The Generalized 3-Connectivity of Some Regular Networks

Shu-Li Zhao ${ }^{1}$, Rong-Xia Hao ${ }^{1}$ and Jie-Wu ${ }^{2}$

Abstract

For a vertex set S with cardinality at least two, we need a tree to connect them, where this tree is usually called an S-Steiner tree (or a tree connecting S). Two S-Steiner trees T and T^{\prime} are said to be internally disjoint if $E(T) \cap E\left(T^{\prime}\right)=\emptyset$ and $V(T) \cap V\left(T^{\prime}\right)=S$. Let $\kappa_{G}(S)$ denote the maximum number r of internally disjoint S-Steiner trees in G. For an integer k with $2 \leq k \leq n$, the generalized k-connectivity of a graph G is defined as $\kappa_{k}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=k\right\}$. It is proved NP-complete to determine $\kappa_{k}(G)$ for a general graph G. So far, the exact values of $\kappa_{k}(G)$ are known for small classes of graphs and most of them are about $k=3$. In this paper, we introduce a family of m-regular and m-connected graph G_{n} which are constructed recursively and contains many important interconnection networks such as the alternating group graph $A G_{n}$, the k-ary n-cube Q_{n}^{k}, the split-star network S_{n}^{2} and the bubble-sort-star graph $B S_{n}$. We study the generalized 3-connectivity of G_{n} and show that $\kappa_{3}\left(G_{n}\right)=m-1$, which attains the upper bound of $\kappa_{3}(G)$ given by Li et al. for $G=G_{n}$. As applications, the generalized 3-connectivity of $A G_{n}, Q_{n}^{k}, S_{n}^{2}$ and $B S_{n}$ etc., can be obtained directly.

Index Terms—Interconnection network; Generalized connectivity; Fault-tolerance; Regular Network.

1 Introduction

In the modern society, Big Data and Internet of Things are prevailing in computer systems and information technology. In recent years, due to the popularization of mobile devices, the prevailing of social networks and the improvement of cloud computing, enormous amount of data is produced in great speed. Internet of Things, for instance, every device is equipped with sensors. These devices are able to collect every kind of data extensively in large amount. Thus, the parallel and distributed system is an important technique for developing Big Data. Related researches about interconnection network for the most parts have applied to the parallel and distributed system. In a distributed computer system, a network structure represents the layout of the processors and the links. The topological structure of a computer network is usually represented by a graph, where vertices represent processors and edges represent links between processors. The internally disjoint S-Steiner trees of graphs do exist in information engineering design and telecommunication networks [28]. The research about internally disjoint S-Steiner trees of graphs plays a key role in effective information transportation in terms of parallel routing design for large-scale networks.

The connectivity $\kappa(G)$ is an important parameter to evaluate the reliability and fault tolerance of a graph G. As we know, $\kappa(G)$ has two equivalent definitions, one

- ${ }^{1}$ Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China.
${ }_{2}$ Department of Computer and Information Sciences,Temple University, USA.
E-mail:
- 17118434@bjtu.edu.cn(S.-L. Zhao), rxhao@bjtu.edu.cn (R.-X. Hao), jiewи@temple.edu (J. Wu)
is the cut version and the other is the path version. For the cut version, it is defined as the minimum number of vertices whose deletion results in a disconnected graph. For the path version, Whitney [32] defined it from a local point of view, that is, for any subset $S=\{u, v\} \subseteq V(G)$, let $\kappa_{G}(S)$ denote the maximum number of internally disjoint paths between u and v in G. Then $\kappa(G)=$ $\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=2\right\}$.

The generalized k-connectivity $\kappa_{k}(G)$ was first mentioned by Hager [9] in 1985, it can be used to measure the reliability of a network G that connect any k vertices in G. For a vertex set S with cardinality at least two, we need a tree to connect them, where this tree is called an S-Steiner tree (or a tree connecting S). Two S-Steiner trees T and T^{\prime} are said to be internally disjoint if $E(T) \cap E\left(T^{\prime}\right)=\emptyset$ and $V(T) \cap V\left(T^{\prime}\right)=S$. For $S \subseteq V(G)$ and $|S| \geq 2$, the $\kappa_{G}(S)$ is the maximum number of internally disjoint S-Steiner trees in G. For an integer k with $2 \leq k \leq n$, the generalized k-connectivity is defined as $\kappa_{k}(G)=\min \left\{\kappa_{G}(S)|S \subseteq V(G),|S|=k\}\right.$, that is, $\kappa_{k}(G)$ is the minimum value of $\kappa_{G}(S)$ when S runs over all k-subsets of $V(G)$. Clearly, when $|S|=2, \kappa_{2}(G)$ is just the connectivity $\kappa(G)$ of G, that is, $\kappa_{2}(G)=\kappa(G)$ and corresponding to the definition of $\kappa(G)$ for the path version. This is the reason why one addresses $\kappa_{k}(G)$ as a generalization of $\kappa(G)$.

The internally disjoint S-Steiner trees have applications in VLSI circuit design [28], that is, a Steiner tree is needed to share an electronic signal by a set of terminal nodes. In addition, the S-Steiner trees are used in computer communication networks and optical wireless communication networks, which is of prominent importance. Imagine that a given graph G represents a network. We choose arbitrary k vertices as nodes. Suppose one of the nodes in G is a broadcaster, and
all other nodes are either users or routers (also called switches). The broadcaster wants to broadcast as many streams of movies as possible, so that the users have the maximum number of choices. Each stream of movie is broadcasted via a tree connecting all the users and the broadcaster. In essence, we need to find the maximum number of internally disjoint Steiner trees connecting all the users and the broadcaster, namely, we want to get $\kappa_{G}(S)$, where S is the set of the k nodes. Furthermore, if we want to know whether for any k nodes the network G has the above properties, we need to compute $\kappa_{k}(G)=$ $\min \left\{\kappa_{G}(S)\right\}$ in order to prescribe the reliability and the security of the network.

Determining $\kappa_{k}(G)$ for general graphs is a non-trivial problem. Li et al. [19] derived that for any fixed integer $l \geq 2$, a given graph G and a subset $S \subseteq V(G)$, deciding whether there are l internally disjoint trees connecting S, namely deciding whether $\kappa_{G}(S) \geq l$, is NP-complete. So far, the upper bounds and lower bounds of the generalized connectivity of graphs have been studied by the authors in Refs. [17], [21], [22]; the upper bounds and lower bounds of the generalized connectivity of Cartesian product and Lexicographic product of graphs have been studied by the authors in Refs. [13], [20]; the characterization of graphs with given generalized connectivity have been studied by the authors in Ref. [23]; the exact values of $\kappa_{k}(G)$ are known for small classes of graphs such as the complete graphs [6], the hypercubes [13], the star graphs and bubble-sort graphs [18], the Cayley graph generated by trees and cycles [16], the complete bipartite graphs [24], the exchanged hypercubes [40] etc.. For $k=|V(G)|$, the generalized k-connectivity of a graph G is exactly the maximum number of edge disjoint spanning trees in G. There are some results about edge disjoint spanning trees of networks [10], [12], [25], [27], [29], [31], [35]-[38]. For more results about generalized connectivity of graphs, one can refer to [14].

Overall, the exact values of $\kappa_{k}(G)$ are known for small classes of graphs and most of them are about $k=3$. In this paper, we introduce a family of m-regular and m-connected graph G_{n} that has exactly two outside neighbors and contains many important interconnection networks such as $A G_{n}, Q_{n}^{k}, S_{n}^{2}$ and $B S_{n}$. We show that $\kappa_{3}\left(G_{n}\right)=m-1$, which attains the upper bound of $\kappa_{3}(G)$ given by Li et al. for $G=G_{n}$. As applications, the generalized 3-connectivity of $A G_{n}, Q_{n}^{k}, S_{n}^{2}$ and $B S_{n}$ etc., can be obtained directly.

The paper is organized as follows. In section 2, some terminologies and notations needed for the discussion are introduced. In section 3, the generalized 3 -connectivity of the regular graph G_{n} is determined, which is the main result. In section 4, as an application of the main result, the generalized 3-connectivity of the alternating group graph $A G_{n}$, the k-ary n-cube Q_{n}^{k}, the split-star network S_{n}^{2} and the bubble-sort-star graph $B S_{n}$ etc., can be obtained directly as they are contained in G_{n}. In section 5, an algorithm to find the $2 n-4$ internally disjoint S-Steiner trees in $B S_{n}$ is presented,

TABLE 1 Notations needed for the discussion

$\boldsymbol{N o t a t i o n}$	Meaning
$G=(V, E)$	A graph with vertex set V and edge set E
$\kappa(G)$	The connectivity of a graph G
$\kappa_{k}(G)$	The generalized k-connectivity of a graph G
$\|V(G)\|$	The order of the vertex set of a graph G
$\|E(G)\|$	The size of the edge set of a graph G
$N_{G}(v)$	The neighborhood of the vertex v in G
$N_{G}[v]$	$N_{G}(v) \bigcup\{v\}$, where $v \in V(G)$
$N_{G}(U)$	$\bigcup_{v \in U} N_{G}(v)-U$, where $U \subseteq V(G)$
$d_{G}(v)$	The degree of the vertex v in G
$\delta(G)$	The minimum degree of the graph G
$G\left[V^{\prime}\right]$	The subgraph induced by V^{\prime} in G, where
	$V^{\prime} \subseteq V(G)$
$[n]$	The integer set from 1 to n
Γ	A finite group
$C a y(\Gamma, S)$	The Cayley graph with vertex set Γ and edge set
	$\{(g, g \cdot s) \mid g \in \Gamma, s \in S\}$, where S is a subset of Γ
	and the identity of the group does not belong to
	S.

where $S=\{x, y, z\}, x, y$ and z are any three distinct vertices of $B S_{n}$. In section 6 , the limitations of the work are discussed and in section 7, the paper is concluded.

2 Terminology and notation

In this section, we will introduce some terminologies and notations needed for our discussion. For terminologies and notations undefined here, one can follow the reference [1]. For convenience, we use interconnection networks and graphs interchangeably.

The notations needed for our discussion are listed in Table 1 and we will introduce the terminologies needed for our discussion.

A graph is said to be k-regular if for any vertex v of G, $d_{G}(v)=k$. The (x, y)-paths P and Q in G are internally disjoint if they have no common internal vertices, that is $V(P) \bigcap V(Q)=\{x, y\}$. Meanwhile, two $x y$ - paths P and Q in G are edge disjoint if $E(P) \cap E(Q)=\emptyset$. Let $Y \subseteq V(G)$ and $X \subset V(G) \backslash Y$, the (X, Y)-paths is a family of internally disjoint paths starting at a vertex $x \in X$, ending at a vertex $y \in Y$ and whose internal vertices belong to neither X nor Y. If $X=\{x\}$, the (X, Y)-paths is a family of internal disjoint paths whose starting vertex is x and the terminal vertices are distinct in Y, which is referred to as a k-fan from x to Y.

Following, we will introduce the definition of the graph G_{n}.

Definition 2.1. Let n, r, a be integers and $p_{i} \geq 2$ be integers for $i \in[n] \backslash\{1\}$, where $r \leq a-1$. Let G_{n} be an n-th regular graph, which can be constructed recursively as follows:
(1) The 1-th regular graph, say G_{1}, is a r-regular and r connected graph with order a.
(2) For $n \geq 2$, the n-th regular graph, say G_{n}, is a regular graph that consists of p_{n} copies of G_{n-1}, say $G_{n-1}^{1}, G_{n-1}^{2}, \cdots, G_{n-1}^{p_{n}}$.
(3) For each $u \in V\left(G_{n-1}^{i}\right)$, it has two different neighbors outside G_{n-1}^{i}, which are called outside neighbors of u.

In addition, the two outside neighbors of u belong to two different $\left(G_{n-1}^{j}\right)^{\prime}$ s for $j \neq i$ and $i, j \in\left[p_{n}\right]$.
(4) There are same number of independent edges between G_{n-1}^{i} and G_{n-1}^{j} for $i \neq j$ and $i, j \in\left[p_{n}\right]$. It can be checked that there are $\frac{2 a p_{2} p_{3} \cdots p_{n-1}}{p_{n}-1}$ cross edges between G_{n-1}^{i} and G_{n-1}^{j}.
(5) $\frac{2 a p_{2} p_{3} \cdots p_{n-1}}{p_{n}-1} \geq r+2(n-2)+2$, where $r+2(n-2) \geq 4$.
(6) G_{n} is m-regular and m-connected, where $m=r+2(n-$ 1).

For convenience, let $G_{n}=G_{n-1}^{1} \bigoplus G_{n-1}^{2} \bigoplus \cdots \bigoplus$ $G_{n-1}^{p_{n}}$. By the definition of $G_{n},\left|G_{n}\right|=N=a p_{2} p_{3} \cdots p_{n}$.

3 THE GENERALIZED 3-CONNECTIVITY OF $\mathbf{G}_{\mathbf{n}}$

In this section, we will study the generalized 3connectivity of G_{n}. The following lemmas are useful to our main result.

In [21], Li et al. showed the following upper bound of generalized 3 -connectivity of a connected graph.

Lemma 3.1. ([21]) Let G be a connected graph and δ be its minimum degree. Then $\kappa_{3}(G) \leq \delta$. Further, if there are two adjacent vertices of degree δ, then $\kappa_{3}(G) \leq \delta-1$.

In [21], Li et al. showed the relationship between $\kappa(G)$ and $\kappa_{3}(G)$ of a connected graph.
Lemma 3.2. ([21]) Let G be a connected graph with n vertices. If $\kappa(G)=4 k+r$, where k and r are two integers with $k \geq 0$ and $r \in\{0,1,2,3\}$, then $\kappa_{3}(G) \geq 3 k+\left\lceil\frac{r}{2}\right\rceil$. Moreover, the lower bound is sharp.

The following lemma is a useful property of k connected graphs.

Lemma 3.3. ([1]) Let $G=(V, E)$ be a k-connected graph, and let X and Y be subsets of $V(G)$ of cardinality at least k. Then there exists a family of k pairwise disjoint (X, Y)-paths in G.

In order to prove our main result, we need the following main theorems and lemmas.

Theorem 3.4. ([1]) Let G be a k-connected graph, and let x and y be a pair of distinct vertices in G. Then there exist k internally disjoint paths $P_{1}, P_{2}, \cdots, P_{k}$ in G connecting x and y.

Lemma 3.5. (Fan Lemma [1]) Let $G=(V, E)$ be a k connected graph, let x be a vertex of G, and let $Y \subseteq V \backslash\{x\}$ be a set of at least k vertices of G. Then there exists a k-fan in G from x to Y, that is, there exists a family of k internally disjoint (x, Y)-paths whose terminal vertices are distinct in Y.

To prove $\kappa_{3}\left(G_{n}\right)$, the connectivity of a subgraph H of G_{n} is considered.

Lemma 3.6. Let G_{n} and r be the same as in Definition 2.1. Let $G_{n}=G_{n-1}^{1} \oplus G_{n-1}^{2} \bigoplus \ldots \oplus G_{n-1}^{p_{n}}$ and $H=$ $G_{n-1}^{i_{1}} \bigoplus G_{n-1}^{i_{2}} \oplus \ldots \bigoplus G_{n-1}^{i_{l}}$ be the induced subgraph of G_{n} on $\bigcup_{m=1}^{l} V\left(G_{n-1}^{i_{m}}\right)$ for $2 \leq l \leq p_{n}-1$. Then $\kappa(H) \geq$ $r+2(n-2)$, where $r+2(n-2) \geq 4$ and $p_{n} \geq 3$.

Proof: Without loss of generality, let $H=$ $G_{n-1}^{1} \bigoplus G_{n-1}^{2} \bigoplus \ldots \oplus G_{n-1}^{l}$. To prove the result, we just need to show that there are $r+2(n-2)$ internally disjoint paths for any two distinct vertices of H. Let $v_{1}, v_{2} \in V(H)$ and $v_{1} \neq v_{2}$, then the following two cases are considered.

Case 1. v_{1} and v_{2} belong to the same copy of G_{n-1}.
Without loss of generality, let $v_{1}, v_{2} \in V\left(G_{n-1}^{1}\right)$. By Definition 2.1(6), $\kappa\left(G_{n-1}^{1}\right)=r+2(n-2)$. Then there are $r+2(n-2)$ internally disjoint paths between v_{1} and v_{2} in G_{n-1}^{1}.

Case 2. v_{1} and v_{2} belong to two different copies of G_{n-1}.

Without loss of generality, let $v_{1} \in V\left(G_{n-1}^{1}\right)$ and $v_{2} \in V\left(G_{n-1}^{2}\right)$. Select $r+2(n-2)$ vertices from $G_{n-1}^{1} \backslash\left\{v_{1}\right\}$, say $u_{1}, u_{2}, u_{3}, \cdots, u_{r+2(n-2)}$, such that the outside neighbor u_{i}^{\prime} of u_{i} belongs to $G_{n-1}^{2} \backslash\left\{v_{2}\right\}$ for each $i \in[r+2(n-2)]$. By Definition 2.1(5), this can be done. Let $S=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{r+2(n-2)}\right\}$ and $S^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \cdots, u_{r+2(n-2)}^{\prime}\right\}$. By Definition 2.1(6), $\kappa\left(G_{n-1}^{1}\right)=\kappa\left(G_{n-1}^{2}\right)=r+2(n-2)$. By Lemma 3.5, there exists a family of $r+2(n-2)$ internally disjoint $\left(v_{1}, S\right)$-paths $P_{1}, P_{2}, \cdots, P_{r+2(n-2)}$ such that the terminal vertex of P_{i} is u_{i}. Similarly, there exists a family of $r+2(n-2)$ internally disjoint $\left(v_{2}, S^{\prime}\right)$ paths $P_{1}^{\prime}, P_{2}^{\prime}, \cdots, P_{r+2(n-2)}^{\prime}$ such that the terminal vertex of P_{i}^{\prime} is u_{i}^{\prime}. Let $\widehat{P}_{i}=P_{i} \bigcup u_{i} u_{i}^{\prime} \bigcup P_{i}^{\prime}$ for each $i \in[r+2(n-2)]$, then $r+2(n-2)$ internally disjoint paths between v_{1} and v_{2} are obtained in H.

In the following lemma, we will show the property of a subgraph H of G_{n}, which is important to prove the main result.

Lemma 3.7. Let G_{n} and r be the same as in Definition 2.1 and let $H=G_{n-1}^{i_{1}} \bigoplus G_{n-1}^{i_{2}} \bigoplus G_{n-1}^{i_{3}} \bigoplus \cdots \bigoplus G_{n-1}^{i_{l}}$ be the induced subgraph of G_{n} on $\bigcup_{j=1}^{l} V\left(G_{n-1}^{i_{j}}\right)$ and $x \in V(H)$, where $l \geq 2$ and $n \geq 5$. If $d_{H}(x)=k$ and $Y \subseteq V(H) \backslash\{x\}$ with $|Y|=k$ such that $\left|Y \bigcap V\left(G_{n-1}^{i_{j}}\right)\right| \leq r+2(n-2)$ for each $j \in[l]$. Then there exists a k-fan in H from x to Y.

Proof: Without loss of generality, let $H \quad=\quad G_{n-1}^{1} \bigoplus G_{n-1}^{2} \oplus G_{n-1}^{3} \oplus \cdots \bigoplus G_{n-1}^{l}$. Let $x \in V(H), d_{H}(x)=k$ and $Y \subseteq V(H) \backslash\{x\}$ with $|Y|=k$ such that $\left|Y \bigcap V\left(G_{n-1}^{j}\right)\right| \leq r+2(n-2)$ for each $j \in[l]$. Clearly, $r+2(n-2) \leq k \leq r+2(n-1)$. To prove the result, the following three cases are considered.

Case 1. $k=r+2(n-2)$.
By Lemma 3.6, $\kappa(H) \geq r+2(n-2)$. By Lemma 3.5, there exists a $[r+2(n-2)]$-fan in H from x to Y and the result is desired.

Case 2. $k=r+2(n-1)$.
Since $d_{H}(x)=r+2(n-1)$, then $V(H)$ contains the two outside neighbors x^{\prime} and $x^{\prime \prime}$ of x. By Definition 2.1(3), x^{\prime} and $x^{\prime \prime}$ belong to different copies of G_{n-1}. Without loss of generality, let $x \in V\left(G_{n-1}^{1}\right), x^{\prime} \in V\left(G_{n-1}^{2}\right)$ and $x^{\prime \prime} \in V\left(G_{n-1}^{3}\right)$. Let $Y \bigcap V\left(G_{n-1}^{j}\right)=A_{j}$ and $\left|A_{j}\right|=a_{j}$ for $1 \leq j \leq l$. Then $a_{j} \leq r+2(n-2)$ and $\sum_{j=1}^{l} a_{j}=$ $r+2(n-1)$. As $|Y|=r+2(n-1)$ and $\left|A_{1}\right| \leq r+2(n-2)$,
there are at least two vertices of Y outside G_{n-1}^{1}. We prove the result by considering a_{j} for $j=2,3$ and the following two subcases are considered.

Subcase 2.1. $a_{2} \geq 1$ and $a_{3} \geq 1$.
Let $a_{j}^{\prime}=a_{j}-1$ for $j=2,3$ and $a_{j}^{\prime}=a_{j}$ for $j \in[l] \backslash\{2,3\}$. Then $\sum_{j=1}^{l} a_{j}^{\prime}=r+2(n-2)$. Now select $l-1$ pairwise disjoint vertex sets $M_{2}, M_{3}, \cdots, M_{l}$ in G_{n-1}^{1} such that $\left|M_{j}\right|=$ a_{j}^{\prime} and for any vertex v of M_{j}, one of the two outside neighbors of v belongs to G_{n-1}^{j} and $M_{j} \bigcap\left(A_{1} \bigcup\{x\}\right)=\emptyset$ for $j \in\{2,3, \cdots, l\}$. By Definition 2.1(5), this can be done. Let $M=A_{1} \bigcup M_{2} \bigcup \cdots \bigcup M_{l}$. As $|M|=r+2(n-2)$ and $\kappa\left(G_{n-1}^{1}\right)=r+2(n-2)$. By Lemma 3.5, there exist l fans $F_{1}, F_{2}, \cdots, F_{l}$ in G_{n-1}^{1} from x to $A_{1}, M_{2}, \cdots, M_{l}$, respectively, where F_{1} is a family of a_{1} internally disjoint (x, A_{1})-paths whose terminal vertices are distinct in A_{1} and F_{j} is a family of a_{j}^{\prime} internally disjoint $\left(x, M_{j}\right)$-paths whose terminal vertices are distinct in M_{j} for $2 \leq j \leq l$. See Fig.1. Let $M_{j}^{\prime}=\left\{y^{\prime} \mid y^{\prime}\right.$ is the outside neighbor of y

Fig. 1. Illustration of Subcase 2.1 for $A_{j 0}=\emptyset$ for each $j \in\{2,3 \cdots, l\}$ in Lemma 3.7
such that $y^{\prime} \in V\left(G_{n-1}^{j}\right)$ for each $\left.y \in M_{j}\right\}$ and $E_{j}=$ $\left\{y y^{\prime} \in E\left(G_{n}\right) \mid y \in M_{j}\right.$ and $\left.y^{\prime} \in M_{j}^{\prime}\right\}$ for $2 \leq j \leq l$. Let $M_{2}^{\prime \prime}=M_{2}^{\prime} \bigcup\left\{x^{\prime}\right\}$ and $M_{3}^{\prime \prime}=M_{3}^{\prime} \bigcup\left\{x^{\prime \prime}\right\}$, then $\left|M_{2}^{\prime \prime}\right|=a_{2}$ and $\left|M_{3}^{\prime \prime}\right|=a_{3}$. Let $M_{j}^{\prime \prime} \cap A_{j}=A_{j 0}$ for $j=2,3$ and $M_{j}^{\prime} \bigcap A_{j}=A_{j 0}$ for $4 \leq j \leq l$. Let $M_{j}^{\prime \prime} \backslash A_{j 0}=A_{j 1}$ for $j=2,3$ and $M_{j}^{\prime} \backslash A_{j 0}=A_{j 1}$ for $4 \leq j \leq l$, and let $A_{j} \backslash$ $A_{j 0}=A_{j 2}$ for $2 \leq j \leq l$. Then $\left|A_{j 1}\right|=\left|A_{j 2}\right|=a_{j}-\left|A_{j 0}\right|$ for $2 \leq j \leq l$. By Definition 2.1(6), $\kappa\left(G_{n-1}^{j}\right)=r+2(n-2)$. As $\kappa\left(G_{n-1}^{j} \backslash A_{j 0}\right) \geq r+2(n-2)-\left|A_{j 0}\right| \geq a_{j}-\left|A_{j 0}\right|$. By Lemma 3.3, there exists a family of $a_{j}-\left|A_{j 0}\right|$ pairwise disjoint $\left(A_{j 1}, A_{j 2}\right)$-paths F_{j}^{\prime} in G_{n-1}^{j} for $2 \leq j \leq l$.

Finally, by combining the l fans $F_{1}, F_{2}, \cdots, F_{l}$, the edge sets E_{2}, \cdots, E_{l}, the edges $x x^{\prime}, x x^{\prime \prime}$ and the paths $F_{2}^{\prime}, \cdots, F_{l}^{\prime}$, we can obtain a $[r+2(n-1)]$-fan from x to
Y in H.
Subcase 2.2. At least one of $a_{2}, a_{3}=0$.
Without loss of generality, we assume $a_{2}=0$ and the following three subcases are considered.

Subcase 2.2.1. $a_{2}=0$ and $a_{3} \geq 2$.
Since $a_{2}=0$ and $a_{3} \geq 2$, see Fig.2. Let $a_{j}^{\prime}=a_{j}-2$ for $j=3$ and $a_{j}^{\prime}=a_{j}$ for $j \in[l] \backslash\{3\}$. Then select $l-2$ pairwise disjoint vertex sets $M_{3}, M_{4}, \cdots, M_{l}$ in G_{n-1}^{1} such that $\left|M_{j}\right|=a_{j}^{\prime}$ and for any vertex v of M_{j}, one of the two outside neighbors of v belongs to G_{n-1}^{j} and $M_{j} \bigcap\left(A_{1} \bigcup\{x\}\right)=\emptyset$ for each $j \in$ $\{3,4, \cdots, l\}$. By Definition 2.1(5), this can be done. Let $M=A_{1} \bigcup M_{3} \bigcup \cdots \bigcup M_{l}$. As $|M|=r+2(n-2)$ and $\kappa\left(G_{n-1}^{1}\right)=r+2(n-2)$ by Definition 2.1(6). By Lemma 3.5, there exist $l-1$ fans $F_{1}, F_{3}, \cdots, F_{l}$ in G_{n-1}^{1} from x to $A_{1}, M_{3}, \cdots, M_{l}$, respectively. Let $M_{j}^{\prime}=\left\{y^{\prime} \mid y^{\prime}\right.$

Fig. 2. Illustration of Subcase 2.2 .1 for $A_{j 0}=\emptyset$ for each $j \in\{3,4 \cdots, l\}$ in Lemma 3.7
is the outside neighbor of y such that $y^{\prime} \in V\left(G_{n-1}^{j}\right)$ for each $\left.y \in M_{j}\right\}$ and $E_{j}=\left\{y y^{\prime} \in E\left(G_{n}\right) \mid y \in M_{j}\right.$ and $\left.y^{\prime} \in M_{j}^{\prime}\right\}$ for $3 \leq j \leq l$. Let $w \in V\left(G_{n-1}^{2}\right)$ and one of the outside neighbors w^{\prime} of w belongs to $V\left(G_{n-1}^{3}\right)$ and $w^{\prime} \notin\left\{x^{\prime \prime}\right\} \bigcup M_{3}^{\prime}$. By Definition 2.1(5), this can be done. Then there exists a path P^{\prime} between x^{\prime} and w. Let $M_{3}^{\prime \prime}=M_{3}^{\prime} \bigcup\left\{x^{\prime \prime}, w^{\prime}\right\}$, then $\left|M_{3}^{\prime \prime}\right|=a_{3}$. Let $M_{j}^{\prime \prime} \bigcap A_{j}=A_{j 0}$ for $j=3$ and $M_{j}^{\prime} \cap A_{j}=A_{j 0}$ for $4 \leq j \leq l$. Let $M_{j}^{\prime \prime} \backslash A_{j 0}=A_{j 1}$ for $j=3$ and $M_{j}^{\prime} \backslash A_{j 0}=A_{j 1}$ for $4 \leq j \leq l$, and let $A_{j} \backslash A_{j 0}=A_{j 2}$ for $3 \leq j \leq l$. Then $\left|A_{j 1}\right|=\left|A_{j 2}\right|=a_{j}-\left|A_{j 0}\right|$ for $3 \leq j \leq l$. By Definition 2.1 (6), $\kappa\left(G_{n-1}^{j}\right)=r+2(n-2)$. We also have $\kappa\left(G_{n-1}^{j} \backslash A_{j 0}\right) \geq r+2(n-2)-\left|A_{j 0}\right| \geq a_{j}-\left|A_{j 0}\right|$. By Lemma 3.3, there exists a family of $a_{j}-\left|A_{j 0}\right|$ pairwise disjoint $\left(A_{j 1}, A_{j 2}\right)$-paths F_{j}^{\prime} in $A G_{n-1}^{j}$ for $3 \leq j \leq l$.

Next, by combining the $l-1$ fans $F_{1}, F_{3} \cdots, F_{l}$, the edge sets $E_{3}, E_{4}, \cdots, E_{l}$, the edges $x x^{\prime}, x x^{\prime \prime}, w w^{\prime}$, the path P^{\prime} and the paths $F_{3}^{\prime}, \cdots, F_{l}^{\prime}$, we can obtain a $[r+2(n-1)]$-fan from x to Y in H.

Subcase 2.2.2. $a_{2}=0$ and $a_{3}=1$.
Since $a_{2}=0$ and $a_{3}=1$, there must exist a part G_{n-1}^{k}
such that $a_{k} \geq 1$ for $k \in\{4,5, \cdots, l\}$. Let $a_{j}^{\prime}=a_{j}-1$ for $j=3, k$ and $a_{j}^{\prime}=a_{j}$ for $j \in[l] \backslash\{3, k\}$.

Then select $l-2$ pairwise disjoint vertex sets $M_{3}, M_{4}, \cdots, M_{l}$ in G_{n-1}^{1} such that $\left|M_{j}\right|=a_{j}^{\prime}$ and for any vertex v of M_{j}, one of the two outside neighbors of v belongs to G_{n-1}^{j} and $M_{j} \bigcap\left(A_{1} \bigcup\{x\}\right)=\emptyset$ for each $j \in\{3,4, \cdots, l\}$. Let $M=A_{1} \bigcup M_{3} \bigcup \cdots \bigcup M_{l}$. By Definition 2.1(6), $\kappa\left(G_{n-1}^{1}\right)=r+2(n-3)$. As $|M|=r+2(n-2)$, by Lemma 3.5, there exist $l-1$ fans $F_{1}, F_{3}, \cdots, F_{l}$ in G_{n-1}^{1} from x to M, where F_{j} is a family of a_{j}^{\prime} internally disjoint $\left(x, M_{j}\right)$-paths whose terminal vertices are distinct in M_{j} for $3 \leq j \leq l$.

Let $M_{j}^{\prime}=\left\{y^{\prime} \mid y^{\prime}\right.$ is the outside neighbor of y such that $y^{\prime} \in V\left(G_{n-1}^{j}\right)$ for each $\left.y \in M_{j}\right\}$ and $E_{j}=\left\{y y^{\prime} \in\right.$ $E\left(G_{n}\right) \mid y \in M_{j}$ and $\left.y^{\prime} \in M_{j}^{\prime}\right\}$ for $3 \leq j \leq l$. Let $w \in V\left(G_{n-1}^{2}\right)$ such that one of the outside neighbors w^{\prime} of w belongs to G_{n-1}^{k} and $w^{\prime} \notin M_{k}^{\prime}$. Then there exists a path P^{\prime} from x^{\prime} to w in G_{n-1}^{2}. Let $M_{k}^{\prime \prime}=M_{k}^{\prime} \bigcup\left\{w^{\prime}\right\}$ and $M_{3}^{\prime \prime}=M_{3}^{\prime} \bigcup\left\{x^{\prime \prime}\right\}$, then $\left|M_{k}^{\prime \prime}\right|=a_{k}$ and $\left|M_{3}^{\prime \prime}\right|=a_{3}$. Then prove the result similar as Subcase 2.1, we can obtain a $[r+2(n-1)]$-fan from x to Y in H.

Subcase 2.2.3. $a_{2}=0$ and $a_{3}=0$.
In this case, there exists a part G_{n-1}^{k} such that $a_{k} \geq 2$ for $k \in\{4,5, \cdots, l\}$ or there exist two parts G_{n-1}^{i} and G_{n-1}^{m} such that $a_{i}, a_{m} \geq 1$ for $i, m \in\{4,5, \cdots, l\}$.

Subcase 2.2.3.1. There exists a part G_{n-1}^{k} such that $a_{k} \geq 2$ for $k \in\{4,5, \cdots, l\}$.

For this case, see Fig.3. Let $a_{j}^{\prime}=a_{j}-2$ for $j=k$ and $a_{j}^{\prime}=a_{j}$ for $j \neq k$. Then select $l-3$ pairwise disjoint vertex sets $M_{4}, M_{5}, \cdots, M_{l}$ in G_{n-1}^{1} such that $\left|M_{j}\right|=a_{j}^{\prime}$ and for any vertex v of M_{j}, one of the two outside neighbors of v belongs to G_{n-1}^{j} and $M_{j} \bigcap\left(A_{1} \bigcup\{x\}\right)=\emptyset$ for each $j \in\{4, \cdots, l\}$. Let $M=A_{1} \bigcup M_{4} \bigcup \cdots \bigcup M_{l}$. As $|M|=$ $r+2(n-2)$ and $\kappa\left(G_{n-1}^{1}\right)=r+2(n-2)$ by Definition 2.1(6). By Lemma 3.5, there exist $l-2$ fans $F_{1}, F_{4}, \cdots, F_{l}$ in G_{n-1}^{1} from x to M, where F_{j} is a family of a_{j}^{\prime} internally disjoint $\left(x, M_{j}\right)$-paths whose terminal vertices are distinct in M_{j} for $4 \leq j \leq l$. Let $M_{j}^{\prime}=\left\{y^{\prime} \mid y^{\prime}\right.$ is the outside neighbor of y such that $y^{\prime} \in V\left(G_{n-1}^{j}\right)$ for each $\left.y \in M_{j}\right\}$ and $E_{j}=$ $\left\{y y^{\prime} \in E\left(G_{n}\right) \mid y \in M_{j}\right.$ and $\left.y^{\prime} \in M_{j}^{\prime}\right\}$ for $4 \leq j \leq l$. Let $u \in V\left(G_{n-1}^{2}\right)$ and one of the outside neighbors u^{\prime} of u belongs to $V\left(G_{n-1}^{k}\right)$ and $u^{\prime} \notin M_{k}^{\prime}$. Let $v \in V\left(G_{n-1}^{3}\right)$ and one of the outside neighbors v^{\prime} of v belongs to $V\left(G_{n-1}^{k}\right)$ and $v^{\prime} \notin\left\{u^{\prime}\right\} \bigcup M_{k}^{\prime}$. Then there exists a path P_{1} between x^{\prime} and u in G_{n-1}^{2} and a path P_{2} between $x^{\prime \prime}$ and v in G_{n-1}^{3}. Let $M_{k}^{\prime \prime}=M_{k}^{\prime} \bigcup\left\{u^{\prime}, v^{\prime}\right\}$, then $\left|M_{k}^{\prime \prime}\right|=a_{k}$. Then prove the result similar as Subcase 2.2.1, we can obtain a $[r+2(n-1)]$-fan from x to Y in H.

Subcase 2.2.3.2. There exist two parts G_{n-1}^{i} and G_{n-1}^{m} such that $a_{i}, a_{m} \geq 1$ for $i, m \in\{4,5, \cdots, l\}$.

For this case, see Fig.4. Let $a_{j}^{\prime}=a_{j}-1$ for $j=i, m$ and $a_{j}^{\prime}=a_{j}$ for $j \neq i, m$. Then select $l-3$ pairwise disjoint vertex sets $M_{4}, M_{5}, \cdots, M_{l}$ in G_{n-1}^{1} such that $\left|M_{j}\right|=a_{j}^{\prime}$ and for any vertex v of M_{j}, one of the two outside neighbors of v belongs to G_{n-1}^{j} and $M_{j} \bigcap\left(A_{1} \bigcup\{x\}\right)=\emptyset$ for each $j \in\{4, \cdots, l\}$. Let $M=A_{1} \bigcup M_{4} \bigcup \cdots \bigcup M_{l}$. As $|M|=r+2(n-2)$ and $\kappa\left(G_{n-1}^{1}\right)=r+2(n-2)$ by

Fig. 3. Illustration of Subcase 2.2.3.1 in Lemma 3.7

Definition 2.1(6). By Lemma 3.5, there exist $l-2$ fans $F_{1}, F_{4}, \cdots, F_{l}$ in G_{n-1}^{1} from x to M, where F_{j} is a family of a_{j}^{\prime} internally disjoint $\left(x, M_{j}\right)$-paths whose terminal vertices are distinct in M_{j} for $4 \leq j \leq l$. Let $M_{j}^{\prime}=\left\{y^{\prime} \mid y^{\prime}\right.$ is the outside neighbor of y such that $y^{\prime} \in V\left(G_{n-1}^{j}\right)$ for each $\left.y \in M_{j}\right\}$ and $E_{j}=\left\{y y^{\prime} \in E\left(G_{n}\right) \mid y \in M_{j}\right.$ and $\left.y^{\prime} \in M_{j}^{\prime}\right\}$ for $4 \leq j \leq l$. Let $u \in V\left(G_{n-1}^{2}\right)$ and one of the outside neighbors u^{\prime} of u belongs to $V\left(G_{n-1}^{i}\right)$ and $u^{\prime} \notin M_{i}^{\prime}$. Let $v \in V\left(G_{n-1}^{3}\right)$ and one of the outside neighbors v^{\prime} of v belongs to $V\left(G_{n-1}^{m}\right)$ and $v^{\prime} \notin M_{m}^{\prime}$. Then there exists a path P_{1} between x^{\prime} and u in G_{n-1}^{2} and a path P_{2} between $x^{\prime \prime}$ and v in G_{n-1}^{3}. Let $M_{i}^{\prime \prime}=M_{i}^{\prime} \bigcup\left\{u^{\prime}\right\}$ and $M_{m}^{\prime \prime}=M_{m}^{\prime} \bigcup\left\{v^{\prime}\right\}$, then $\left|M_{i}^{\prime \prime}\right|=a_{i}$ and $\left|M_{m}^{\prime \prime}\right|=a_{m}$. Then prove the result similar as Subcase 2.2.1, we can obtain a $[r+2(n-1)]$-fan from x to Y in H.

Fig. 4. Illustration of Subcase 2.2.3.2 in Lemma 3.7
Case 3. $k=r+2 n-3$.
Since $d_{H}(x)=r+2 n-3, V(H)$ contains one outside neighbor of x. Prove the result similar as Case 2, we can
obtain a $(r+2 n-3)$-fan from x to Y in H. To avoid repetition, the discussion for this case is omitted.

In the following lemma, we will show the generalized 3-connectivity of G_{n}, where the three vertices in S belong to the same copy of G_{n-1}.
Lemma 3.8. Let G_{n} and r be the same as in Definition 2.1, $G_{n}=G_{n-1}^{1} \oplus G_{n-1}^{2} \oplus \ldots \oplus G_{n-1}^{p_{n}}$ and $S=\left\{v_{1}, v_{2}, v_{3}\right\}$, where v_{1}, v_{2} and v_{3} are any three distinct vertices of $V\left(G_{n-1}^{i}\right)$ for $i \in\left[p_{n}\right]$. If there exist $r+2 n-5$ internally disjoint trees connecting S in G_{n-1}^{i}, then there exist $r+2 n-3$ internally disjoint trees connecting S in G_{n}.

Proof: Without loss of generality, let $S \subseteq V\left(G_{n-1}^{1}\right)$. Note that there exist $r+2 n-5$ internally disjoint trees $T_{1}, T_{2}, \ldots, T_{r+2 n-5}$ connecting S in G_{n-1}^{1}. As v_{i} has two outside neighbors v_{i}^{\prime} and $v_{i}^{\prime \prime}$ for each $i \in\{1,2,3\}$ and any two distinct vertices of G_{n-1}^{1} have different outside neighbors by Definition 2.1(3). Hence, $M=$ $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\}$ contains exactly 6 distinct vertices. In addition, each copy of G_{n-1} contains at most three vertices of them. To prove the result, the following three cases are considered.

Case 1. There exists a copy of G_{n-1} which contains three vertices of M.

Without loss of generality, let $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\} \subseteq V\left(G_{n-1}^{2}\right)$ and $\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\} \subseteq \bigcup_{i=3}^{p_{n}} V\left(G_{n-1}^{i}\right)$. As G_{n-1}^{2} and $G_{n}\left[\bigcup_{i=3}^{p_{n}} V\left(G_{n-1}^{i}\right)\right]$ as subgraphs of G_{n} are both connected, there is a tree, say $T_{r+2 n-4}^{\prime}$, connecting $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} in G_{n-1}^{2} and a tree, say $T_{r+2 n-3}^{\prime}$, connecting $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ and $v_{3}^{\prime \prime}$ in $G_{n}\left[\bigcup_{i=3}^{p_{n}} V\left(G_{n-1}^{i}\right)\right]$, respectively. Let $T_{r+2 n-4}=T_{r+2 n-4}^{\prime} \bigcup v_{1} v_{1}^{\prime} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{3} v_{3}^{\prime}$ and $T_{r+2 n-3}=$ $T_{r+2 n-3}^{\prime} \bigcup v_{1} v_{1}^{\prime \prime} \bigcup v_{2} v_{2}^{\prime \prime} \bigcup v_{3} v_{3}^{\prime \prime}$. Combine the trees $T_{i} \mathrm{~s}$ for $1 \leq i \leq r+2 n-3$, then $r+2 n-3$ internally disjoint trees connecting S are obtained in G_{n}.

Case 2. There exists a copy of G_{n-1} which contains two vertices of M and all other copies of G_{n-1} contain at most two vertices of M.

Without loss of generality, let $v_{1}^{\prime}, v_{2}^{\prime} \in V\left(G_{n-1}^{2}\right)$ and $v_{3}^{\prime} \in V\left(G_{n-1}^{3}\right)$. The following two subcases are considered.

Subcase 2.1. G_{n-1}^{3} contains only the vertex v_{3}^{\prime} of $M \backslash$ $\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$.

As $G_{n}\left[\bigcup_{i=2}^{3} V\left(G_{n-1}^{i}\right)\right]$ and $G_{n}\left[\bigcup_{i=4}^{p_{n}} V\left(G_{n-1}^{i}\right)\right]$ as subgraphs of G_{n} are both connected, there is a tree, say $T_{r+2 n-4}^{\prime}$, connecting $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} in $G_{n}\left[\bigcup_{i=2}^{3} V\left(G_{n-1}^{i}\right)\right]$ and a tree, say $T_{r+2 n-3}^{\prime}$, connecting $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ and $v_{3}^{\prime \prime}$ in $G_{n}\left[\bigcup_{i=4}^{p_{n}} V\left(G_{n-1}^{i}\right)\right]$, respectively. Let $T_{r+2 n-4}=T_{r+2 n-4}^{\prime} \bigcup v_{1} v_{1}^{\prime} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{3} v_{3}^{\prime} \quad$ and $T_{r+2 n-3}=T_{r+2 n-3}^{\prime} \bigcup v_{1} v_{1}^{\prime \prime} \bigcup v_{2} v_{2}^{\prime \prime} \bigcup v_{3} v_{3}^{\prime \prime}$. Combine the trees T_{i} s for $1 \leq i \leq r+2 n-3$, then $r+2 n-3$ internally disjoint trees connecting S are obtained in G_{n}.

Subcase 2.2. G_{n-1}^{3} contains the vertex v_{3}^{\prime} and a vertex of $M \backslash\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$.

Without loss of generality, let $v_{3}^{\prime}, v_{1}^{\prime \prime} \in V\left(G_{n-1}^{3}\right)$ and the following two subcases are considered.

Subcase 2.2.1. $v_{3}^{\prime \prime}$ and $v_{2}^{\prime \prime}$ belong to different copies of G_{n-1}.

Without loss of generality, let $v_{3}^{\prime \prime} \in V\left(G_{n-1}^{4}\right)$ and $v_{2}^{\prime \prime} \in V\left(G_{n-1}^{5}\right)$. As $G_{n}\left[V\left(G_{n-1}^{2}\right) \bigcup V\left(G_{n-1}^{4}\right)\right]$ is connected, there is a tree, say $T_{r+2 n-4}^{\prime}$, connecting $v_{1}^{\prime}, v_{2}^{\prime}$ and $v_{3}^{\prime \prime}$ in $G_{n}\left[V\left(G_{n-1}^{2}\right) \bigcup V\left(G_{n-1}^{4}\right)\right]$. In addition, there is a tree, say $T_{r+2 n-3}^{\prime}$, connecting $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ and v_{3}^{\prime} in $G_{n}\left[\bigcup_{i \in\left[p_{n}\right] \backslash\{1,2,4\}} V\left(G_{n-1}^{i}\right)\right]$ as it is connected. Let $T_{r+2 n-4}=T_{r+2 n-4}^{\prime} \bigcup v_{1} v_{1}^{\prime} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{3} v_{3}^{\prime \prime}$ and $T_{r+2 n-3}=$ $T_{r+2 n-3}^{\prime} \bigcup v_{1} v_{1}^{\prime \prime} \bigcup v_{2} v_{2}^{\prime \prime} \bigcup v_{3} v_{3}^{\prime}$. Combine the trees $T_{i} \mathrm{~s}$ for $1 \leq i \leq r+2 n-3$, then $r+2 n-3$ internally disjoint trees connecting S are obtained in G_{n}.

Subcase 2.2.2. $v_{3}^{\prime \prime}$ and $v_{2}^{\prime \prime}$ belong to the same copy of G_{n-1}.

Without loss of generality, let $v_{3}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(G_{n-1}^{4}\right)$. As v_{3} is one of the outside neighbors of v_{3}^{\prime} and it has exactly two outside neighbors. Then let the other outside neighbor of v_{3}^{\prime} be u. If $u \notin V\left(G_{n-1}^{4}\right)$, then $G_{n}\left[\bigcup_{i \in\left[p_{n}\right] \backslash\{1,3,4\}} V\left(G_{n-1}^{i}\right)\right]$ contains a tree $T_{r+2 n-4}^{\prime}$ connecting $v_{1}^{\prime}, v_{2}^{\prime}$ and u. Let $T_{r+2 n-4}=T_{r+2 n-4}^{\prime} \bigcup v_{1} v_{1}^{\prime} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{3} v_{3}^{\prime} \bigcup v_{3}^{\prime} u$, then it is a tree connecting S in G_{n}. By Lemma 3.6, $\kappa\left(G_{n-1}^{3} \bigoplus G_{n-1}^{4}\right) \geq r+2(n-2) \geq 4$. Hence, $G_{n}\left[\left(V\left(G_{n-1}^{3}\right) \bigcup V\left(G_{n-1}^{4}\right) \backslash\left\{v_{3}^{\prime}\right\}\right]\right.$ is connected and it contains a tree $T_{r+2 n-3}^{\prime}$ connecting $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ and $v_{3}^{\prime \prime}$. Let $T_{r+2 n-3}=T_{r+2 n-3}^{\prime} \bigcup v_{1} v_{1}^{\prime \prime} \bigcup v_{2} v_{2}^{\prime \prime} \bigcup v_{3} v_{3}^{\prime \prime}$, then it is a tree connecting S and the result holds. Otherwise, $u \in V\left(G_{n-1}^{4}\right)$. Let x be an in-neighbor of v_{3}^{\prime} in G_{n-1}^{3} such that one of the outside neighbors of x, say z, does not belong to G_{n-1}^{4}. This can be done as $r+$ $2(n-2) \geq 4$. Hence, $G_{n}\left[\bigcup_{i \in\left[p_{n}\right] \backslash\{1,3,4\}} V\left(G_{n-1}^{i}\right)\right]$ contains a tree, say $T_{r+2 n-4}^{\prime}$, that connects $v_{1}^{\prime}, v_{2}^{\prime}$ and z. Let $T_{r+2 n-4}=T_{r+2 n-4}^{\prime} \bigcup v_{1} v_{1}^{\prime} \bigcup v_{2} v_{2}^{\prime} \bigcup z x \bigcup x v_{3}^{\prime} \bigcup v_{3} v_{3}^{\prime}$, then it is a tree connecting S in G_{n}. By Lemma 3.6, $G_{n}\left[\left(V\left(G_{n-1}^{3}\right) \cup V\left(G_{n-1}^{4}\right) \backslash\left\{v_{3}^{\prime}, x\right\}\right]\right.$ is connected. Then there is a tree, say $T_{r+2 n-3}^{\prime}$, connecting $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ and $v_{3}^{\prime \prime}$. Let $T_{r+2 n-3}=T_{r+2 n-3}^{\prime} \bigcup v_{1} v_{1}^{\prime \prime} \bigcup v_{2} v_{2}^{\prime \prime} \bigcup v_{3} v_{3}^{\prime \prime}$, then it is a tree connecting S in G_{n}. Combine the T_{i} s for $1 \leq$ $i \leq r+2 n-3$, then $r+2 n-3$ internally disjoint trees connecting S in G_{n} are obtained.

Case 3. Each copy contains at most one vertex of M.
Without loss of generality, suppose that $G_{n-1}^{2}, G_{n-1}^{3}, G_{n-1}^{4}$ contains $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$, respectively and $G_{n-1}^{5}, G_{n-1}^{6}, G_{n-1}^{7}$ contains $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}, \quad$ respectively. As $G_{n}\left[\bigcup_{i=2}^{4} V\left(G_{n-1}^{i}\right)\right]$ and $G_{n}\left[\bigcup_{i=5}^{7} V\left(G_{n-1}^{i}\right)\right]$ as induced subgraphs of G_{n} are both connected, there is a tree, say $T_{r+2 n-4}^{\prime}$, connecting $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} in $G_{n}\left[\bigcup_{i=2}^{4} V\left(G_{n-1}^{i}\right)\right]$ and a tree, say $T_{r+2 n-3}^{\prime}$, connecting $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ and $v_{3}^{\prime \prime}$ in $G_{n}\left[\bigcup_{i=5}^{7} V\left(G_{n-1}^{i}\right)\right]$, respectively. Let $T_{r+2 n-4}=T_{r+2 n-4}^{\prime} \bigcup v_{1} v_{1}^{\prime} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{3} v_{3}^{\prime} \quad$ and $T_{r+2 n-3}=T_{r+2 n-3}^{\prime} \bigcup v_{1} v_{1}^{\prime \prime} \bigcup v_{2} v_{2}^{\prime \prime} \bigcup v_{3} v_{3}^{\prime \prime}$. Combine the $T_{i} \mathrm{~s}$ for $1 \leq i \leq r+2 n-3$, then $r+2 n-3$ internally disjoint trees connecting S in G_{n} are obtained.

In the following lemma, we will show the property of a subgraph H of G_{n}, where there are two vertices with the same degree in H and the two vertices belong to different copies of G_{n-1}.

Lemma 3.9. Let G_{n} and r be the same as in Definition 2.1 and $H=G_{n-1}^{i} \bigoplus G_{n-1}^{j}$ for $i \neq j$ and $i, j \in\left[p_{n}\right]$. If $x \in$
$V\left(G_{n-1}^{i}\right), y \in V\left(G_{n-1}^{j}\right)$ and $d_{H}(x)=d_{H}(y)=r+2 n-3$, then there exist $r+2 n-3$ internally disjoint paths between x and y in H.

Proof: Without loss of generality, let $H=$ $G_{n-1}^{1} \bigoplus G_{n-1}^{2}, x \in V\left(G_{n-1}^{1}\right), y \in V\left(G_{n-1}^{2}\right)$ and $d_{H}(x)=$ $d_{H}(y)=r+2 n-3$. To prove the main result, the following two cases are considered.

Case 1. x and y are not adjacent.
Let $Y=N_{H}(y)=\left\{y_{1}, y_{2}, \cdots, y_{r+2 n-3}\right\}$, then $x \notin Y$. Otherwise, x and y are adjacent. Clearly, $\left|Y \bigcap V\left(G_{n-1}^{l}\right)\right| \leq r+2(n-2)$ for $l=1,2$ and $|Y|=$ $r+2 n-3$. By Lemma 3.5, there exist $r+2 n-3$ internally disjoint paths $P_{1}, P_{2}, \cdots, P_{r+2 n-3}$ in H from x to Y whose terminal vertices are distinct in Y. If none of the paths P_{i} s for $1 \leq i \leq r+2 n-3$ contains y as an internal vertex, then combine the edges from y to Y and the paths P_{i} s for $1 \leq i \leq r+2 n-3, r+2 n-3$ internally disjoint paths between x and y in H can be obtained. If not, there exists only one path which contains y as an internal vertex as $P_{i} \mathrm{~s}$ for $1 \leq i \leq r+2 n-3$ are internally disjoint. Assume that P_{1} contains y as an internal vertex and the terminal vertex of P_{1} is y_{1}. Then P_{1} contains a subpath \widetilde{P}_{1} from x to y. Combine the edges from y to $Y \backslash\left\{y_{1}\right\}, \widetilde{P}_{1}$ and the paths P_{i} s for $2 \leq i \leq r+2 n-3, r+2 n-3$ internally disjoint (x, y)-paths in H can be obtained.

Case 2. x and y are adjacent.
Choose $r+2(n-2)$ vertices $x_{1}, x_{2}, \cdots, x_{r+2(n-2)}$ from $G_{n-1}^{1} \backslash\{x\}$ such that one of the outside neighbors of x_{i} belongs to $G_{n-1}^{2} \backslash\{y\}$ for each $i \in[r+2(n-2)]$. Let $X=$ $\left\{x_{1}, x_{2}, \cdots, x_{r+2(n-2)}\right\}$ and $X^{\prime}=\left\{x_{i}^{\prime} \mid x_{i}^{\prime}\right.$ is the outside neighbor of x_{i} and $\left.x_{i}^{\prime} \in V\left(G_{n-1}^{2}\right)\right\}$. By Definition 2.1(5), this can be done. By Definition 2.1(6), $\kappa\left(G_{n-1}^{1}\right)=$ $\kappa\left(G_{n-1}^{2}\right)=r+2(n-2)$. By Lemma 3.5, there exist $r+2(n-2)$ internally disjoint paths $P_{1}, P_{2}, \cdots, P_{r+2(n-2)}$ from x to X such that the terminal vertex of P_{i} is x_{i} in G_{n-1}^{1} and $r+2(n-2)$ internally disjoint paths $P_{1}^{\prime}, P_{2}^{\prime}, \cdots, P_{r+2(n-2)}^{\prime}$ from y to X^{\prime} such that the terminal vertex of P_{i}^{\prime} is x_{i}^{\prime} in G_{n-1}^{2} for each $i \in\{1,2, \cdots, r+$ $2(n-2)\}$. Let $\widetilde{P}_{r+2 n-3}=x y$ and $\widetilde{P}_{i}=x P_{i} x_{i} x_{i}^{\prime} P_{i}^{\prime} y$ for $1 \leq i \leq r+2(n-2)$. Then $r+2 n-3$ internally disjoint paths \widetilde{P}_{i} s for $1 \leq i \leq r+2 n-3$ between x and y in H are obtained.

Following, we will show the main result.
Theorem 3.10. Let G_{n} and r be the same as in Definition 2.1 and let $G_{n}=G_{n-1}^{1} \bigoplus G_{n-1}^{2} \bigoplus \ldots \bigoplus G_{n-1}^{p_{n}}$. If any two vertices in different copies of G_{n-1} have at most one common outside neighbor, then $\kappa_{3}\left(G_{n}\right)=r+2 n-3$, where $\kappa_{3}\left(G_{1}\right)=r-1$.

Proof: By Definition 2.1, G_{n} is $[r+2(n-1)]$-regular. By Lemma 3.1, $\kappa_{3}\left(G_{n}\right) \leq \delta-1=r+2 n-3$. To prove the result, we just need to show that $\kappa_{3}\left(G_{n}\right) \geq r+2 n-3$. We prove the result by induction on n.

Note that $\kappa_{3}\left(G_{1}\right)=r-1$. Thus, the result holds for $n=1$. Next, assume that $n \geq 2$. Let $G_{n}=$ $G_{n-1}^{1} \bigoplus G_{n-1}^{2} \bigoplus \ldots \bigoplus G_{n-1}^{p_{n}}$ and v_{1}, v_{2}, v_{3} be any three distinct vertices of G_{n}. For convenience, let $S=$
$\left\{v_{1}, v_{2}, v_{3}\right\}$ and the following three cases are considered.
Case 1. v_{1}, v_{2} and v_{3} belong to the same copy of G_{n-1}.
Without loss of generality, let $S \subseteq V\left(G_{n-1}^{1}\right)$. By the inductive hypothesis, there are $r+2 n-5$ internally disjoint trees connecting S in G_{n-1}^{1}. By Lemma 3.8, there are $r+2 n-3$ internally disjoint trees connecting S in G_{n} and the result is desired.

Case 2. v_{1}, v_{2} and v_{3} belong to two different copies of G_{n-1}.

Without loss of generality, let $v_{1}, v_{2} \in V\left(G_{n-1}^{1}\right)$ and $v_{3} \in V\left(G_{n-1}^{2}\right)$. By Definition 2.1(6), $\kappa\left(G_{n-1}^{1}\right)=r+2(n-$ $2)$. Then there exist $r+2(n-2)$ internally disjoint paths $P_{1}, P_{2}, \ldots, P_{r+2(n-2)}$ between v_{1} and v_{2} in G_{n-1}^{1}. Let $H=$ $G_{n-1}^{2} \bigoplus G_{n-1}^{3} \bigoplus \cdots \bigoplus G_{n-1}^{p_{n}}$. Then at most one outside neighbor of v_{3} belongs to $V\left(G_{n-1}^{1}\right)$ and the following two subcases are considered.

Subcase 2.1. Neither of the two outside neighbors of v_{3} belong to G_{n-1}^{1}, that is, $d_{H}\left(v_{3}\right)=r+2(n-1)$.

Choose $r+2(n-2)$ distinct vertices $x_{1}, x_{2}, \cdots, x_{r+2(n-2)}$ from $P_{1}, P_{2}, \ldots, P_{r+2(n-2)}$ such that $x_{i} \in V\left(P_{i}\right)$ for $1 \leq i \leq r+2(n-2)$, see Fig.5. At most one of the paths has length 1 . If so, say P_{1} and let $x_{1}=v_{1}$. Let $Y=\left\{x_{1}, x_{2}, \cdots, x_{r+2(n-2)}\right\} \bigcup\left\{v_{1}, v_{2}\right\}$. If $x_{1} \neq v_{1}$, let $Y^{\prime}=\left\{x^{\prime} \mid x^{\prime}\right.$ is an outside neighbor of x and $x \in Y\}$. If $x_{1}=v_{1}$, let $Y^{\prime}=\left\{x^{\prime} \mid x^{\prime}\right.$ is an outside neighbor of x and $x \in Y\} \bigcup\left\{v_{1}^{\prime \prime}\right\}$, where v_{1}^{\prime} and $v_{1}^{\prime \prime}$ are two outside neighbors of v_{1}. Clearly, $|Y| \geq r+2 n-3$ and $\left|Y^{\prime}\right|=r+2(n-1)$. We can make sure that $\left|Y^{\prime} \bigcap G_{n-1}^{j}\right| \leq r+2(n-2)$ for each $j \in\left\{2,3, \cdots, p_{n}\right\}$. If not, we can replace with the other outside neighbor of x for some $x \in Y$. As $d_{H}\left(v_{3}\right)=r+2(n-1)$. By Lemma 3.5, there exist $r+2(n-1)$ internally disjoint $\left(v_{3}, Y^{\prime}\right)$-paths $Q_{1}, Q_{2}, \cdots, Q_{r+2(n-1)}$ in H such that the terminal vertex of Q_{i} is x_{i}^{\prime} for each $i \in[r+2(n-2)]$, the terminal vertex of $Q_{r+2 n-3}$ is v_{1}^{\prime} or $v_{1}^{\prime \prime}$ and the terminal vertex of $Q_{r+2 n-2}$ is v_{2}^{\prime}. Let $T_{i}=P_{i} \bigcup Q_{i} \bigcup x_{i} x_{i}^{\prime}$ for $1 \leq i \leq$ $r+2(n-2), T_{r+2 n-3}=Q_{r+2 n-3} \bigcup Q_{r+2 n-2} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{1} v_{1}^{\prime}$ or $T_{r+2 n-3}=Q_{r+2 n-3} \bigcup Q_{r+2 n-2} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{1} v_{1}^{\prime \prime}$, then $r+2 n-3$ internally disjoint trees connecting S in G_{n} are obtained.

Fig. 5. Illustration of Subcase 2.1 in Theorem 3.10
Subcase 2.2. One of the outside neighbors of v_{3} be-
longs to G_{n-1}^{1}, that is $d_{H}\left(v_{3}\right)=r+2 n-3$.
Without loss of generality, let v_{3}^{\prime} be one of the outside neighbors of v_{3} and belong to G_{n-1}^{1}. In addition, let $V(P)=\bigcup_{i=1}^{r+2(n-2)} V\left(P_{i}\right)$.

If $v_{3}^{\prime} \notin V(P)$, as G_{n-1}^{1} is connected, there is a $\left(v_{3}^{\prime}, v_{1}\right)$ path \widetilde{P} in G_{n-1}^{1}. Let t be the first vertex of \widetilde{P} which is in $V(P)$ and assume that $t \in V\left(P_{r+2(n-2)}\right)$. Clearly, $P_{r+2(n-2)} \bigcup \widetilde{P}\left[v_{3}^{\prime}, t\right] \bigcup v_{3} v_{3}^{\prime}$ is a tree connecting S, denoted by $T_{r+2 n-3}$. If $v_{3}^{\prime} \in V(P)$, without loss of generality, let $v_{3}^{\prime} \in V\left(P_{r+2(n-2)}\right)$. Let $T_{r+2 n-3}=P_{r+2(n-2)} \bigcup v_{3} v_{3}^{\prime}$, then it is a tree connecting S.

Next, choose $r+2 n-5$ distinct vertices $x_{1}, x_{2}, \cdots, x_{r+2 n-5} \quad$ from $\quad P_{1}, P_{2}, \ldots, P_{r+2 n-5} \quad$ such that $x_{i} \in V\left(P_{i}\right)$ for $1 \leq i \leq r+2 n-5$. Denote Y and Y^{\prime} similarly as in Subcase 2.1. By Lemma 3.9 and the fact that $d_{H}\left(v_{3}\right)=r+2 n-3$, there exist $r+2 n-3$ internally disjoint $\left(v_{3}, Y^{\prime}\right)$-paths $Q_{1}, Q_{2}, \cdots, Q_{r+2 n-3}$ in H such that the terminal vertex of Q_{i} is x_{i}^{\prime} for each $i \in[r+2 n-5]$, the terminal vertex of $Q_{r+2 n-4}$ is v_{1}^{\prime} or $v_{1}^{\prime \prime}$ and the terminal vertex of $Q_{r+2 n-3}$ is v_{2}^{\prime}. Let $T_{i}=P_{i} \bigcup Q_{i} \bigcup x_{i} x_{i}^{\prime}$ for each $i \in$ $[r+2 n-5], T_{r+2 n-4}=Q_{r+2 n-4} \bigcup Q_{r+2 n-3} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{1} v_{1}^{\prime}$ or $T_{r+2 n-4}=Q_{r+2 n-4} \bigcup Q_{r+2 n-3} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{1} v_{1}^{\prime \prime}$ and combining with $T_{r+2 n-3}, r+2 n-3$ internally disjoint trees connecting S in G_{n} are obtained.

Case 3. v_{1}, v_{2} and v_{3} belong to three different copies of G_{n-1}, respectively.

Without loss of generality, we assume that $v_{1} \in$ $V\left(G_{n-1}^{1}\right), v_{2} \in V\left(G_{n-1}^{2}\right)$ and $v_{3} \in V\left(G_{n-1}^{3}\right)$. Let $W=$ $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\}$, where v_{i}^{\prime} and $v_{i}^{\prime \prime}$ are the two outside neighbors of v_{i} for $1 \leq i \leq 3$. The following three subcases are considered.

Subcase 3.1. $W \subseteq V\left(G_{n-1}^{1}\right) \bigcup V\left(G_{n-1}^{2}\right) \bigcup V\left(G_{n-1}^{3}\right)$.
Let $H=G_{n-1}^{1} \bigoplus G_{n-1}^{2}$. Since one of the two outside neighbors of v_{1} belongs to G_{n-1}^{2} and one of the two outside neighbors of v_{2} belongs to G_{n-1}^{1}. Hence, $d_{H}\left(v_{1}\right)=d_{H}\left(v_{2}\right)=r+2 n-3$. By Lemma 3.9, there exist $r+2 n-3$ internally disjoint paths $P_{1}, P_{2}, \ldots, P_{r+2 n-3}$ between v_{1} and v_{2} in H. Let v_{3}^{\prime} be an outside neighbor of v_{3}, then $v_{3}^{\prime} \in V(H)$. Let $V(P)=\bigcup_{i=1}^{r+2 n-3} V\left(P_{i}\right)$, as H is connected, there is a path \widetilde{P} from v_{3}^{\prime} to v_{1} in H. Let t be the first vertex of \widetilde{P} which is in $V(P)$ and assume that $t \in$ $V\left(P_{r+2 n-3}\right)$. Clearly, $P_{r+2 n-3} \bigcup \widetilde{P}\left[v_{3}^{\prime}, t\right] \bigcup v_{3} v_{3}^{\prime}$ contains a tree connecting S, denoted by $T_{r+2 n-3}$. If $v_{3}^{\prime} \in V(P)$, then let $v_{3}^{\prime} \in V\left(P_{r+2 n-3}\right)$ and $T_{r+2 n-3}=P_{r+2 n-3} \bigcup v_{3} v_{3}^{\prime}$, then it is a tree connecting S.

Let $x_{i} \in V\left(P_{i}\right) \bigcap N_{H}\left(v_{1}\right)$ for each $i \in[r+2 n-4]$. If the outside neighbor of v_{1} in H does not belong to $x_{i} \mathrm{~s}$ for $1 \leq i \leq r+2 n-4$, let $X=\left\{x_{1}, x_{2}, \cdots, x_{r+2 n-4}\right\}$. If the outside neighbor of v_{1} in H belongs to x_{i} s for $1 \leq$ $i \leq r+2 n-4$, say x_{1}, and let $X=\left\{v_{1}, x_{2}, \cdots, x_{r+2 n-4}\right\}$. Then $X \subseteq V\left(G_{n-1}^{1}\right)$ and $|X|=r+2 n-4$. Let $H^{\prime}=$ $G_{n-1}^{3} \bigoplus G_{n-1}^{4} \bigoplus \cdots \oplus G_{n-1}^{p_{n}}$ and x_{i}^{\prime} be one of the two outside neighbors of x_{i} such that $x_{i}^{\prime} \in V\left(H^{\prime}\right)$ for each $i \in[r+2 n-4]$.

If $X=\left\{x_{1}, x_{2}, \cdots, x_{r+2 n-4}\right\}$, let $X^{\prime}=$ $\left\{x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{r+2 n-4}^{\prime}\right\}$. By Lemma 3.1, $\left|X^{\prime}\right|=r+2 n-4$. As
$d_{H^{\prime}}\left(v_{3}\right)=r+2 n-4$, by Lemma 3.5, there exist $r+2 n-4$ internally disjoint $\left(v_{3}, X^{\prime}\right)$-paths $Q_{1}, Q_{2}, \cdots, Q_{r+2 n-4}$ in H^{\prime} such that the terminal vertex of Q_{i} is x_{i}^{\prime} for each $i \in[r+2 n-4]$. Note that at most one of $Q_{i} \mathrm{~s}$ for $1 \leq i \leq r+2 n-4$ has length one. Let $T_{i}=P_{i} \bigcup Q_{i} \bigcup x_{i} x_{i}^{\prime}$ for $1 \leq i \leq r+2 n-4$. Combining with T_{i} s for $1 \leq i \leq r+2 n-3$, then $r+2 n-3$ internally disjoint trees connecting S in G_{n} are obtained.

If $X=\left\{v_{1}, x_{2}, \cdots, x_{r+2 n-4}\right\}$, let $X^{\prime}=$ $\left\{v_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{r+2 n-4}^{\prime}\right\}$, where $v_{1}^{\prime} \in V\left(H^{\prime}\right)$. With the similar method as $X=\left\{x_{1}, x_{2}, \cdots, x_{r+2 n-4}\right\}, r+2 n-3$ internally disjoint trees $T_{i} \mathrm{~s}$ for $1 \leq i \leq r+2 n-3$ connecting S in G_{n} can be obtained.

Subcase 3.2. $W \nsubseteq V\left(G_{n-1}^{1}\right) \bigcup V\left(G_{n-1}^{2}\right) \bigcup V\left(G_{n-1}^{3}\right)$.
Since $W \nsubseteq V\left(G_{n-1}^{1}\right) \bigcup V\left(G_{n-1}^{2}\right) \bigcup V\left(G_{n-1}^{3}\right)$, at least one of the outside neighbors of v_{3} does not belong to $V\left(G_{n-1}^{1}\right) \bigcup V\left(G_{n-1}^{2}\right)$. Let $H=G_{n-1}^{1} \bigoplus G_{n-1}^{2}$ and $H^{\prime}=G_{n-1}^{3} \bigoplus G_{n-1}^{4} \bigoplus \cdots \bigoplus G_{n-1}^{p_{n}}$. Then select $r+2 n-4$ vertices from $G_{n-1}^{1} \backslash\left\{v_{1}\right\}$, say $x_{1}, x_{2}, \cdots, x_{r+2 n-4}$, such that one of the outside neighbors x_{i}^{\prime} of x_{i} belongs to G_{n-1}^{2} for each $i \in[r+2 n-4]$. Further, we request that x_{i} and v_{2} have different outside neighbors for $1 \leq i \leq r+2 n-4$.

Let $S=\left\{x_{1}, x_{2}, \cdots, x_{r+2 n-4}\right\}$ and $S^{\prime}=$ $\left\{x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{r+2 n-4}^{\prime}\right\}$. By Definition 2.1(6), $\kappa\left(G_{n-1}^{1}\right)=\kappa\left(G_{n-1}^{2}\right)=r+2 n-4$. By Lemma 3.5, there exist $r+2 n-4$ internally disjoint $\left(v_{1}, S\right)$-paths $P_{1}, P_{2}, \ldots, P_{r+2 n-4}$ in G_{n-1}^{1} such that the terminal vertex of P_{i} is x_{i} and there exist $r+2 n-4$ internally disjoint $\left(v_{2}, S^{\prime}\right)$-paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{r+2 n-4}^{\prime}$ in G_{n-1}^{2} such that the terminal vertex of P_{i}^{\prime} is x_{i}^{\prime} for $1 \leq i \leq r+2 n-4$. Thus, we obtain $r+2 n-4$ internally disjoint paths between v_{1} and v_{2} in H, where $\widetilde{P}_{i}=v_{1} P_{i} x_{i} x_{i}^{\prime} P_{i}^{\prime} v_{2}$ for each $i \in[r+2 n-4]$.

Now, let $v_{i}^{\prime \prime}$ be one of the outside neighbors of v_{i} such that $v_{i}^{\prime \prime} \in V\left(H^{\prime}\right)$ for $i=1,2$ and $x_{i}^{\prime \prime}$ be the other outside neighbor of x_{i} such that $x_{i}^{\prime \prime} \in V\left(H^{\prime}\right)$ for $1 \leq i \leq r+$ $2 n-4$. Let $Y=\left\{x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}, \cdots, x_{r+2 n-4}^{\prime \prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}\right\}$. Then $Y \subseteq V\left(H^{\prime}\right)$ and $|Y| \geq r+2 n-3$. If $v_{1}^{\prime \prime} \neq v_{2}^{\prime \prime}$, then $|Y|=$ $r+2 n-2$. If $v_{1}^{\prime \prime}=v_{2}^{\prime \prime}$, then $|Y|=r+2 n-3$.

Subcase 3.2.1. Neither of the two outside neighbors of v_{3} belong to $\bigcup_{i=1}^{2} V\left(G_{n-1}^{i}\right)$.

In this case, $d_{H^{\prime}}\left(v_{3}\right)=r+2 n-2$. If $|Y|=r+2 n-2$, the proof is similar as Subcase 2.1. If $|Y|=r+2 n-3$, the proof is similar as Subcase 2.1 except that the paths $Q_{r+2 n-3}$ and $Q_{r+2 n-2}$ become the same path.

Subcase 3.2.2. One of the two outside neighbors of v_{3} belongs to $\bigcup_{i=1}^{2} V\left(G_{n-1}^{i}\right)$.

In this case, $d_{H^{\prime}}\left(v_{3}\right)=r+2 n-3$. If $|Y|=r+2 n-2$, the proof is similar to Subcase 2.2. If $|Y|=r+2 n-3$, the proof is also similar to Subcase 2.2 except that the paths $Q_{r+2 n-4}$ and $Q_{r+2 n-3}$ become the same path.

Hence, $r+2 n-3$ internally disjoint trees connecting S in G_{n} can be obtained and the result is desired.

4 Applications

In this section, we will present the usefulness of the main result. As an application of Theorem 3.10, the
generalized 3-connectivity of $A G_{n}, Q_{n}^{k}, S_{n}^{2}$ and $B S_{n}$ etc., can be obtained directly as they can be regarded as special examples of G_{n}.

4.1 Application to the alternating group graph AG_{n}

The alternating group graph was introduced by Jwo et al. [11] in 1993. It is defined as follows.

Definition 4.1. Let A_{n} be the alternating group of order n with $n \geq 3$ and let $S=\{(12 i),(1 i 2) \mid 3 \leq i \leq n\}$. The alternating group graph, denoted by $A G_{n}$, is defined as the Cayley graph Cay $\left(A_{n}, S\right)$.

By the definition of $A G_{n}$, it is a $2(n-2)$-regular graph with $n!/ 2$ vertices. Let A_{n}^{i} be the subset of A_{n} that consists of all even permutations with element i in the rightmost position and let $A G_{n-1}^{i}$ be the subgraph of $A G_{n}$ induced by A_{n}^{i} for $i \in[n]$. Then $A G_{n-1}^{i}$ is isomorphic to $A G_{n-1}$ for each $i \in[n]$ and we call such an $A G_{n-1}^{i}$ a copy of $A G_{n-1}$. Thus, $A G_{n}$ can be decomposed into n copies of $A G_{n-1}$, namely, $A G_{n-1}^{1}, A G_{n-1}^{2}, \cdots, A G_{n-1}^{n}$. For convenience, we denote $A G_{n}=A G_{n-1}^{1} \bigoplus A G_{n-1}^{2} \bigoplus \cdots \bigoplus A G_{n-1}^{n}$, where \bigoplus just denotes the corresponding decomposition of $A G_{n}$. For each vertex $u \in V\left(A G_{n-1}^{i}\right)$, it has $2(n-3)$ neighbors in $A G_{n-1}^{i}$ and two neighbors outside $A G_{n-1}^{i}$, which are called the outside neighbors of u. The graph $A G_{4}$ is depicted in Fig. 6.

Fig. 6. The alternating group graph $A G_{4}$ of Definition 4.1

The following lemmas are about properties of $A G_{n}$.
Lemma 4.2. ([39]) Let $A G_{n}=A G_{n-1}^{1} \bigoplus A G_{n-1}^{2} \bigoplus$ $\ldots \bigoplus A G_{n-1}^{n}$ for $n \geq 3$. Then the following results hold.
(1) For any vertex u of $A G_{n-1}^{i}$ for $i \in[n]$, it has two outside neighbors.
(2) For each copy $A G_{n-1}^{i}$, no two vertices in $A G_{n-1}^{i}$ have a common outside neighbor. In addition, $\left|N\left(A G_{n-1}^{i}\right)\right|=$ $(n-1)$! and $\left|N\left(A G_{n-1}^{i}\right) \cap V\left(A G_{n-1}^{j}\right)\right|=(n-2)$! for $i \neq j$ and $i, j \in[n]$.

Lemma 4.4. ([39]) Let $A G_{n}=A G_{n-1}^{1} \bigoplus A G_{n-1}^{2} \bigoplus$ $\ldots \bigoplus A G_{n-1}^{n}$ for $n \geq 3$. Then any two vertices in different copies of $A G_{n-1}$ have at most one common outside neighbor.

Corollary 4.5. $\kappa_{3}\left(A G_{n}\right)=2 n-5$ for $n \geq 3$.
Proof: By Definition 2.1, $A G_{n}$ can be regarded as the special regular graph G_{n-2} with $G_{1}=A G_{3}, a=3, r=$ $2, s=2, p_{n-2}=n$ and $N=a p_{2} p_{3} \cdots p_{n-2}=\frac{n!}{2}$. By Lemma 4.3, $\kappa\left(A G_{3}\right)=2$. By Lemma 3.1, $\kappa_{3}\left(A G_{3}\right) \leq 1$. By Lemma 3.2, $\kappa_{3}\left(A G_{3}\right) \geq 1$. Thus, $\kappa_{3}\left(A G_{3}\right)=1$. Thus, by Lemma 4.4 and Theorem 3.10, $\kappa_{3}\left(A G_{n}\right)=2 n-5$ for $n \geq 3$.

4.2 Application to the k-ary n-cube $\mathrm{Q}_{\mathrm{n}}^{\mathrm{k}}$

The k-ary n-cube network, denoted by Q_{n}^{k}, was introduced by S. Scott et al. [30] in 1994. It is defined as follows.

Definition 4.6. The k-ary n-cube, denoted by Q_{n}^{k}, where $k \geq$ 2 and $n \geq 1$ are integers, is a graph consisting of k^{n} vertices, each of these vertices has the form $u=u_{n-1} u_{n-2} \cdots u_{0}$, where $u_{i} \in\{0,1, \cdots, k-1\}$ for $0 \leq i \leq n-1$. Two vertices $u=u_{n-1} u_{n-2} \cdots u_{0}$ and $v=v_{n-1} v_{n-2} \cdots v_{0}$ in Q_{n}^{k} are adjacent if and only if there exists an integer j, where $0 \leq$ $j \leq n-1$, such that $u_{j}=v_{j} \pm 1(\bmod k)$ and $u_{i}=v_{i}$ for every $i \in\{0,1, \cdots, k-1\} \backslash\{j\}$. In this case, (u, v) is a j-dimensional edge.

By the definition of Q_{n}^{k}, it is $2 n$-regular for $k \geq 3$ and n-regular for $k=2$. Clearly, Q_{1}^{k} is a cycle of length k and Q_{n}^{2} is the hypercube.

The k-ary n-cube Q_{n}^{k} can be partitioned into k disjoint subcubes along the j th-dimension for $j \in\{0,1,2, \cdots, n-$ $1\}$, namely, $Q_{n-1}^{k}[0], Q_{n-1}^{k}[1], \cdots, Q_{n-1}^{k}[k-1]$. Then $Q_{n-1}^{k}[i]$ is isomorphic to the k-ary $(n-1)$-cube for $i \in\{0,1,2, \cdots, k-1\}$. For convenience, we denote $Q_{n}^{k}=Q_{n-1}^{k}[0] \bigoplus Q_{n-1}^{k}[1] \bigoplus \cdots \bigoplus Q_{n-1}^{k}[k-1]$, where \bigoplus just denotes the corresponding decomposition of Q_{n}^{k}. For each vertex $u \in V\left(Q_{n-1}^{k}[i]\right)$, it has $2 n-2$ neighbors in $Q_{n-1}^{k}[i]$ and two neighbors outside $Q_{n-1}^{k}[i]$, which are called the outside neighbors of u. The graph Q_{2}^{4} is depicted in Fig. 7.

Fig. 7. The 4-ary 2-cube Q_{2}^{4} of Definition 4.6

The following lemmas are about properties of Q_{n}^{k}.

Lemma 4.7. Let $Q_{n}^{k}=Q_{n-1}^{k}[0] \bigoplus Q_{n-1}^{k}[1] \bigoplus \ldots \bigoplus$
$Q_{n-1}^{k}[k-1]$ for $k \geq 3$ and $n \geq 1$. Then the following results hold.
(1) For any vertex u of $Q_{n-1}^{k}[i]$, it has exactly two outside neighbors, where $0 \leq i \leq k-1$.
(2) The outside neighbors of u belong to different copies of Q_{n-1}^{k}. That is, no two vertices in Q_{n-1}^{k} have a common outside neighbor.
(3) $\left|N\left(Q_{n-1}^{k}[i]\right)\right|=2 k^{n-1}$ and $\mid N\left(Q_{n-1}^{k}[i]\right) \bigcap$ $V\left(Q_{n-1}^{k}[j]\right) \left\lvert\,=\frac{2 k^{n-1}}{k-1}\right.$ for $i \neq j$ and $0 \leq i, j \leq k-$ 1. That is, there are $\frac{2 k^{n-1}}{k-1}$ independent crossed edges between two different $Q_{n-1}^{k}[i]$ s.

Proof: (1) Let $u=u_{1} u_{2} u_{3} \cdots u_{n-1} i \in V\left(Q_{n-1}^{k}[i]\right)$, where $0 \leq i \leq k-1$. By Definition 4.6, $u^{\prime}=$ $u_{1} u_{2} u_{3} \cdots u_{n-1}(i-1)$ and $u^{\prime \prime}=u_{1} u_{2} u_{3} \cdots u_{n-1}(i+1)$ are the two outside neighbors of u.
(2) Let $u=u_{1} u_{2} u_{3} \cdots u_{n-1} i \in V\left(Q_{n-1}^{k}[i]\right)$, where $0 \leq$ $i \leq k-1$. By (1), $u^{\prime} \in V\left(Q_{n-1}^{k}[i-1]\right)$ and $u^{\prime \prime} \in V\left(Q_{n-1}^{k}[i+\right.$ $1]$). As $k \geq 3$, then $i-1 \neq i+1$. Thus, u^{\prime} and $u^{\prime \prime}$ belong to different copies of Q_{n-1}^{k}.
(3) As any vertex of $Q_{n-1}^{k}[i]$ has two outside neighbors and $\left|Q_{n-1}^{k}[i]\right|=k^{n-1}$ for $0 \leq i \leq k-1$, then $\left|N\left(Q_{n-1}^{k}[i]\right)\right|=2 k^{n-1}$ and $\left|N\left(Q_{n-1}^{k}[i]\right) \bigcap V\left(Q_{n-1}^{k}[j]\right)\right|=$ $\frac{2 k^{n-1}}{k-1}$ for $i \neq j$ and $0 \leq i, j \leq k-1$.
Lemma 4.8. ([8]) $\kappa\left(Q_{n}^{k}\right)=2 n$ for $k \geq 3$ and $n \geq 1$.

Lemma 4.9. Let $Q_{n}^{k}=Q_{n-1}^{k}[0] \bigoplus Q_{n-1}^{k}[1] \bigoplus \ldots \bigoplus$ $Q_{n-1}^{k}[k-1]$ for $k \geq 3$ and $n \geq 1$. Then any two vertices in different copies of Q_{n-1}^{k} have at most one common outside neighbor.

Proof: Let $u, v \in V\left(Q_{n}^{k}\right), u \neq v$ and they belong to different copies of Q_{n-1}^{k}. Without loss of generality, let $u=u_{1} u_{2} u_{3} \cdots u_{n-1} 0 \in V\left(Q_{n-1}^{k}[0]\right)$ and $v=$ $v_{1} v_{2} v_{3} \cdots v_{n-1} 1 \in V\left(Q_{n-1}^{k}[1]\right)$. Then the two outside neighbors of u are $u^{\prime}=u_{1} u_{2} u_{3} \cdots u_{n-1} 1$ and $u^{\prime \prime}=$ $u_{1} u_{2} u_{3} \cdots u_{n-1}(k-1)$, and the two outside neighbors of v are $v^{\prime}=v_{1} v_{2} v_{3} \cdots v_{n-1} 0$ and $v^{\prime \prime}=v_{1} v_{2} v_{3} \cdots v_{n-1} 2$. If u and v have two common outside neighbors, then $\left\{u^{\prime}, u^{\prime \prime}\right\}=\left\{v^{\prime}, v^{\prime \prime}\right\}$. As $u^{\prime} \neq v^{\prime}$, then $u^{\prime}=v^{\prime \prime}$ and $v^{\prime}=u^{\prime \prime}$. However, $u^{\prime} \neq v^{\prime \prime}$ clearly, which is a contradiction. Thus, u and v have at most one common outside neighbor.
Corollary 4.10. $\kappa_{3}\left(Q_{n}^{k}\right)=2 n-1$ for $k \geq 3$ and $n \geq 1$.
Proof: By Definition 2.1, $Q_{n}^{k}(k \geq 3)$ can be regarded as the special regular graph G_{n} with $G_{1}=Q_{1}^{k}, a=k$, $r=2, s=2, p_{n}=k$ and $N=a p_{2} p_{3} \cdots p_{n}=k^{n}$. By Lemma 4.8, $\kappa\left(Q_{1}^{k}\right)=2$. By Lemma 3.1, $\kappa_{3}\left(Q_{1}^{k}\right) \leq 1$. By Lemma 3.2, $\kappa_{3}\left(Q_{1}^{k}\right) \geq 1$. Thus, $\kappa_{3}\left(Q_{1}^{k}\right)=1$. By Lemma 4.9 and Theorem 3.10, $\kappa_{3}\left(Q_{n}^{k}\right)=2 n-1$ for $k \geq 3$ and $n \geq 1$.

4.3 Application to the split-star network $\mathbf{S}_{\mathbf{n}}^{2}$

The split-star network, denoted by S_{n}^{2}, was proposed by E. Cheng et al. [5] as an attractive variation of the
star graph in 1998. It is defined as follows, where the description has a slight modification.

Definition 4.11. Let $\operatorname{Sym}(n)$ be symmetric group on $[n]$ and let $S=\{(12)\} \bigcup\{(12 i),(1 i 2) \mid 3 \leq i \leq n\}$. The splitstar network, denoted by S_{n}^{2}, is defined as the Cayley graph $\operatorname{Cay}(\operatorname{Sym}(n), S)$.

By the definition of S_{n}^{2}, it is a $(2 n-3)$-regular graph with n ! vertices. Let $V_{n}^{n: i}$ be the set of vertices in S_{n}^{2} with the n-th position being i, that is, $V_{n}^{n: i}=\{u \mid u=$ $\left.u_{1} u_{2} \cdots u_{n-1} i\right\}$. The set $\left\{V_{n}^{n: i} \mid 1 \leq i \leq n\right\}$ forms a partition of $V\left(S_{n}^{2}\right)$. Let $S_{n-1}^{2}[i]$ be the subgraph of S_{n}^{2} induced by $V_{n}^{n: i}$. Then $S_{n-1}^{2}[i]$ is isomorphic to S_{n-1}^{2} and we call such an $S_{n-1}^{2}[i]$ a copy of S_{n-1}^{2}. Thus, S_{n}^{2} can be decomposed into n copies of S_{n-1}^{2}, namely, $S_{n-1}^{2}[1], S_{n-1}^{2}[2], \cdots, S_{n-1}^{2}[n]$. For convenience, we denote $S_{n}^{2}=S_{n-1}^{2}[1] \bigoplus S_{n-1}^{2}[2] \oplus \ldots \bigoplus S_{n-1}^{2}[n]$, where \bigoplus just denotes the corresponding decomposition of S_{n}^{2}. For each vertex $u \in V\left(S_{n-1}^{2}[i]\right)$, it has $2 n-5$ neighbors in $S_{n-1}^{2}[i]$ and two neighbors outside $S_{n-1}^{2}[i]$, which are called outside neighbors of u. The graph S_{4}^{2} is depicted in Fig. 8.

Fig. 8. The split-star network S_{4}^{2} of Definition 4.11

The following lemmas are about properties of S_{n}^{2}.
Lemma 4.12. ([4]) Let $S_{n}^{2}=S_{n-1}^{2}[1] \bigoplus S_{n-1}^{2}[2] \bigoplus \ldots$ $\bigoplus S_{n-1}^{2}[n]$ for $n \geq 3$. Then the following results hold.
(1) For any vertex u of $S_{n-1}^{2}[i]$, it has exactly two outside neighbors, where $i \in[n]$.
(2) The outside neighbors of u belong to different copies of S_{n-1}^{2}. That is, no two vertices in $S_{n-1}^{2}[i]$ have a common outside neighbor for $i \in[n]$.
(3) $\left|N\left(S_{n-1}^{2}[i]\right)\right|=2(n-1)$! and $\mid N\left(S_{n-1}^{2}[i]\right) \bigcap$ $V\left(S_{n-1}^{2}[j]\right) \mid=2(n-2)!$ for $i \neq j$ and $i, j \in[n]$. That is, there are $2(n-2)$! independent crossed edges between two different $B S_{n-1}^{i} s$.

Lemma 4.13. ([4]) $\kappa\left(S_{n}^{2}\right)=2 n-3$ for $n \geq 3$.

Lemma 4.14. Let $S_{n}^{2}=S_{n-1}^{2}[1] \bigoplus S_{n-1}^{2}[2] \bigoplus \ldots \bigoplus$ $S_{n-1}^{2}[n]$ for $n \geq 3$. Then any two vertices in different copies of S_{n-1}^{2} have at most one common outside neighbor.

Proof: Let $u, v \in V\left(S_{n}^{2}\right), u \neq v$ and they belong to different copies of S_{n-1}^{2}. Without loss of generality, let $u=u_{1} u_{2} u_{3} \cdots u_{n-1} 1 \in V\left(S_{n-1}^{2}[1]\right)$ and $v=$ $v_{1} v_{2} v_{3} \cdots v_{n-1} 2 \in V\left(S_{n-1}^{2}[2]\right)$. Then the two outside neighbors of u are $u^{\prime}=u(12 n)=u_{2} 1 u_{3} \cdots u_{n-1} u_{1}$ and $u^{\prime \prime}=u(1 n 2)=1 u_{1} u_{3} \cdots u_{n-1} u_{2}$, and the two outside neighbors of v are $v^{\prime}=v(12 n)=v_{2} 2 v_{3} \cdots v_{n-1} v_{1}$ and $v^{\prime \prime}=v(1 n 2)=2 v_{1} v_{3} \cdots v_{n-1} v_{2}$. If u and v have two common outside neighbors, then $\left\{u^{\prime}, u^{\prime \prime}\right\}=\left\{v^{\prime}, v^{\prime \prime}\right\}$. As $u^{\prime} \neq v^{\prime}$, then $u^{\prime}=v^{\prime \prime}$ and $v^{\prime}=u^{\prime \prime}$. By $u^{\prime}=v^{\prime \prime}$, we have that $u_{2}=2$ and $v_{1}=1$. By $u^{\prime \prime}=v^{\prime}$, we have that $v_{2}=1$ and $u_{1}=2$. That is, $u_{1}=u_{2}=2$, which is a contradiction. Thus, u and v have at most one common outside neighbor.
Corollary 4.15. $\kappa_{3}\left(S_{n}^{2}\right)=2 n-4$ for $n \geq 3$.
Proof: By Definition 2.1, S_{n}^{2} can be regarded as the special regular graph G_{n-2} with $G_{1}=S_{3}^{2}, a=6, r=3$, $s=2, p_{n-2}=n$ and $N=a p_{2} p_{3} \cdots p_{n-2}=n$!. By Lemma 4.13, $\kappa\left(S_{3}^{2}\right)=3$. By Lemma 3.1, $\kappa_{3}\left(S_{3}^{2}\right) \leq 2$. By Lemma 3.2, $\kappa_{3}\left(S_{3}^{2}\right) \geq 2$. Thus, $\kappa_{3}\left(S_{3}^{2}\right)=2$. Thus, by Lemma 4.14 and Theorem 3.10, $\kappa_{3}\left(S_{n}^{2}\right)=2 n-4$ for $n \geq 3$.

4.4 Application to the bubble-sort-star network $\mathrm{BS}_{\mathbf{n}}$

The bubble-sort star graph, denoted by $B S_{n}$, was introduced by Z. Chou et al. [7] in 1996. It is defined as follows.

Definition 4.16. Let $\operatorname{Sym}(n)$ be symmetric group on $[n]$ and let $S=\{(1 i) \mid 2 \leq i \leq n\} \bigcup\{(i, i+1) \mid 2 \leq i \leq n-1\}$. The n-dimensional bubble-sort star graph, denoted by $B S_{n}$, is defined as the Cayley graph Cay $(\operatorname{Sym}(n), S)$.

By the definition of $B S_{n}$, it is a $(2 n-3)$-regular graph with n ! vertices. For an integer $i \in[n]$, let $B S_{n-1}^{i}$ be the graph induced by the vertex set $\left\{p_{1} p_{2} \cdots p_{n-1} i\right\}$, where $p_{1} p_{2} \cdots p_{n-1}$ ranges over all the permutations of $\{1,2, \cdots, i-1, i+1, \cdots, n\}$. Then $B S_{n-1}^{i}$ is isomorphic to $B S_{n-1}$ for each $i \in[n]$ and we call such an $B S_{n-1}^{i}$ a copy of $B S_{n-1}$. Thus, $B S_{n}$ can be decomposed into n copies of $B S_{n-1}$, namely, $B S_{n-1}^{1}, B S_{n-1}^{2}, \cdots, B S_{n-1}^{n}$. For convenience, let $B S_{n}=B S_{n-1}^{1} \bigoplus B S_{n-1}^{2} \bigoplus \cdots B S_{n-1}^{n}$. For each vertex $u \in V\left(B S_{n-1}^{i}\right)$, it has $2 n-5$ neighbors in $B S_{n-1}^{i}$ and two neighbors outside $B S_{n-1}^{i}$, which are called the outside neighbors of u. The graph $B S_{2}$ and $B S_{3}$ are depicted in Fig. 9, respectively.

The following lemmas are about properties of $B S_{n}$.
Lemma 4.17. ([3], [33]) Let $B S_{n}=B S_{n-1}^{1} \bigoplus B S_{n-1}^{2}$ $\bigoplus \ldots \bigoplus B S_{n-1}^{n}$, where $n \geq 4$. Then the following results hold.
(1) For any vertex u of $B S_{n-1}^{i}$, it has exactly two outside neighbors, where $i \in[n]$.
(2) For any vertex u of $B S_{n}$, the outside neighbors of u belong to different copies of $B S_{n-1}$. That is, no two vertices in $B S_{n-1}^{i}$ have a common outside neighbor for $i \in[n]$.

Fig. 9. The bubble-sort star graphs $B S_{2}$ and $B S_{3}$ of Definition 4.16
(3) There are $2(n-2)$! independent crossed edges between two different $B S_{n-1}^{i} s$.

Lemma 4.18. ([3]) $\kappa\left(B S_{n}\right)=2 n-3$ for $n \geq 3$.

Lemma 4.19. Let $B S_{n}=B S_{n-1}^{1} \oplus B S_{n-1}^{2} \bigoplus \ldots \oplus$ $B S_{n-1}^{n}$. Then any two vertices in different copies of $B S_{n-1}$ have at most one common outside neighbor.

Proof: Let $u, v \in V\left(B S_{n}\right), u \neq v$ and they belong to different copies of $B S_{n-1}$. Without loss of generality, let $u=u_{1} u_{2} u_{3} \cdots u_{n-1} 1 \in V\left(B S_{n-1}^{1}\right)$ and $v=$ $v_{1} v_{2} v_{3} \cdots v_{n-1} 2 \in V\left(B S_{n-1}^{2}\right)$. Then the two outside neighbors of u are $u^{\prime}=u(1 n)=1 u_{2} u_{3} \cdots u_{n-1} u_{1}$ and $u^{\prime \prime}=u(n-1, n)=u_{1} u_{2} \cdots u_{n-2} 1 u_{n-1}$, and the two outside neighbors of v are $v^{\prime}=v(1 n)=2 v_{2} v_{3} \cdots v_{n-1} v_{1}$ and $v^{\prime \prime}=v(n-1, n)=v_{1} v_{2} \cdots v_{n-2} 2 v_{n-1}$. If u and v have two common outside neighbors, then $\left\{u^{\prime}, u^{\prime \prime}\right\}=\left\{v^{\prime}, v^{\prime \prime}\right\}$. As $u^{\prime} \neq v^{\prime}$, then $u^{\prime}=v^{\prime \prime}$ and $v^{\prime}=u^{\prime \prime}$. By $u^{\prime}=v^{\prime \prime}$, we have that $v_{1}=1$ and $u_{n-1}=2$. By $u^{\prime \prime}=v^{\prime}$, we have that $v_{n-1}=1$ and $u_{1}=2$. That is, $u_{1}=u_{n-1}=2$, which is a contradiction. Thus, u and v have at most one common outside neighbor.

Corollary 4.20. $\kappa_{3}\left(B S_{n}\right)=2 n-4$ for $n \geq 3$.
Proof: By Definition 2.1, $B S_{n}$ can be regarded as the special regular graph G_{n-2} with $G_{1}=B S_{3}, a=6, r=$ $3, s=2, p_{n-2}=n$ and $N=a p_{2} p_{3} \cdots p_{n-2}=n$!. By Lemma 4.18, $\kappa\left(B S_{3}\right)=3$. By Lemma 3.1, $\kappa_{3}\left(B S_{3}\right) \leq 2$. By Lemma 3.2, $\kappa_{3}\left(B S_{3}\right) \geq 2$. Thus, $\kappa_{3}\left(B S_{3}\right)=2$. Thus, by Lemma 4.19 and Theorem 3.10, $\kappa_{3}\left(B S_{n}\right)=2 n-4$ for $n \geq 3$.

5 AN ALGORITHM FOR BS ${ }_{n}$

In this section, we will present an algorithm to find the $2 n-4$ internally disjoint S-Steiner trees in $B S_{n}$ for $S=\{x, y, z\} \subseteq V\left(B S_{n}\right)$. To present the algorithm, the following lemmas are useful.

Lemma 5.1. ([1]) There exists a Kruskal algorithm for finding a spanning tree in any connected graph G with n vertices, denoted by $\operatorname{INT}(G, S)$, where $S \subseteq V(G)$.

Lemma 5.2. ([26]) There exists an algorithm for finding the maximum number of internally disjoint paths between two vertex set of a connected graph G.

In order to express the algorithm compactly, we denote some notations needed for the algorithm. For $v \in$ $V\left(B S_{n}\right)$, let v^{\prime} and $v^{\prime \prime}$ be the two outside neighbors of v. In addition, let $(v)_{n}$ be the n-th bit number of v in $B S_{n}$.

```
Algorithm \(1 \operatorname{IDT}\left(B S_{n}, n, r, x, y, z\right)\)
Input: Any three distinct vertices \(x, y\) and \(z\) of \(B S_{n}\) and
    \(r=2 n-4\), where \(S=\{x, y, z\}\).
Output: \(2 n-4\) internally disjoint \(S\)-Steiner trees
    \(T_{1}, T_{2}, \cdots, T_{2 n-4}\) such that \(E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset\) and
    \(V\left(T_{i}\right) \cap V\left(T_{j}\right)=S\).
    \(\alpha \leftarrow(x)_{n}, \beta \leftarrow(y)_{n}, \gamma \leftarrow(z)_{n}, n^{\prime} \leftarrow n-1\),
    \(r^{\prime} \leftarrow r-2,[n] \leftarrow\{1, \ldots, n\} ; \tau \leftarrow\left(x^{\prime}\right)_{n}, \tau^{\prime} \leftarrow\left(x^{\prime \prime}\right)_{n}\),
    \(\theta \leftarrow\left(y^{\prime}\right)_{n}, \theta^{\prime} \leftarrow\left(y^{\prime \prime}\right)_{n}, \eta \leftarrow\left(z^{\prime}\right)_{n}, \eta^{\prime} \leftarrow\)
    \(\left(z^{\prime \prime}\right)_{n}, M=\left\{x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime}, z^{\prime}, z^{\prime \prime}\right\}, M \cap V\left(B S_{n-1}^{i}\right)=\)
    \(M_{i},\left|M_{i}\right|=\sigma(i), \sigma(\tau)=\max \{\sigma(i) \mid i \in[n]\}, G_{I}=\)
    \(B S_{n}\left[\cup_{i \in I} V\left(B S_{n-1}^{i}\right)\right]\) and \(G_{I}^{\prime}=B S_{n}\left[\cup_{i \in I} V\left(B S_{n-1}^{i}\right) \cup\right.\)
    \(S]\), where \(I \subseteq[n]\).
    if \(\alpha=\beta=\gamma\) then
        \(\left\{T_{i} \mid 1 \leq i \leq r^{\prime}\right\} \leftarrow \operatorname{IDT}\left(B S_{n-1}^{\alpha}, n^{\prime}, r^{\prime}, x, y, z\right) ;\)
        if \(\sigma(\tau)=3\) then
            \(M_{\tau} \leftarrow\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}\),
            \(\cup_{i \in[n] \backslash\{\alpha, \tau\}} M_{i} \leftarrow\left\{x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right\}\),
            \(T_{2 n-5} \leftarrow \operatorname{INT}\left(G_{\{\tau\}}^{\prime}, S\right)\),
            \(T_{2 n-4} \leftarrow I N T\left(G_{[n] \backslash\{\alpha, \tau\}}^{\prime}, S\right) ;\)
        else if \(\sigma(\tau)=2\) then
            \(M_{\tau} \leftarrow\left\{x^{\prime}, y^{\prime}\right\}, M_{\eta} \leftarrow\left\{z^{\prime}\right\} ;\)
            if \(\sigma(\eta)=1\) then
                \(T_{2 n-5} \leftarrow I N T\left(G_{\{\tau, \eta\}}^{\prime}, S\right)\),
                \(T_{2 n-4} \leftarrow I N T\left(G_{[n] \backslash\{\alpha, \tau, \eta\}}^{\prime}, S\right) ;\)
            else
                \(\sigma(\eta)=2, M_{\eta} \leftarrow\left\{z^{\prime}, x^{\prime \prime}\right\} ;\)
                if \(\sigma\left(\eta^{\prime}\right)=1\) and \(\sigma\left(\theta^{\prime}\right)=1\) then
                    \(M_{\eta^{\prime}} \leftarrow\left\{z^{\prime \prime}\right\}, M_{\theta^{\prime}} \leftarrow\left\{y^{\prime \prime}\right\}\),
                \(T_{2 n-5} \leftarrow \operatorname{INT}\left(G_{\left\{\tau, \eta^{\prime}\right\}}^{\prime}, S\right)\),
                \(T_{2 n-4} \leftarrow I N T\left(G_{[n] \backslash\left\{\alpha, \tau, \eta^{\prime}\right\}}^{\prime}, S\right)\);
            else
                \(\sigma\left(\eta^{\prime}\right)=2, M_{\eta^{\prime}} \leftarrow\left\{z^{\prime \prime}, y^{\prime \prime}\right\}\),
                \(u \leftarrow\left\{\left(z^{\prime}\right)^{\prime},\left(z^{\prime}\right)^{\prime \prime}\right\} \backslash\{z\}\);
                if \(u \notin V\left(B S_{n-1}^{\eta}\right)\) then
                    \(T_{2 n-5} \leftarrow I N T\left(G_{\left\{\eta, \eta^{\prime}\right\}}^{\prime} \backslash\left\{z^{\prime}\right\}, S\right)\),
                        \(T_{2 n-4} \leftarrow I N T\left(G_{[n] \backslash\left\{\alpha, \eta, \eta^{\prime}\right\}}^{\prime}, S\right) ;\)
                else
                        \(u \in V\left(B S_{n-1}^{\eta^{\prime}}\right)\), set \(w \in N_{B S_{n-1}^{\eta}}\left(z^{\prime}\right)\) and
                \(w^{\prime} \notin V\left(B S_{n-1}^{\eta^{\prime}}\right)\),
                \(T_{2 n-5} \leftarrow I N T\left(G_{\left\{\eta, \eta^{\prime}\right\}}^{\prime} \backslash\left\{z^{\prime}, w\right\}, S\right)\),
                \(T_{2 n-4} \leftarrow I N T\left(G_{[n] \backslash\left\{\alpha, \eta, \eta^{\prime}\right\}}^{\prime}, S\right) ;\)
                end if
            end if
        end if
```

else
$\sigma(\tau)=1, M_{\tau} \leftarrow\left\{x^{\prime}\right\}, M_{\tau^{\prime}} \leftarrow\left\{x^{\prime \prime}\right\}, M_{\theta} \leftarrow\left\{y^{\prime}\right\}$,
$M_{\theta^{\prime}} \leftarrow\left\{y^{\prime \prime}\right\}, M_{\eta} \leftarrow\left\{z^{\prime}\right\}, M_{\eta^{\prime}} \leftarrow\left\{z^{\prime \prime}\right\}, T_{2 n-5} \leftarrow$
$\operatorname{INT}\left(G_{\{\tau, \theta, \eta\}}^{\prime}, S\right), T_{2 n-4} \leftarrow \operatorname{INT}\left(G_{\left\{\tau^{\prime}, \theta^{\prime}, \eta^{\prime}\right\}}^{\prime}, S\right) ;$
end if
else if $\alpha=\beta \neq \gamma$ then
Generate $2 n-5$ internally disjoint (x, y)-paths $P_{1}, P_{2}, \cdots, P_{2 n-5}$ in $B S_{n-1}^{\alpha}$ by Theorem 3.4 and Lemma 5.2;
if neither of z^{\prime} and $z^{\prime \prime}$ belong to $B S_{n-1}^{\alpha}$ then
if $\ell\left(P_{i}\right) \geq 2$ for each $i \in[2 n-5]$ then
$Y \leftarrow\left\{x_{i} \mid x_{i} \in V\left(P_{i}\right) \backslash\{x, y\}\right.$ and $1 \leq i \leq 2 n-$ $5\} \cup\{x, y\}, Y^{\prime} \leftarrow\left\{u^{\prime} \mid u \in Y\right\} ;$
else
$\ell\left(P_{i}\right)=1$ for some $i \in[2 n-5], P_{1} \leftarrow$ $P_{i}, x \leftarrow x_{1}, Y^{\prime} \leftarrow\left\{u^{\prime} \mid u \in Y\right\} \cup\left\{x^{\prime \prime}\right\} ;$ Generate $2 n-3$ internally disjoint $\left(z, Y^{\prime}\right)$ paths $Q_{1}, Q_{2}, \cdots, Q_{2 n-3}$ by Lemma 3.5 and Lemma 5.2;
for $i=1$ to $2 n-5$ do
$T_{i} \leftarrow P_{i} \cup Q_{i} \cup x_{i} x_{i}^{\prime} ;$
end for
$T_{2 n-4} \leftarrow Q_{2 n-4} \cup Q_{2 n-3} \cup\left\{x x^{\prime}, y y^{\prime}\right\}$ or $T_{2 n-4} \leftarrow$ $Q_{2 n-4} \cup Q_{2 n-3} \cup\left\{x x^{\prime \prime}, y y^{\prime}\right\} ;$
end if
else
One of z^{\prime} and $z^{\prime \prime}$ belong to $B S_{n-1}^{\alpha}$ and choose $z^{\prime} \in V\left(B S_{n-1}^{\alpha}\right)$;
if $z^{\prime} \notin V\left(P_{i}\right)$ then
there is a $\left(z^{\prime}, x\right)$-path \widetilde{P} in $B S_{n-1}^{\alpha}$; set t be the first vertex in $\cup_{i \in[2 n-5]} V(P)$ and $t \in$ $V\left(P_{2 n-5}\right) ; T_{2 n-4} \leftarrow P_{2 n-5} \cup \widetilde{P}\left[z^{\prime}, t\right] \cup z z^{\prime} ;$
else
$z^{\prime} \in V\left(P_{i}\right)$, set $z^{\prime} \in V\left(P_{2 n-5}\right), T_{2 n-4} \leftarrow$ $P_{2 n-5} \cup z z^{\prime}$;
end if
if $\ell\left(P_{i}\right) \geq 2$ for each $i \in[2 n-6]$ then
$Y \leftarrow\left\{x_{i} \mid x_{i} \in V\left(P_{i}\right) \backslash\{x, y\}\right.$ and $1 \leq i \leq 2 n-$ $6\} \cup\{x, y\}, Y^{\prime} \leftarrow\left\{u^{\prime} \mid u \in Y\right\} ;$
else
$\ell\left(P_{i}\right)=1$ for some $i \in[2 n-6], P_{1} \leftarrow$ $P_{i}, x \leftarrow x_{1}, Y^{\prime} \leftarrow\left\{u^{\prime} \mid u \in Y\right\} \cup\left\{x^{\prime \prime}\right\} ;$ Generate $2 n-4$ internally disjoint $\left(z, Y^{\prime}\right)$ paths $Q_{1}, Q_{2}, \cdots, Q_{2 n-4}$ by Lemma 3.5 and Lemma 5.2;
for $i=1$ to $2 n-6$ do
$T_{i} \leftarrow P_{i} \cup Q_{i} \cup x_{i} x_{i}^{\prime} ;$
end for
$T_{2 n-5} \leftarrow Q_{2 n-4} \cup Q_{2 n-5} \cup\left\{x x^{\prime}, y y^{\prime}\right\}$ or $T_{2 n-5} \leftarrow$ $Q_{2 n-4} \cup Q_{2 n-3} \cup\left\{x x^{\prime \prime}, y y^{\prime}\right\} ;$
end if
end if
$\alpha \neq \beta, \beta \neq \gamma$ and $\alpha \neq \gamma$
if $M \subseteq V\left(G_{\{\alpha, \beta, \gamma\}}\right)$ then
Generate $2 n-4$ internally disjoint (x, y)-paths $P_{1}, P_{2}, \cdots, P_{2 n-4}$ in $G_{\{\alpha, \beta\}}$ by Theorem 3.4 and

Lemma 5.2;

$$
\text { if } z^{\prime} \notin \cup_{i \in[2 n-4]} V\left(P_{i}\right) \text { then }
$$

$$
\text { there is a }\left(z^{\prime}, x\right) \text {-path } \widetilde{P} \text { in } G_{\{\alpha, \beta\}} ; \text { set } t \text { be }
$$

$$
\text { the first vertex in } \cup_{i \in[2 n-4]} V\left(P_{i}\right) \text { and } t \in
$$

$$
V\left(P_{2 n-4}\right) ; T_{2 n-4} \leftarrow P_{2 n-4} \cup \widetilde{P}\left[z^{\prime}, t\right] \cup\left\{z z^{\prime}\right\}
$$

else
$z^{\prime} \in \cup_{i \in[2 n-4]} V\left(P_{i}\right)$, set $z^{\prime} \in V\left(P_{2 n-4}\right)$, $T_{2 n-4} \leftarrow P_{2 n-4} \cup z z^{\prime} ;$
end if
$X \leftarrow\left\{x_{i} \mid x_{i} \in V\left(P_{i}\right) \cap N_{G_{\{\alpha, \beta\}}}(x)\right.$ and $1 \leq i \leq$ $2 n-5\}, X^{\prime} \leftarrow\left\{x_{i}^{\prime} \mid x_{i} \in X\right.$ and $\left.1 \leq i \leq 2 n-5\right\} ;$ Generate $2 n-5$ internally disjoint (z, X^{\prime})-paths $Q_{1}, Q_{2}, \cdots, Q_{2 n-5}$ in $G_{[n] \backslash\{\alpha, \beta\}}$ by Lemma 3.5 and Lemma 5.2;
for $i=1$ to $2 n-5$ do
$T_{i} \leftarrow P_{i} \cup Q_{i} \cup x_{i} x_{i}^{\prime} ;$
end for
else
$M \nsubseteq V\left(G_{\{\alpha, \beta, \gamma\}}\right)$; set $z^{\prime} \notin V\left(G_{\{\alpha, \beta\}}\right)$;
for $i=1$ to $2 n-5$ do
Choose $x_{i} \in V\left(B S_{n-1}^{\alpha}\right)$ and
$x_{i}^{\prime} \in V\left(B S_{n-1}^{\beta}\right)$;
end for
$X \leftarrow\left\{x_{1}, x_{2}, \cdots, x_{2 n-5}\right\}$,
$X^{\prime} \leftarrow\left\{x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{2 n-5}^{\prime}\right\}$,
Generate $2 n-5$ internally disjoint (x, X)-paths $P_{1}, P_{2}, \cdots, P_{2 n-5}$ and $2 n-5$ internally disjoint (y, X^{\prime})-paths $P_{1}^{\prime}, P_{2}^{\prime}, \cdots, P_{2 n-5}^{\prime}$ by Lemma 3.5 and Lemma 5.2;
for $i=1$ to $2 n-5$ do $\widehat{P}_{i} \leftarrow P_{i} \cup P_{i}^{\prime} \cup x_{i} x_{i}^{\prime} ;$
end for
Set $Y \leftarrow\left\{x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, \cdots, x_{2 n-5}^{\prime \prime}\right\} \cup\left\{x^{\prime \prime}, y^{\prime \prime}\right\}$ with $x^{\prime \prime}, y^{\prime \prime} \in V\left(G_{[n] \backslash\{\alpha, \beta\}}\right)$; Generate $2 n-3$ internally disjoint (z, Y)-paths $Q_{1}, Q_{2}, \cdots, Q_{2 n-3}$ in $G_{[n] \backslash\{\alpha, \beta\}}$ by Lemma 3.5 and Lemma 5.2;
for $i=1$ to $2 n-5$ do
$T_{i} \leftarrow \widehat{P}_{i} \cup Q_{i}$,
end for
$T_{2 n-4} \leftarrow Q_{2 n-4} \cup Q_{2 n-3} \cup\left\{x x^{\prime \prime}, y y^{\prime \prime}\right\}$
end if
end if

The explanation for Algorithm 1

Recall that $B S_{n}=B S_{n-1}^{1} \bigoplus B S_{n-1}^{2} \bigoplus \ldots \bigoplus B S_{n-1}^{n}$, where $B S_{n-1}^{i}$ denotes the graph whose n-th bit number of any vertex is i and $i \in[n]$. Let $S=\{x, y, z\}$, where x, y and z are any three distinct vertices of $B S_{n}$. In line 1 of algorithm 1 , we use α, β and γ to denote the n-th bit number of x, y and z, respectively.

If $\alpha=\beta=\gamma$, the vertices x, y and z belong to the same copy, $B S_{n-1}^{\alpha}$, of $B S_{n-1}$. From line 2 to line 35, we give the method how to find $2 n-4$ internally disjoint S -trees in $B S_{n}$;

If $\alpha=\beta \neq \gamma$, the vertices x, y and z belong to two different copies of $B S_{n-1}$, that is, x and y belong to the same copy of $B S_{n-1}$ and z belong to the other copy of $B S_{n-1}$. From line 36 to line 65, we give the method how
to find $2 n-4$ internally disjoint S-trees in $B S_{n}$ under this condition;

If any two of α, β and γ are not equal, that is, the vertices x, y and z belong to three different copies of $B S_{n-1}$. From line 66 to line 95 , the method of how to find $2 n-4$ internally disjoint S-trees in $B S_{n}$ is given if $\alpha \neq \beta, \beta \neq \gamma$ and $\alpha \neq \gamma$.

6 LIMITATIONS OF THE WORK

In this paper, we introduce a network G_{n} that can be constructed recursively and contains exactly two outside neighbors. The network G_{n} contains many famous interconnection networks such as the alternating group graph $A G_{n}$, the k-ary n-cube Q_{n}^{k}, the split-star network S_{n}^{2} and the bubble-sort-star graph $B S_{n}$ etc.. We mainly studied the generalized k-connectivity of the network G_{n} for $k=3$, however, the generalized k-connectivity of G_{n} for $k \geq 4$ has not been studied. It would be an interesting and challenging work to study in the future.

7 Concluding remarks

The generalized k-connectivity is a generalization of the traditional connectivity. In this paper, we studied the generalized 3-connectivity of G_{n} that can be constructed recursively and contains exactly two outside neighbors. As applications of the main result, the generalized 3connectivity of many famous networks such as the alternating group graph $A G_{n}$, the k-ary n-cube Q_{n}^{k}, the split-star network S_{n}^{2} and the bubble-sort-star graph $B S_{n}$ can be obtained directly. In the future, we would like to study the generalized k-connectivity of G_{n} for $k \geq 4$, which would be interesting and challenging.

Acknowledgments

The authors express their sincere thanks to the editor, the anonymous referees for their valuable suggestions which improved the original manuscript. This work was supported by the Fundamental Research Funds for the Central Universities (No.2019YJS192).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2007.
[2] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bombay Math. 2 (1984) 1-6.
[3] H. Cai, H. Liu and M. Lu, Fault-tolerant maximal localconnectivity on Bubble-sort star graphs, Discrete Appl. Math. 181 (2015) 33-40.
[4] E. Cheng, K. Qiu, Z.Z. Shen, A note on the alternating group network, J. Supercomput. 59 (1) (2012) 246-248.
[5] E. Cheng, M.J. Lipman, H.A. Park, An Attractive Variation of the Star Graphs: Split-Stars, Technical Report 3, 1998.
[6] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (4) (2010) 360-367.
[7] Z. Chou, C. Hsu and J. Sheu, Bubble-sort star graphs: a new interconnection network, International Conference on Parallel and Disturbed Systems (1996) 41-48.
[8] K. Day, A.E. Ai-Ayyoub, Fault diameter of k-ary n-cube networks, IEEE Trans. Parallel Distrib. Syst. 8 (9) (1997) 903-907.
[9] M. Hager, Pendant tree-connectivity, J. Combin. Theory Ser 38 (1985) 179-189.
[10] Zaid Hussain, Bader AlBdaiwi, Anton Cerny, Node-independent spanning trees in Gaussian networks, J. Parallel Distrib. Comput. 109 (2017) 324-332.
[11] J.S. Jwo, S. Lakshmivarahan, S.K. Dhall, A new class of interconnection networks based on the alternating group, Networks 23 (1993) 315-326.
[12] C.T. Lin, Embedding $k(n-k)$ edge-disjoint spanning trees in arrangement graphs, J. Parallel Distrib. Comput. 63 (2003) 12771287.
[13] H.Z. Li, X.L. Li, Y.F. Sun, The generalized 3-connectivity of Cartesian product graphs, Discrete Math. 14 (1) (2012) 43-54.
[14] X.L. Li, Y.P. Mao, Generalized Connectivity of Graphs, Springer Briefs in Mathematics, Springer, Switzerland, 2016.
[15] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Austral. J. Comb. 58 (2) (2014) 304-319.
[16] S.S. Li, Y.T. Shi, J.H. Tu, The generalized 3-connectivity of Cayley graphs on symmetric groups generated by trees and cycles, Graph. Combinator. 33 (2017) 1195-1209.
[17] H.Z. Li, X.L. Li, Y.P. Mao, Y.F. Sun, Note on the generalized connectivity, Ars Comb. 114 (2014) 193-202.
[18] S.S. Li, J.H. Tu, C.Y. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput. 274 (2016) 41-46.
[19] S.S. Li, X.L. Li, Note on the hardness of generalized connectivity, J. Comb. Optim. 24 (2012) 389-396.
[20] H.Z. Li, Y.B. Ma, W.H. Yang, Y.F. Wang, The generalized 3connectivity of graph products, Appl. Math. Comput. 295 (2017) 77-83.
[21] S.S. Li, X.L. Li, W.L. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310 (2010) 2147-2163.
[22] H.Z. Li, B. Wu, J.X. Meng, Y.B. Ma, Steiner tree packing number and tree connectivity, Discrete Math. 341(7) (2018) 1945-1951.
[23] S.S. Li, W. Li, Y.T. Shi, H. Sun, On the mininmally 2 -connected graphs with generalized connectivity $\kappa_{3}=2$, J. Comb. Optim. 34 (2017) 141-164.
[24] S.S. Li, W. Li, X.L. Li, The generalized connectivity of complete bipartite graphs, Ars Comb. 104 (2012) 65-79.
[25] S.A. Mane, S.A. Kandekar, B.N. Waphare, Constructing spanning trees in augmented cubes, J. Parallel Distrib. Comput. 122 (2018) 188-194.
[26] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Mineola, New York, (1998).
[27] A.A. Rescigno, Optimally balanced spanning tree of the star network, IEEE Trans. Comput. 50 (1) (2001) 88-91.
[28] N.A. Sherwani, Algorithms for VLSI Physical Design Automation, third ed., Kluwer Academic Publication, London, 1999.
[29] S. Srinivasagopalan, C. Busch, S. S. Iyengar, An oblivious spanning tree for single-sink buy-at-bulk in low doubling-dimension graphs, IEEE Trans. Comput., 61 (5) (2012) 700-712.
[30] S.L. Scott, J.R. Goodman, The impact of pipelined channel on kary n-cube networks, IEEE Trans. Parallel Distrib. Syst. 5 (1) (1994) 2-16.
[31] Abderezak Touzenea, Khaled Daya, Burkhard Monienb, Edgedisjoint spanning trees for the generalized butterfly networks and their applications, J. Parallel Distrib. Comput. 65 (2005) 1384-1396.
[32] H. Whitney, Congruent graphs and connectivity of graphs, J. Amer. Math. Soc. 54 (1932) 150-168.
[33] S. Wang, Z. Wang and M. Wang, The 2-good neighbor connectivity and 2-good neighbor diagnosability of bubble-sort star graph networks, Discrete Appl. Math. 217 (2015) 691-706.
[34] M.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970) 23-29.
[35] Y. Wang, J.X. Fan, G.D. Zhou, X.H Jia, Independent spanning trees on twisted cubes, J. Parallel Distrib. Comput. 72 (2012) 58-69.
[36] Jeeraporn Werapun, Sarun Intakosum, Veera Boonjing, An efficient parallel construction of optimal independent spanning trees on hypercubes, J. Parallel Distrib. Comput. 72 (2012) 1713-1724.
[37] J.-S. Yang, J.-M. Chang, K.-J. Pai, H.-C. Chan, Parallel construction of independent spanning trees on enhanced hypercubes, IEEE Trans. Parallel Distrib. Syst. 26 (11) (2015) 3090-3098.
[38] J.-S. Yang, J.-M. Chang, S.-M. Tang, Y.-L. Wang, Reducing the height of independent spanning trees in chordal rings, IEEE Trans. Parallel Distrib. Syst. 18 (5) (2007) 644-657.
[39] S.L. Zhao, R.X. Hao, The generalized connectivity of alternating group graphs and (n, k)-star graphs, Discrete Appl. Math. 251 (2018) 310-321.
[40] S.L. Zhao, R.X. Hao, The generalized 4-connectivity of exchanged hypercubes, Appl. Math. Comput. 347 (2019) 342-353.

Shu-Li Zhao received her master's degree from Taiyuan University of Technology, China, in 2017. Now, she studies at Beijing Jiaotong University. Her research interests include graph theory and Networks.

computing.

Rong-Xia Hao received the Ph.D. degree from Beijing Jiaotong University, China in 2002. From 1998 to 2006, she was an associate professor. Since 2006, she was a professor at Department of Mathematic, Beijing Jiaotong University. She received Beijing Jiaotong University Zhi Jin Foundation Outstanding Youth Teaching Award in 2007 and the First Prize of 2008 Excellent Paper Awarded by Beijing Operations Research Society. Her research interests include graph theory, interconnection network and fault tolerant

Jie Wu currently works at Department of Computer and Information Sciences,Temple University. Jie Wu is the Associate Vice Provost for International Affairs at Temple University. He also serves as the Chair and Laura H. Carnell professor in the Department of Computer and Information Sciences. Prior to joining Tempe University, he was a program director at the National Science Foundation and was a distinguished professor at Florida Atlantic University. His current research interests include mobile computing and wireless networks, routing protocols, cloud and green computing, network trust and security, and social network applications. Dr. Wu regularly publishes in scholarly journals, conference proceedings, and books. He serves on several editorial boards, including IEEE Transactions on Service Computing and the Journal of Parallel and Distributed Computing. Dr. Wu was general co-chair/chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM MobiHoc 2014, as well as program co-chair for IEEE INFOCOM 2011 and CCF CNCC 2013. He was an IEEE Computer Society Distinguished Visitor, ACM Distinguished Speaker, and chair for the IEEE Technical Committee on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker and a Fellow of the IEEE. He is the recipient of the 2011 China Computer Federation (CCF) Overseas Outstanding Achievement Award.

