subcase 2.2.3.2 in Lemma 3.7

Case 3. k = r + 2n− 3.
Since dH(x) = r + 2n− 3, V (H) contains one outside

neighbor of x. Prove the result similar as Case 2, we can
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obtain a (r + 2n − 3)-fan from x to Y in H . To avoid
repetition, the discussion for this case is omitted.

In the following lemma, we will show the generalized
3-connectivity of Gn, where the three vertices in S belong
to the same copy of Gn−1.

Lemma 3.8. Let Gn and r be the same as in Definition 2.1,
Gn = G1

n−1

⊕
G2

n−1

⊕
. . .

⊕
Gpn

n−1 and S = {v1, v2, v3},
where v1, v2 and v3 are any three distinct vertices of V (Gi

n−1)
for i ∈ [pn]. If there exist r + 2n− 5 internally disjoint trees
connecting S in Gi

n−1, then there exist r+2n− 3 internally
disjoint trees connecting S in Gn.

Proof: Without loss of generality, let S ⊆ V (G1
n−1).

Note that there exist r + 2n − 5 internally disjoint trees
T1, T2, . . . , Tr+2n−5 connecting S in G1

n−1. As vi has
two outside neighbors v′i and v′′i for each i ∈ {1, 2, 3}
and any two distinct vertices of G1

n−1 have different
outside neighbors by Definition 2.1(3). Hence, M =
{v′1, v

′
2, v

′
3, v

′′
1 , v

′′
2 , v

′′
3} contains exactly 6 distinct vertices.

In addition, each copy of Gn−1 contains at most three
vertices of them. To prove the result, the following three
cases are considered.

Case 1. There exists a copy of Gn−1 which contains
three vertices of M .

Without loss of generality, let {v′1, v
′
2, v

′
3} ⊆ V (G2

n−1)
and {v′′1 , v

′′
2 , v

′′
3} ⊆

⋃pn

i=3 V (Gi
n−1). As G2

n−1 and
Gn[

⋃pn

i=3 V (Gi
n−1)] as subgraphs of Gn are both con-

nected, there is a tree, say T ′
r+2n−4, connecting v′1, v′2

and v′3 in G2
n−1 and a tree, say T ′

r+2n−3, connecting
v′′1 , v

′′
2 and v′′3 in Gn[

⋃pn

i=3 V (Gi
n−1)], respectively. Let

Tr+2n−4 = T ′
r+2n−4

⋃
v1v

′
1

⋃
v2v

′
2

⋃
v3v

′
3 and Tr+2n−3 =

T ′
r+2n−3

⋃
v1v

′′
1

⋃
v2v

′′
2

⋃
v3v

′′
3 . Combine the trees Tis for

1 ≤ i ≤ r+2n−3, then r+2n−3 internally disjoint trees
connecting S are obtained in Gn.

Case 2. There exists a copy of Gn−1 which contains
two vertices of M and all other copies of Gn−1 contain
at most two vertices of M .

Without loss of generality, let v′1, v
′
2 ∈ V (G2

n−1) and
v′3 ∈ V (G3

n−1). The following two subcases are consid-
ered.

Subcase 2.1. G3
n−1 contains only the vertex v′3 of M \

{v′1, v
′
2}.

As Gn[
⋃3

i=2 V (Gi
n−1)] and Gn[

⋃pn

i=4 V (Gi
n−1)] as

subgraphs of Gn are both connected, there is
a tree, say T ′

r+2n−4, connecting v′1, v
′
2 and v′3 in

Gn[
⋃3

i=2 V (Gi
n−1)] and a tree, say T ′

r+2n−3, connecting
v′′1 , v

′′
2 and v′′3 in Gn[

⋃pn

i=4 V (Gi
n−1)], respectively.

Let Tr+2n−4 = T ′
r+2n−4

⋃
v1v

′
1

⋃
v2v

′
2

⋃
v3v

′
3 and

Tr+2n−3 = T ′
r+2n−3

⋃
v1v

′′
1

⋃
v2v

′′
2

⋃
v3v

′′
3 . Combine the

trees Tis for 1 ≤ i ≤ r+2n− 3, then r+2n− 3 internally
disjoint trees connecting S are obtained in Gn.

Subcase 2.2. G3
n−1 contains the vertex v′3 and a vertex

of M \ {v′1, v
′
2, v

′
3}.

Without loss of generality, let v′3, v
′′
1 ∈ V (G3

n−1) and
the following two subcases are considered.

Subcase 2.2.1. v′′3 and v′′2 belong to different copies of
Gn−1.

Without loss of generality, let v′′3 ∈ V (G4
n−1) and

v′′2 ∈ V (G5
n−1). As Gn[V (G2

n−1)
⋃
V (G4

n−1)] is con-
nected, there is a tree, say T ′

r+2n−4, connecting v′1, v
′
2

and v′′3 in Gn[V (G2
n−1)

⋃
V (G4

n−1)]. In addition, there
is a tree, say T ′

r+2n−3, connecting v′′1 , v
′′
2 and v′3

in Gn[
⋃

i∈[pn]\{1,2,4}
V (Gi

n−1)] as it is connected. Let
Tr+2n−4 = T ′

r+2n−4

⋃
v1v

′
1

⋃
v2v

′
2

⋃
v3v

′′
3 and Tr+2n−3 =

T ′
r+2n−3

⋃
v1v

′′
1

⋃
v2v

′′
2

⋃
v3v

′
3. Combine the trees Tis for

1 ≤ i ≤ r+2n−3, then r+2n−3 internally disjoint trees
connecting S are obtained in Gn.

Subcase 2.2.2. v′′3 and v′′2 belong to the same copy of
Gn−1.

Without loss of generality, let v′′3 , v
′′
2 ∈ V (G4

n−1).
As v3 is one of the outside neighbors of v′3
and it has exactly two outside neighbors. Then
let the other outside neighbor of v′3 be u. If
u /∈ V (G4

n−1), then Gn[
⋃

i∈[pn]\{1,3,4}
V (Gi

n−1)] con-
tains a tree T ′

r+2n−4 connecting v′1, v
′
2 and u. Let

Tr+2n−4 = T ′
r+2n−4

⋃
v1v

′
1

⋃
v2v

′
2

⋃
v3v

′
3

⋃
v′3u, then

it is a tree connecting S in Gn. By Lemma 3.6,
κ(G3

n−1

⊕
G4

n−1) ≥ r + 2(n − 2) ≥ 4. Hence,
Gn[(V (G3

n−1)
⋃
V (G4

n−1) \ {v
′
3}] is connected and it con-

tains a tree T ′
r+2n−3 connecting v′′1 , v

′′
2 and v′′3 . Let

Tr+2n−3 = T ′
r+2n−3

⋃
v1v

′′
1

⋃
v2v

′′
2

⋃
v3v

′′
3 , then it is a

tree connecting S and the result holds. Otherwise,
u ∈ V (G4

n−1). Let x be an in-neighbor of v′3 in G3
n−1

such that one of the outside neighbors of x, say z,
does not belong to G4

n−1. This can be done as r +
2(n − 2) ≥ 4. Hence, Gn[

⋃
i∈[pn]\{1,3,4}

V (Gi
n−1)] con-

tains a tree, say T ′
r+2n−4, that connects v′1, v

′
2 and z.

Let Tr+2n−4 = T ′
r+2n−4

⋃
v1v

′
1

⋃
v2v

′
2

⋃
zx

⋃
xv′3

⋃
v3v

′
3,

then it is a tree connecting S in Gn. By Lemma 3.6,
Gn[(V (G3

n−1)
⋃
V (G4

n−1) \ {v
′
3, x}] is connected. Then

there is a tree, say T ′
r+2n−3, connecting v′′1 , v

′′
2 and v′′3 .

Let Tr+2n−3 = T ′
r+2n−3

⋃
v1v

′′
1

⋃
v2v

′′
2

⋃
v3v

′′
3 , then it is

a tree connecting S in Gn. Combine the Tis for 1 ≤
i ≤ r + 2n − 3, then r + 2n − 3 internally disjoint trees
connecting S in Gn are obtained.

Case 3. Each copy contains at most one vertex of M .
Without loss of generality, suppose that

G2
n−1, G

3
n−1, G

4
n−1 contains v′1, v

′
2, v

′
3, respectively and

G5
n−1, G

6
n−1, G

7
n−1 contains v′′1 , v

′′
2 , v

′′
3 , respectively.

As Gn[
⋃4

i=2 V (Gi
n−1)] and Gn[

⋃7
i=5 V (Gi

n−1)] as
induced subgraphs of Gn are both connected, there
is a tree, say T ′

r+2n−4, connecting v′1, v
′
2 and v′3 in

Gn[
⋃4

i=2 V (Gi
n−1)] and a tree, say T ′

r+2n−3, connecting

v′′1 , v
′′
2 and v′′3 in Gn[

⋃7
i=5 V (Gi

n−1)], respectively.
Let Tr+2n−4 = T ′

r+2n−4

⋃
v1v

′
1

⋃
v2v

′
2

⋃
v3v

′
3 and

Tr+2n−3 = T ′
r+2n−3

⋃
v1v

′′
1

⋃
v2v

′′
2

⋃
v3v

′′
3 . Combine the

Tis for 1 ≤ i ≤ r + 2n − 3, then r + 2n − 3 internally
disjoint trees connecting S in Gn are obtained.

In the following lemma, we will show the property of
a subgraph H of Gn, where there are two vertices with
the same degree in H and the two vertices belong to
different copies of Gn−1.

Lemma 3.9. Let Gn and r be the same as in Definition 2.1
and H = Gi

n−1

⊕
Gj

n−1 for i 6= j and i, j ∈ [pn]. If x ∈
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V (Gi
n−1), y ∈ V (Gj

n−1) and dH(x) = dH(y) = r + 2n− 3,
then there exist r + 2n− 3 internally disjoint paths between
x and y in H .

Proof: Without loss of generality, let H =
G1

n−1

⊕
G2

n−1, x ∈ V (G1
n−1), y ∈ V (G2

n−1) and dH(x) =
dH(y) = r+2n−3. To prove the main result, the following
two cases are considered.

Case 1. x and y are not adjacent.
Let Y = NH(y) = {y1, y2, · · · , yr+2n−3}, then

x /∈ Y . Otherwise, x and y are adjacent. Clearly,
|Y

⋂
V (Gl

n−1)| ≤ r + 2(n − 2) for l = 1, 2 and |Y | =
r+2n−3. By Lemma 3.5, there exist r+2n−3 internally
disjoint paths P1, P2, · · · , Pr+2n−3 in H from x to Y
whose terminal vertices are distinct in Y . If none of the
paths Pis for 1 ≤ i ≤ r+2n− 3 contains y as an internal
vertex, then combine the edges from y to Y and the paths
Pis for 1 ≤ i ≤ r+2n−3, r+2n−3 internally disjoint paths
between x and y in H can be obtained. If not, there exists
only one path which contains y as an internal vertex as
Pis for 1 ≤ i ≤ r+2n− 3 are internally disjoint. Assume
that P1 contains y as an internal vertex and the terminal
vertex of P1 is y1. Then P1 contains a subpath P̃1 from x

to y. Combine the edges from y to Y \ {y1}, P̃1 and the
paths Pis for 2 ≤ i ≤ r + 2n − 3, r + 2n − 3 internally
disjoint (x, y)-paths in H can be obtained.

Case 2. x and y are adjacent.
Choose r+2(n− 2) vertices x1, x2, · · · , xr+2(n−2) from

G1
n−1 \ {x} such that one of the outside neighbors of xi

belongs to G2
n−1 \ {y} for each i ∈ [r+2(n− 2)]. Let X =

{x1, x2, · · · , xr+2(n−2)} and X ′ = {x′
i|x

′
i is the outside

neighbor of xi and x′
i ∈ V (G2

n−1)}. By Definition 2.1(5),
this can be done. By Definition 2.1(6), κ(G1

n−1) =
κ(G2

n−1) = r + 2(n − 2). By Lemma 3.5, there exist
r+2(n−2) internally disjoint paths P1, P2, · · · , Pr+2(n−2)

from x to X such that the terminal vertex of Pi is
xi in G1

n−1 and r + 2(n − 2) internally disjoint paths
P ′
1, P

′
2, · · · , P

′
r+2(n−2) from y to X ′ such that the terminal

vertex of P ′
i is x′

i in G2
n−1 for each i ∈ {1, 2, · · · , r +

2(n − 2)}. Let P̃r+2n−3 = xy and P̃i = xPixix
′
iP

′
iy for

1 ≤ i ≤ r + 2(n− 2). Then r + 2n− 3 internally disjoint
paths P̃is for 1 ≤ i ≤ r + 2n − 3 between x and y in H
are obtained.

Following, we will show the main result.

Theorem 3.10. Let Gn and r be the same as in Defini-
tion 2.1 and let Gn = G1

n−1

⊕
G2

n−1

⊕
. . .

⊕
Gpn

n−1. If any
two vertices in different copies of Gn−1 have at most one
common outside neighbor, then κ3(Gn) = r + 2n− 3, where
κ3(G1) = r − 1.

Proof: By Definition 2.1, Gn is [r + 2(n− 1)]-regular.
By Lemma 3.1, κ3(Gn) ≤ δ− 1 = r+2n− 3. To prove the
result, we just need to show that κ3(Gn) ≥ r + 2n − 3.
We prove the result by induction on n.

Note that κ3(G1) = r − 1. Thus, the result holds
for n = 1. Next, assume that n ≥ 2. Let Gn =
G1

n−1

⊕
G2

n−1

⊕
. . .

⊕
Gpn

n−1 and v1, v2, v3 be any three
distinct vertices of Gn. For convenience, let S =

{v1, v2, v3} and the following three cases are considered.
Case 1. v1, v2 and v3 belong to the same copy of Gn−1.
Without loss of generality, let S ⊆ V (G1

n−1). By the
inductive hypothesis, there are r + 2n − 5 internally
disjoint trees connecting S in G1

n−1. By Lemma 3.8, there
are r+2n−3 internally disjoint trees connecting S in Gn

and the result is desired.
Case 2. v1, v2 and v3 belong to two different copies of

Gn−1.
Without loss of generality, let v1, v2 ∈ V (G1

n−1) and
v3 ∈ V (G2

n−1). By Definition 2.1(6), κ(G1
n−1) = r + 2(n−

2). Then there exist r+2(n− 2) internally disjoint paths
P1, P2, . . . , Pr+2(n−2) between v1 and v2 in G1

n−1. Let H =
G2

n−1

⊕
G3

n−1

⊕
· · ·

⊕
Gpn

n−1. Then at most one outside
neighbor of v3 belongs to V (G1

n−1) and the following
two subcases are considered.

Subcase 2.1. Neither of the two outside neighbors of
v3 belong to G1

n−1, that is, dH(v3) = r + 2(n− 1).
Choose r + 2(n − 2) distinct vertices

x1, x2, · · · , xr+2(n−2) from P1, P2, . . . , Pr+2(n−2) such
that xi ∈ V (Pi) for 1 ≤ i ≤ r + 2(n − 2), see Fig.5. At
most one of the paths has length 1. If so, say P1 and
let x1 = v1. Let Y = {x1, x2, · · · , xr+2(n−2)}

⋃
{v1, v2}.

If x1 6= v1, let Y ′ = {x′|x′ is an outside neighbor of x
and x ∈ Y }. If x1 = v1, let Y ′ = {x′|x′ is an outside
neighbor of x and x ∈ Y }

⋃
{v′′1}, where v′1 and v′′1 are

two outside neighbors of v1. Clearly, |Y | ≥ r + 2n − 3
and |Y ′| = r + 2(n − 1). We can make sure that
|Y ′

⋂
Gj

n−1| ≤ r + 2(n− 2) for each j ∈ {2, 3, · · · , pn}. If
not, we can replace with the other outside neighbor of x
for some x ∈ Y . As dH(v3) = r+2(n−1). By Lemma 3.5,
there exist r + 2(n − 1) internally disjoint (v3, Y

′)-paths
Q1, Q2, · · · , Qr+2(n−1) in H such that the terminal vertex
of Qi is x′

i for each i ∈ [r + 2(n − 2)], the terminal
vertex of Qr+2n−3 is v′1 or v′′1 and the terminal vertex
of Qr+2n−2 is v′2. Let Ti = Pi

⋃
Qi

⋃
xix

′
i for 1 ≤ i ≤

r+2(n− 2), Tr+2n−3 = Qr+2n−3

⋃
Qr+2n−2

⋃
v2v

′
2

⋃
v1v

′
1

or Tr+2n−3 = Qr+2n−3

⋃
Qr+2n−2

⋃
v2v

′
2

⋃
v1v

′′
1 , then

r + 2n − 3 internally disjoint trees connecting S in Gn

are obtained.

· · ·

v1

v′1

· · ·

· · ·

· · ·

v2

v3

x1
xi

xr+2(n−2)
P1

Pi

Pr+2(n−2)

x′

1

x′

i

x′

r+2(n−2)

v′2

Qr+2(n−2)

Qr+2n−2

Qr+2n−3

Q1

Qi

Y ′

Fig. 5. Illustration of Subcase 2.1 in Theorem 3.10

Subcase 2.2. One of the outside neighbors of v3 be-
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longs to G1
n−1, that is dH(v3) = r + 2n− 3.

Without loss of generality, let v′3 be one of the outside
neighbors of v3 and belong to G1

n−1. In addition, let

V (P ) =
⋃r+2(n−2)

i=1 V (Pi).

If v′3 /∈ V (P ), as G1
n−1 is connected, there is a (v′3, v1)-

path P̃ in G1
n−1. Let t be the first vertex of P̃ which

is in V (P ) and assume that t ∈ V (Pr+2(n−2)). Clearly,

Pr+2(n−2)

⋃
P̃ [v′3, t]

⋃
v3v

′
3 is a tree connecting S, denoted

by Tr+2n−3. If v′3 ∈ V (P ), without loss of generality, let
v′3 ∈ V (Pr+2(n−2)). Let Tr+2n−3 = Pr+2(n−2)

⋃
v3v

′
3, then

it is a tree connecting S.

Next, choose r + 2n − 5 distinct vertices
x1, x2, · · · , xr+2n−5 from P1, P2, . . . , Pr+2n−5 such
that xi ∈ V (Pi) for 1 ≤ i ≤ r + 2n − 5. Denote Y and
Y ′ similarly as in Subcase 2.1. By Lemma 3.9 and the
fact that dH(v3) = r + 2n − 3, there exist r + 2n − 3
internally disjoint (v3, Y

′)-paths Q1, Q2, · · · , Qr+2n−3

in H such that the terminal vertex of Qi is x′
i

for each i ∈ [r + 2n − 5], the terminal vertex of
Qr+2n−4 is v′1 or v′′1 and the terminal vertex of
Qr+2n−3 is v′2. Let Ti = Pi

⋃
Qi

⋃
xix

′
i for each i ∈

[r + 2n− 5], Tr+2n−4 = Qr+2n−4

⋃
Qr+2n−3

⋃
v2v

′
2

⋃
v1v

′
1

or Tr+2n−4 = Qr+2n−4

⋃
Qr+2n−3

⋃
v2v

′
2

⋃
v1v

′′
1 and

combining with Tr+2n−3, r + 2n − 3 internally disjoint
trees connecting S in Gn are obtained.

Case 3. v1, v2 and v3 belong to three different copies
of Gn−1, respectively.

Without loss of generality, we assume that v1 ∈
V (G1

n−1), v2 ∈ V (G2
n−1) and v3 ∈ V (G3

n−1). Let W =
{v′1, v

′
2, v

′
3, v

′′
1 , v

′′
2 , v

′′
3}, where v′i and v′′i are the two out-

side neighbors of vi for 1 ≤ i ≤ 3. The following three
subcases are considered.

Subcase 3.1. W ⊆ V (G1
n−1)

⋃
V (G2

n−1)
⋃
V (G3

n−1).

Let H = G1
n−1

⊕
G2

n−1. Since one of the two out-
side neighbors of v1 belongs to G2

n−1 and one of the
two outside neighbors of v2 belongs to G1

n−1. Hence,
dH(v1) = dH(v2) = r+2n− 3. By Lemma 3.9, there exist
r + 2n − 3 internally disjoint paths P1, P2, . . . , Pr+2n−3

between v1 and v2 in H . Let v′3 be an outside neighbor
of v3, then v′3 ∈ V (H). Let V (P ) =

⋃r+2n−3
i=1 V (Pi), as H

is connected, there is a path P̃ from v′3 to v1 in H . Let t be
the first vertex of P̃ which is in V (P ) and assume that t ∈
V (Pr+2n−3). Clearly, Pr+2n−3

⋃
P̃ [v′3, t]

⋃
v3v

′
3 contains a

tree connecting S, denoted by Tr+2n−3. If v′3 ∈ V (P ),
then let v′3 ∈ V (Pr+2n−3) and Tr+2n−3 = Pr+2n−3

⋃
v3v

′
3,

then it is a tree connecting S.

Let xi ∈ V (Pi)
⋂
NH(v1) for each i ∈ [r + 2n − 4]. If

the outside neighbor of v1 in H does not belong to xis
for 1 ≤ i ≤ r + 2n − 4, let X = {x1, x2, · · · , xr+2n−4}. If
the outside neighbor of v1 in H belongs to xis for 1 ≤
i ≤ r+2n− 4, say x1, and let X = {v1, x2, · · · , xr+2n−4}.
Then X ⊆ V (G1

n−1) and |X | = r + 2n − 4. Let H ′ =
G3

n−1

⊕
G4

n−1

⊕
· · ·

⊕
Gpn

n−1 and x′
i be one of the two

outside neighbors of xi such that x′
i ∈ V (H ′) for each

i ∈ [r + 2n− 4].

If X = {x1, x2, · · · , xr+2n−4}, let X ′ =
{x′

1, x
′
2, · · · , x

′
r+2n−4}. By Lemma 3.1, |X ′| = r+2n−4. As

dH′(v3) = r+2n−4, by Lemma 3.5, there exist r+2n−4
internally disjoint (v3, X

′)-paths Q1, Q2, · · · , Qr+2n−4

in H ′ such that the terminal vertex of Qi is x′
i for

each i ∈ [r + 2n − 4]. Note that at most one of Qis for
1 ≤ i ≤ r+2n−4 has length one. Let Ti = Pi

⋃
Qi

⋃
xix

′
i

for 1 ≤ i ≤ r + 2n − 4. Combining with Tis for
1 ≤ i ≤ r + 2n − 3, then r + 2n − 3 internally disjoint
trees connecting S in Gn are obtained.

If X = {v1, x2, · · · , xr+2n−4}, let X ′ =
{v′1, x

′
2, · · · , x

′
r+2n−4}, where v′1 ∈ V (H ′). With the

similar method as X = {x1, x2, · · · , xr+2n−4}, r + 2n− 3
internally disjoint trees Tis for 1 ≤ i ≤ r + 2n − 3
connecting S in Gn can be obtained.

Subcase 3.2. W * V (G1
n−1)

⋃
V (G2

n−1)
⋃

V (G3
n−1).

Since W * V (G1
n−1)

⋃
V (G2

n−1)
⋃
V (G3

n−1), at least
one of the outside neighbors of v3 does not belong
to V (G1

n−1)
⋃
V (G2

n−1). Let H = G1
n−1

⊕
G2

n−1 and
H ′ = G3

n−1

⊕
G4

n−1

⊕
· · ·

⊕
Gpn

n−1. Then select r+2n− 4
vertices from G1

n−1 \ {v1}, say x1, x2, · · · , xr+2n−4, such
that one of the outside neighbors x′

i of xi belongs to G2
n−1

for each i ∈ [r + 2n− 4]. Further, we request that xi and
v2 have different outside neighbors for 1 ≤ i ≤ r+2n−4.

Let S = {x1, x2, · · · , xr+2n−4} and S′ =
{x′

1, x
′
2, · · · , x

′
r+2n−4}. By Definition 2.1(6),

κ(G1
n−1) = κ(G2

n−1) = r + 2n − 4. By Lemma 3.5,
there exist r + 2n − 4 internally disjoint (v1, S)-paths
P1, P2, . . . , Pr+2n−4 in G1

n−1 such that the terminal
vertex of Pi is xi and there exist r + 2n − 4 internally
disjoint (v2, S

′)-paths P ′
1, P

′
2, . . . , P

′
r+2n−4 in G2

n−1 such
that the terminal vertex of P ′

i is x′
i for 1 ≤ i ≤ r+2n− 4.

Thus, we obtain r + 2n − 4 internally disjoint paths

between v1 and v2 in H , where P̃i = v1Pixix
′
iP

′
iv2 for

each i ∈ [r + 2n− 4].
Now, let v′′i be one of the outside neighbors of vi such

that v′′i ∈ V (H ′) for i = 1, 2 and x′′
i be the other outside

neighbor of xi such that x′′
i ∈ V (H ′) for 1 ≤ i ≤ r +

2n − 4. Let Y = {x′′
1 , x

′′
2 , x

′′
3 , · · · , x

′′
r+2n−4, v

′′
1 , v

′′
2}. Then

Y ⊆ V (H ′) and |Y | ≥ r + 2n− 3. If v′′1 6= v′′2 , then |Y | =
r + 2n− 2. If v′′1 = v′′2 , then |Y | = r + 2n− 3.

Subcase 3.2.1. Neither of the two outside neighbors of
v3 belong to

⋃2
i=1 V (Gi

n−1).
In this case, dH′ (v3) = r + 2n− 2. If |Y | = r + 2n− 2,

the proof is similar as Subcase 2.1. If |Y | = r + 2n − 3,
the proof is similar as Subcase 2.1 except that the paths
Qr+2n−3 and Qr+2n−2 become the same path.

Subcase 3.2.2. One of the two outside neighbors of v3
belongs to

⋃2
i=1 V (Gi

n−1).
In this case, dH′ (v3) = r + 2n− 3. If |Y | = r + 2n− 2,

the proof is similar to Subcase 2.2. If |Y | = r+2n−3, the
proof is also similar to Subcase 2.2 except that the paths
Qr+2n−4 and Qr+2n−3 become the same path.

Hence, r + 2n − 3 internally disjoint trees connecting
S in Gn can be obtained and the result is desired.

4 APPLICATIONS

In this section, we will present the usefulness of the
main result. As an application of Theorem 3.10, the
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generalized 3-connectivity of AGn, Qk
n, S2

n and BSn etc.,
can be obtained directly as they can be regarded as
special examples of Gn.

4.1 Application to the alternating group graph AGn

The alternating group graph was introduced by Jwo et
al. [11] in 1993. It is defined as follows.

Definition 4.1. Let An be the alternating group of order n
with n ≥ 3 and let S = {(12i), (1i2)|3 ≤ i ≤ n}. The
alternating group graph, denoted by AGn, is defined as the
Cayley graph Cay(An, S).

By the definition of AGn, it is a 2(n − 2)-regular
graph with n!/2 vertices. Let Ai

n be the subset of An

that consists of all even permutations with element
i in the rightmost position and let AGi

n−1 be the
subgraph of AGn induced by Ai

n for i ∈ [n]. Then
AGi

n−1 is isomorphic to AGn−1 for each i ∈ [n] and
we call such an AGi

n−1 a copy of AGn−1. Thus, AGn

can be decomposed into n copies of AGn−1, namely,
AG1

n−1, AG
2
n−1, · · · , AG

n
n−1. For convenience, we denote

AGn = AG1
n−1

⊕
AG2

n−1

⊕
· · ·

⊕
AGn

n−1, where
⊕

just
denotes the corresponding decomposition of AGn. For
each vertex u ∈ V (AGi

n−1), it has 2(n − 3) neighbors
in AGi

n−1 and two neighbors outside AGi
n−1, which are

called the outside neighbors of u. The graph AG4 is
depicted in Fig. 6.

1234

2314

1342 2143

2431

4213

3124

1423

3241

4132

3412

4321

Fig. 6. The alternating group graph AG4 of Definition 4.1

The following lemmas are about properties of AGn.

Lemma 4.2. ( [39]) Let AGn = AG1
n−1

⊕
AG2

n−1

⊕

. . .
⊕

AGn
n−1 for n ≥ 3. Then the following results hold.

(1) For any vertex u of AGi
n−1 for i ∈ [n], it has two

outside neighbors.
(2) For each copy AGi

n−1, no two vertices in AGi
n−1 have a

common outside neighbor. In addition, |N(AGi
n−1)| =

(n− 1)! and |N(AGi
n−1)

⋂
V (AGj

n−1)| = (n− 2)! for
i 6= j and i, j ∈ [n].

Lemma 4.3. ( [11], [35]) κ(AGn) = 2(n− 2) for n ≥ 3.

Lemma 4.4. ( [39]) Let AGn = AG1
n−1

⊕
AG2

n−1

⊕

. . .
⊕

AGn
n−1 for n ≥ 3. Then any two vertices in different

copies of AGn−1 have at most one common outside neighbor.

Corollary 4.5. κ3(AGn) = 2n− 5 for n ≥ 3.

Proof: By Definition 2.1, AGn can be regarded as the
special regular graph Gn−2 with G1 = AG3, a = 3, r =
2, s = 2, pn−2 = n and N = ap2p3 · · · pn−2 = n!

2 . By
Lemma 4.3, κ(AG3) = 2. By Lemma 3.1, κ3(AG3) ≤ 1.
By Lemma 3.2, κ3(AG3) ≥ 1. Thus, κ3(AG3) = 1. Thus,
by Lemma 4.4 and Theorem 3.10, κ3(AGn) = 2n− 5 for
n ≥ 3.

4.2 Application to the k-ary n-cube Qk
n

The k-ary n-cube network, denoted by Qk
n, was intro-

duced by S. Scott et al. [30] in 1994. It is defined as
follows.

Definition 4.6. The k-ary n-cube, denoted by Qk
n, where k ≥

2 and n ≥ 1 are integers, is a graph consisting of kn vertices,
each of these vertices has the form u = un−1un−2 · · ·u0, where
ui ∈ {0, 1, · · · , k − 1} for 0 ≤ i ≤ n − 1. Two vertices
u = un−1un−2 · · ·u0 and v = vn−1vn−2 · · · v0 in Qk

n are
adjacent if and only if there exists an integer j, where 0 ≤
j ≤ n − 1, such that uj = vj ± 1(mod k) and ui = vi for
every i ∈ {0, 1, · · · , k − 1} \ {j}. In this case, (u, v) is a
j-dimensional edge.

By the definition of Qk
n, it is 2n-regular for k ≥ 3 and

n-regular for k = 2. Clearly, Qk
1 is a cycle of length k and

Q2
n is the hypercube.
The k-ary n-cube Qk

n can be partitioned into k disjoint
subcubes along the jth-dimension for j ∈ {0, 1, 2, · · · , n−
1}, namely, Qk

n−1[0], Q
k
n−1[1], · · · , Q

k
n−1[k − 1]. Then

Qk
n−1[i] is isomorphic to the k-ary (n − 1)-cube for

i ∈ {0, 1, 2, · · · , k − 1}. For convenience, we denote
Qk

n = Qk
n−1[0]

⊕
Qk

n−1[1]
⊕
· · ·

⊕
Qk

n−1[k − 1], where
⊕

just denotes the corresponding decomposition of Qk
n. For

each vertex u ∈ V (Qk
n−1[i]), it has 2n − 2 neighbors

in Qk
n−1[i] and two neighbors outside Qk

n−1[i], which
are called the outside neighbors of u. The graph Q4

2 is
depicted in Fig. 7.

00 10 20 30

01

02

03 13

12

11 21

22

23 33

32

31

Fig. 7. The 4-ary 2-cube Q4
2 of Definition 4.6

The following lemmas are about properties of Qk
n.
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Lemma 4.7. Let Qk
n = Qk

n−1[0]
⊕

Qk
n−1[1]

⊕
. . .

⊕

Qk
n−1[k− 1] for k ≥ 3 and n ≥ 1. Then the following results

hold.

(1) For any vertex u of Qk
n−1[i], it has exactly two outside

neighbors, where 0 ≤ i ≤ k − 1.
(2) The outside neighbors of u belong to different copies of

Qk
n−1. That is, no two vertices in Qk

n−1 have a common
outside neighbor.

(3) |N(Qk
n−1[i])| = 2kn−1 and |N(Qk

n−1[i])
⋂

V (Qk
n−1[j])| =

2kn−1

k−1 for i 6= j and 0 ≤ i, j ≤ k −

1. That is, there are 2kn−1

k−1 independent crossed edges

between two different Qk
n−1[i]s.

Proof: (1) Let u = u1u2u3 · · ·un−1i ∈ V (Qk
n−1[i]),

where 0 ≤ i ≤ k − 1. By Definition 4.6, u′ =
u1u2u3 · · ·un−1(i− 1) and u′′ = u1u2u3 · · ·un−1(i+1) are
the two outside neighbors of u.

(2) Let u = u1u2u3 · · ·un−1i ∈ V (Qk
n−1[i]), where 0 ≤

i ≤ k−1. By (1), u′ ∈ V (Qk
n−1[i−1]) and u′′ ∈ V (Qk

n−1[i+
1]). As k ≥ 3, then i− 1 6= i+ 1. Thus, u′ and u′′ belong
to different copies of Qk

n−1.
(3) As any vertex of Qk

n−1[i] has two outside neigh-
bors and |Qk

n−1[i]| = kn−1 for 0 ≤ i ≤ k − 1, then
|N(Qk

n−1[i])| = 2kn−1 and |N(Qk
n−1[i])

⋂
V (Qk

n−1[j])| =
2kn−1

k−1 for i 6= j and 0 ≤ i, j ≤ k − 1.

Lemma 4.8. ( [8]) κ(Qk
n) = 2n for k ≥ 3 and n ≥ 1.

Lemma 4.9. Let Qk
n = Qk

n−1[0]
⊕

Qk
n−1[1]

⊕
. . .

⊕

Qk
n−1[k − 1] for k ≥ 3 and n ≥ 1. Then any two vertices

in different copies of Qk
n−1 have at most one common outside

neighbor.

Proof: Let u, v ∈ V (Qk
n), u 6= v and they belong

to different copies of Qk
n−1. Without loss of general-

ity, let u = u1u2u3 · · ·un−10 ∈ V (Qk
n−1[0]) and v =

v1v2v3 · · · vn−11 ∈ V (Qk
n−1[1]). Then the two outside

neighbors of u are u′ = u1u2u3 · · ·un−11 and u′′ =
u1u2u3 · · ·un−1(k − 1), and the two outside neighbors
of v are v′ = v1v2v3 · · · vn−10 and v′′ = v1v2v3 · · · vn−12.
If u and v have two common outside neighbors, then
{u′, u′′} = {v′, v′′}. As u′ 6= v′, then u′ = v′′ and v′ = u′′.
However, u′ 6= v′′ clearly, which is a contradiction. Thus,
u and v have at most one common outside neighbor.

Corollary 4.10. κ3(Q
k
n) = 2n− 1 for k ≥ 3 and n ≥ 1.

Proof: By Definition 2.1, Qk
n(k ≥ 3) can be regarded

as the special regular graph Gn with G1 = Qk
1 , a = k,

r = 2, s = 2, pn = k and N = ap2p3 · · · pn = kn. By
Lemma 4.8, κ(Qk

1) = 2. By Lemma 3.1, κ3(Q
k
1) ≤ 1. By

Lemma 3.2, κ3(Q
k
1) ≥ 1. Thus, κ3(Q

k
1) = 1. By Lemma 4.9

and Theorem 3.10, κ3(Q
k
n) = 2n− 1 for k ≥ 3 and n ≥ 1.

4.3 Application to the split-star network S2

n

The split-star network, denoted by S2
n, was proposed

by E. Cheng et al. [5] as an attractive variation of the

star graph in 1998. It is defined as follows, where the
description has a slight modification.

Definition 4.11. Let Sym(n) be symmetric group on [n]
and let S = {(12)}

⋃
{(12i), (1i2)|3 ≤ i ≤ n}. The split-

star network, denoted by S2
n, is defined as the Cayley graph

Cay(Sym(n), S).

By the definition of S2
n, it is a (2n − 3)-regular graph

with n! vertices. Let V n:i
n be the set of vertices in S2

n

with the n-th position being i, that is, V n:i
n = {u|u =

u1u2 · · ·un−1i}. The set {V n:i
n |1 ≤ i ≤ n} forms a

partition of V (S2
n). Let S2

n−1[i] be the subgraph of S2
n

induced by V n:i
n . Then S2

n−1[i] is isomorphic to S2
n−1

and we call such an S2
n−1[i] a copy of S2

n−1. Thus,
S2
n can be decomposed into n copies of S2

n−1, namely,
S2
n−1[1], S

2
n−1[2], · · · , S

2
n−1[n]. For convenience, we de-

note S2
n = S2

n−1[1]
⊕

S2
n−1[2]

⊕
. . .

⊕
S2
n−1[n], where

⊕

just denotes the corresponding decomposition of S2
n. For

each vertex u ∈ V (S2
n−1[i]), it has 2n − 5 neighbors in

S2
n−1[i] and two neighbors outside S2

n−1[i], which are
called outside neighbors of u. The graph S2

4 is depicted
in Fig. 8.

4213

2431

1234

31242314

3412

1342

4321

4132

2143

1423

3241

4123

1432

2134

32141324

3421

2341

4312

4231

1243

2413

3142

S
2

4

Fig. 8. The split-star network S2
4 of Definition 4.11

The following lemmas are about properties of S2
n.

Lemma 4.12. ( [4]) Let S2
n = S2

n−1[1]
⊕

S2
n−1[2]

⊕
. . .⊕

S2
n−1[n] for n ≥ 3. Then the following results hold.

(1) For any vertex u of S2
n−1[i], it has exactly two outside

neighbors, where i ∈ [n].
(2) The outside neighbors of u belong to different copies of

S2
n−1. That is, no two vertices in S2

n−1[i] have a common
outside neighbor for i ∈ [n].

(3) |N(S2
n−1[i])| = 2(n− 1)! and |N(S2

n−1[i])
⋂

V (S2
n−1[j])| = 2(n− 2)! for i 6= j and i, j ∈ [n]. That

is, there are 2(n−2)! independent crossed edges between
two different BSi

n−1s.

Lemma 4.13. ( [4]) κ(S2
n) = 2n− 3 for n ≥ 3.

Lemma 4.14. Let S2
n = S2

n−1[1]
⊕

S2
n−1[2]

⊕
. . .

⊕

S2
n−1[n] for n ≥ 3. Then any two vertices in different copies

of S2
n−1 have at most one common outside neighbor.
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Proof: Let u, v ∈ V (S2
n), u 6= v and they belong

to different copies of S2
n−1. Without loss of general-

ity, let u = u1u2u3 · · ·un−11 ∈ V (S2
n−1[1]) and v =

v1v2v3 · · · vn−12 ∈ V (S2
n−1[2]). Then the two outside

neighbors of u are u′ = u(12n) = u21u3 · · ·un−1u1 and
u′′ = u(1n2) = 1u1u3 · · ·un−1u2, and the two outside
neighbors of v are v′ = v(12n) = v22v3 · · · vn−1v1 and
v′′ = v(1n2) = 2v1v3 · · · vn−1v2. If u and v have two
common outside neighbors, then {u′, u′′} = {v′, v′′}. As
u′ 6= v′, then u′ = v′′ and v′ = u′′. By u′ = v′′, we
have that u2 = 2 and v1 = 1. By u′′ = v′, we have that
v2 = 1 and u1 = 2. That is, u1 = u2 = 2, which is a
contradiction. Thus, u and v have at most one common
outside neighbor.

Corollary 4.15. κ3(S
2
n) = 2n− 4 for n ≥ 3.

Proof: By Definition 2.1, S2
n can be regarded as the

special regular graph Gn−2 with G1 = S2
3 , a = 6, r = 3,

s = 2, pn−2 = n and N = ap2p3 · · · pn−2 = n!. By
Lemma 4.13, κ(S2

3) = 3. By Lemma 3.1, κ3(S
2
3) ≤ 2.

By Lemma 3.2, κ3(S
2
3) ≥ 2. Thus, κ3(S

2
3 ) = 2. Thus, by

Lemma 4.14 and Theorem 3.10, κ3(S
2
n) = 2n−4 for n ≥ 3.

4.4 Application to the bubble-sort-star network BSn

The bubble-sort star graph, denoted by BSn, was in-
troduced by Z. Chou et al. [7] in 1996. It is defined as
follows.

Definition 4.16. Let Sym(n) be symmetric group on [n]
and let S = {(1i)|2 ≤ i ≤ n}

⋃
{(i, i + 1)|2 ≤ i ≤ n − 1}.

The n-dimensional bubble-sort star graph, denoted by BSn,
is defined as the Cayley graph Cay(Sym(n), S).

By the definition of BSn, it is a (2n− 3)-regular graph
with n! vertices. For an integer i ∈ [n], let BSi

n−1 be
the graph induced by the vertex set {p1p2 · · · pn−1i},
where p1p2 · · · pn−1 ranges over all the permutations of
{1, 2, · · · , i − 1, i + 1, · · · , n}. Then BSi

n−1 is isomorphic
to BSn−1 for each i ∈ [n] and we call such an BSi

n−1

a copy of BSn−1. Thus, BSn can be decomposed into n
copies of BSn−1, namely, BS1

n−1, BS2
n−1, · · · , BSn

n−1. For
convenience, let BSn = BS1

n−1

⊕
BS2

n−1

⊕
· · ·BSn

n−1.
For each vertex u ∈ V (BSi

n−1), it has 2n − 5 neighbors
in BSi

n−1 and two neighbors outside BSi
n−1, which are

called the outside neighbors of u. The graph BS2 and
BS3 are depicted in Fig. 9, respectively.

The following lemmas are about properties of BSn.

Lemma 4.17. ( [3], [33]) Let BSn = BS1
n−1

⊕
BS2

n−1⊕
. . .

⊕
BSn

n−1, where n ≥ 4. Then the following results
hold.

(1) For any vertex u of BSi
n−1, it has exactly two outside

neighbors, where i ∈ [n].
(2) For any vertex u of BSn, the outside neighbors of u

belong to different copies of BSn−1. That is, no two
vertices in BSi

n−1 have a common outside neighbor for
i ∈ [n].

12 21

BS2

132 123

312 213

321 231

BS3

Fig. 9. The bubble-sort star graphs BS2 and BS3 of
Definition 4.16

(3) There are 2(n− 2)! independent crossed edges between
two different BSi

n−1s.

Lemma 4.18. ( [3]) κ(BSn) = 2n− 3 for n ≥ 3.

Lemma 4.19. Let BSn = BS1
n−1

⊕
BS2

n−1

⊕
. . .

⊕

BSn
n−1. Then any two vertices in different copies of BSn−1

have at most one common outside neighbor.

Proof: Let u, v ∈ V (BSn), u 6= v and they belong
to different copies of BSn−1. Without loss of gener-
ality, let u = u1u2u3 · · ·un−11 ∈ V (BS1

n−1) and v =
v1v2v3 · · · vn−12 ∈ V (BS2

n−1). Then the two outside
neighbors of u are u′ = u(1n) = 1u2u3 · · ·un−1u1 and
u′′ = u(n − 1, n) = u1u2 · · ·un−21un−1, and the two
outside neighbors of v are v′ = v(1n) = 2v2v3 · · · vn−1v1
and v′′ = v(n−1, n) = v1v2 · · · vn−22vn−1. If u and v have
two common outside neighbors, then {u′, u′′} = {v′, v′′}.
As u′ 6= v′, then u′ = v′′ and v′ = u′′. By u′ = v′′, we
have that v1 = 1 and un−1 = 2. By u′′ = v′, we have that
vn−1 = 1 and u1 = 2. That is, u1 = un−1 = 2, which is a
contradiction. Thus, u and v have at most one common
outside neighbor.

Corollary 4.20. κ3(BSn) = 2n− 4 for n ≥ 3.

Proof: By Definition 2.1, BSn can be regarded as the
special regular graph Gn−2 with G1 = BS3, a = 6, r =
3, s = 2, pn−2 = n and N = ap2p3 · · · pn−2 = n!. By
Lemma 4.18, κ(BS3) = 3. By Lemma 3.1, κ3(BS3) ≤ 2.
By Lemma 3.2, κ3(BS3) ≥ 2. Thus, κ3(BS3) = 2. Thus,
by Lemma 4.19 and Theorem 3.10, κ3(BSn) = 2n− 4 for
n ≥ 3.

5 AN ALGORITHM FOR BS
n

In this section, we will present an algorithm to find
the 2n − 4 internally disjoint S-Steiner trees in BSn for
S = {x, y, z} ⊆ V (BSn). To present the algorithm, the
following lemmas are useful.
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Lemma 5.1. ( [1]) There exists a Kruskal algorithm for
finding a spanning tree in any connected graph G with n
vertices, denoted by INT (G,S), where S ⊆ V (G).

Lemma 5.2. ( [26]) There exists an algorithm for finding the
maximum number of internally disjoint paths between two
vertex set of a connected graph G.

In order to express the algorithm compactly, we de-
note some notations needed for the algorithm. For v ∈
V (BSn), let v′ and v′′ be the two outside neighbors of v.
In addition, let (v)n be the n-th bit number of v in BSn.

Algorithm 1 IDT(BSn, n, r, x, y, z)

Input: Any three distinct vertices x, y and z of BSn and
r = 2n− 4, where S = {x, y, z}.

Output: 2n − 4 internally disjoint S-Steiner trees
T1, T2, · · · , T2n−4 such that E(Ti) ∩ E(Tj) = ∅ and
V (Ti) ∩ V (Tj) = S.

1: α ← (x)n, β ← (y)n, γ ← (z)n, n′ ← n − 1,
r′ ← r − 2, [n] ← {1, . . . , n}; τ ← (x′)n, τ ′ ← (x′′)n,
θ ← (y′)n, θ′ ← (y′′)n, η ← (z′)n, η′ ←
(z′′)n, M = {x′, x′′, y′, y′′, z′, z′′}, M ∩ V (BSi

n−1) =
Mi, |Mi| = σ(i), σ(τ)=max{σ(i)|i ∈ [n]}, GI =
BSn[∪i∈IV (BSi

n−1)] and G′
I = BSn[∪i∈IV (BSi

n−1)∪
S], where I ⊆ [n].

2: if α = β = γ then
3: {Ti|1 ≤ i ≤ r′} ← IDT (BSα

n−1, n
′, r′, x, y, z);

4: if σ(τ) = 3 then
5: Mτ ← {x′, y′, z′},
6: ∪i∈[n]\{α,τ}Mi ← {x

′′, y′′, z′′},
7: T2n−5 ← INT (G′

{τ}, S),
8: T2n−4 ← INT (G′

[n]\{α,τ}, S);
9: else if σ(τ) = 2 then

10: Mτ ← {x′, y′}, Mη ← {z′};
11: if σ(η) = 1 then
12: T2n−5 ← INT (G′

{τ,η}, S),
13: T2n−4 ← INT (G′

[n]\{α,τ,η}, S);
14: else
15: σ(η) = 2, Mη ← {z

′, x′′};
16: if σ(η′) = 1 and σ(θ′) = 1 then
17: Mη′ ← {z′′}, Mθ′ ← {y′′},
18: T2n−5 ← INT (G′

{τ,η′}, S),
19: T2n−4 ← INT (G′

[n]\{α,τ,η′}, S);
20: else
21: σ(η′) = 2, Mη′ ← {z′′, y′′},
22: u← {(z′)′, (z′)′′} \ {z};

23: if u /∈ V (BSη′

n−1) then
24: T2n−5 ← INT (G′

{η,η′} \ {z
′}, S),

25: T2n−4 ← INT (G′
[n]\{α,η,η′}, S);

26: else
27: u ∈ V (BSη′

n−1) , set w ∈ NBS
η
n−1

(z′) and

w′ /∈ V (BSη′

n−1),
28: T2n−5 ← INT (G′

{η,η′} \ {z
′, w}, S),

29: T2n−4 ← INT (G′
[n]\{α,η,η′}, S);

30: end if
31: end if
32: end if

33: else
34: σ(τ) = 1, Mτ ← {x′}, Mτ ′ ← {x′′}, Mθ ← {y′},

Mθ′ ← {y′′}, Mη ← {z′}, Mη′ ← {z′′}, T2n−5 ←
INT (G′

{τ,θ,η}, S), T2n−4 ← INT (G′
{τ ′,θ′,η′}, S);

35: end if
36: else if α = β 6= γ then
37: Generate 2n − 5 internally disjoint (x, y)-paths

P1, P2, · · · , P2n−5 in BSα
n−1 by Theorem 3.4 and

Lemma 5.2;
38: if neither of z′ and z′′ belong to BSα

n−1 then
39: if ℓ(Pi) ≥ 2 for each i ∈ [2n− 5] then
40: Y ← {xi|xi ∈ V (Pi) \ {x, y} and 1 ≤ i ≤ 2n−

5} ∪ {x, y}, Y ′ ← {u′|u ∈ Y };
41: else
42: ℓ(Pi) = 1 for some i ∈ [2n − 5], P1 ←

Pi, x ← x1, Y
′ ← {u′|u ∈ Y } ∪ {x′′};

Generate 2n − 3 internally disjoint (z, Y ′)-
paths Q1, Q2, · · · , Q2n−3 by Lemma 3.5 and
Lemma 5.2;

43: for i = 1 to 2n− 5 do
44: Ti ← Pi ∪Qi ∪ xix

′
i;

45: end for
46: T2n−4 ← Q2n−4∪Q2n−3∪{xx

′, yy′} or T2n−4 ←
Q2n−4 ∪Q2n−3 ∪ {xx′′, yy′};

47: end if
48: else
49: One of z′ and z′′ belong to BSα

n−1 and choose
z′ ∈ V (BSα

n−1);
50: if z′ /∈ V (Pi) then
51: there is a (z′, x)-path P̃ in BSα

n−1; set t be
the first vertex in ∪i∈[2n−5]V (P ) and t ∈

V (P2n−5); T2n−4 ← P2n−5 ∪ P̃ [z′, t] ∪ zz′;
52: else
53: z′ ∈ V (Pi), set z′ ∈ V (P2n−5), T2n−4 ←

P2n−5 ∪ zz′;
54: end if
55: if ℓ(Pi) ≥ 2 for each i ∈ [2n− 6] then
56: Y ← {xi|xi ∈ V (Pi) \ {x, y} and 1 ≤ i ≤ 2n−

6} ∪ {x, y}, Y ′ ← {u′|u ∈ Y };
57: else
58: ℓ(Pi) = 1 for some i ∈ [2n − 6], P1 ←

Pi, x ← x1, Y
′ ← {u′|u ∈ Y } ∪ {x′′};

Generate 2n − 4 internally disjoint (z, Y ′)-
paths Q1, Q2, · · · , Q2n−4 by Lemma 3.5 and
Lemma 5.2;

59: for i = 1 to 2n− 6 do
60: Ti ← Pi ∪Qi ∪ xix

′
i;

61: end for
62: T2n−5 ← Q2n−4∪Q2n−5∪{xx′, yy′} or T2n−5 ←

Q2n−4 ∪Q2n−3 ∪ {xx′′, yy′};
63: end if
64: end if
65: else
66: α 6= β, β 6= γ and α 6= γ
67: if M ⊆ V (G{α,β,γ}) then
68: Generate 2n − 4 internally disjoint (x, y)-paths

P1, P2, · · · , P2n−4 in G{α,β} by Theorem 3.4 and
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Lemma 5.2;
69: if z′ /∈ ∪i∈[2n−4]V (Pi) then

70: there is a (z′, x)-path P̃ in G{α,β}; set t be
the first vertex in ∪i∈[2n−4]V (Pi) and t ∈

V (P2n−4); T2n−4 ← P2n−4 ∪ P̃ [z′, t] ∪ {zz′};
71: else
72: z′ ∈ ∪i∈[2n−4]V (Pi), set z′ ∈ V (P2n−4),
73: T2n−4 ← P2n−4 ∪ zz′;
74: end if
75: X ← {xi|xi ∈ V (Pi) ∩ NG{α,β}

(x) and 1 ≤ i ≤
2n − 5}, X ′ ← {x′

i|xi ∈ X and 1 ≤ i ≤ 2n− 5};
Generate 2n− 5 internally disjoint (z,X ′)-paths
Q1, Q2, · · · , Q2n−5 in G[n]\{α,β} by Lemma 3.5
and Lemma 5.2;

76: for i = 1 to 2n− 5 do
77: Ti ← Pi ∪Qi ∪ xix

′
i;

78: end for
79: else
80: M * V (G{α,β,γ}); set z′ /∈ V (G{α,β});
81: for i = 1 to 2n− 5 do
82: Choose xi ∈ V (BSα

n−1) and

83: x′
i ∈ V (BSβ

n−1);
84: end for
85: X ← {x1, x2, · · · , x2n−5},
86: X ′ ← {x′

1, x
′
2, · · · , x

′
2n−5},

87: Generate 2n − 5 internally disjoint (x,X)-paths
P1, P2, · · · , P2n−5 and 2n − 5 internally disjoint
(y,X ′)-paths P ′

1, P
′
2, · · · , P

′
2n−5 by Lemma 3.5

and Lemma 5.2;
88: for i = 1 to 2n− 5 do
89: P̂i ← Pi ∪ P ′

i ∪ xix
′
i;

90: end for
91: Set Y ← {x′′

1 , x
′′
2 , · · · , x

′′
2n−5} ∪ {x

′′, y′′} with
x′′, y′′ ∈ V (G[n]\{α,β}); Generate 2n − 3 inter-
nally disjoint (z, Y )-paths Q1, Q2, · · · , Q2n−3 in
G[n]\{α,β} by Lemma 3.5 and Lemma 5.2;

92: for i = 1 to 2n− 5 do
93: Ti ← P̂i ∪Qi,
94: end for
95: T2n−4 ← Q2n−4 ∪Q2n−3 ∪ {xx′′, yy′′}
96: end if
97: end if

The explanation for Algorithm 1

Recall that BSn = BS1
n−1

⊕
BS2

n−1

⊕
. . .

⊕
BSn

n−1,
where BSi

n−1 denotes the graph whose n-th bit number
of any vertex is i and i ∈ [n]. Let S = {x, y, z}, where
x, y and z are any three distinct vertices of BSn. In line
1 of algorithm 1, we use α, β and γ to denote the n-th
bit number of x, y and z, respectively.

If α = β = γ, the vertices x, y and z belong to the same
copy, BSα

n−1, of BSn−1. From line 2 to line 35, we give
the method how to find 2n− 4 internally disjoint S-trees
in BSn;

If α = β 6= γ, the vertices x, y and z belong to two
different copies of BSn−1, that is, x and y belong to the
same copy of BSn−1 and z belong to the other copy of
BSn−1. From line 36 to line 65, we give the method how

to find 2n − 4 internally disjoint S-trees in BSn under
this condition;

If any two of α, β and γ are not equal, that is, the
vertices x, y and z belong to three different copies of
BSn−1. From line 66 to line 95, the method of how to
find 2n− 4 internally disjoint S-trees in BSn is given if
α 6= β, β 6= γ and α 6= γ.

6 LIMITATIONS OF THE WORK

In this paper, we introduce a network Gn that can be
constructed recursively and contains exactly two out-
side neighbors. The network Gn contains many famous
interconnection networks such as the alternating group
graph AGn, the k-ary n-cube Qk

n, the split-star network
S2
n and the bubble-sort-star graph BSn etc.. We mainly

studied the generalized k-connectivity of the network Gn

for k = 3, however, the generalized k-connectivity of Gn

for k ≥ 4 has not been studied. It would be an interesting
and challenging work to study in the future.

7 CONCLUDING REMARKS

The generalized k-connectivity is a generalization of the
traditional connectivity. In this paper, we studied the
generalized 3-connectivity of Gn that can be constructed
recursively and contains exactly two outside neighbors.
As applications of the main result, the generalized 3-
connectivity of many famous networks such as the al-
ternating group graph AGn, the k-ary n-cube Qk

n, the
split-star network S2

n and the bubble-sort-star graph BSn

can be obtained directly. In the future, we would like to
study the generalized k-connectivity of Gn for k ≥ 4,
which would be interesting and challenging.
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