
Enabling Secure Voice Input on Augmented Reality
Headsets using Internal Body Voice

Abstract—Voice-based input is usually used as the primary
input method for augmented reality (AR) headsets due to
immersive AR experience and good recognition performance.
However, recent researches have shown that an attacker can
inject inaudible voice commands to the devices that lack voice
verification. Even if we secure voice input with voice verification
techniques, an attacker can easily steal the victim’s voice using
low-cast handy recorders and replay it to voice-based appli-
cations. To defend against voice-spoofing attacks, AR headsets
should be able to determine whether the voice is from the
person who is using the AR headsets. Existing voice-spoofing
defense systems are designed for smartphone platforms. Due to
the special locations of microphones and loudspeakers on AR
headsets, existing solutions are hard to be implemented on AR
headsets. To address this challenge, in this paper, we propose
a voice-spoofing defense system for AR headsets by leveraging
both the internal body propagation and the air propagation of
human voices. Experimental results show that our system can
successfully accept normal users with average accuracy of 97%
and defend against two types of attacks with average accuracy
of at least 98%.

Index Terms—AR headsets, voice spoofing attack, liveness
detection.

I. INTRODUCTION

Augmented reality (AR) applications that overlay a user’s

perception of the real world with digitally generated infor-

mation are on the cusp of commercial viability. To provide

better user experience, AR experiences are primarily delivered

to AR users via wearable glass devices and head-mounted

devices. For example, Microsoft, Google Vuzix, and other

companies have been working on bringing AR to us in the

eyeglass form. Moreover, different from traditional human-

computer interactions, most existing interactivity technologies

(e.g. typing, tapping, clicking, and swiping) have become

irrelevant and obsolete in the AR world. Because of the real-

world interaction of AR experience, the input methods for AR

headsets should fit what a human can understand. Therefore,

most AR headsets adopt voice, eye gaze, and gestures as input

methods. Among these three input methods, voice-based input

is usually used as the primary input method for three reasons:

1) Voice is the primary way to deliver information in daily life,

so voice-based input can provide immersive AR experience; 2)

Many low-cost AR devices do not have capabilities to track

eye gaze and recognize gestures; 3) Most gesture and gaze

interfaces have problems with responsiveness and accuracy.

However, voice-based input suffers from various voice

spoofing attacks. Recent researches [7], [24], [28] have shown

that an attacker can inject inaudible voice commands to the

devices that lack voice verification. Moreover, unlike other

human biometrics, the human voice is often exposed to the

public in many different scenarios, e.g., people making a

presentation in public. Even if we secure devices with voice

verification techniques, an attacker can easily steal the victim’s

voice using low-cast handy recorders and attack voice-based

applications with the help of state-of-the-art voice synthe-

sis/conversion software. Several security issues are, therefore,

caused by the leakage of people’s voices and pose a severe

threat to voice-based applications [13], [21], [27]. For instance,

with a replay device, an adversary could impersonate the

victim to spoof the Google Trusted Voice once they acquire

enough victim’s voice samples. Since voice is considered as

unique biometrics of a person, these voice-spoofing attacks

would result in severe consequences harmful to victim’s safety,

reputation, and property.

To defend against voice-spoofing attacks, the voice-based

systems need to determine whether the voice is from the

person who is using the AR headsets. To achieve this goal,

traditional systems primarily use two solutions: 1) Check the

channel noises introduced by recording and the replay devices

(loudspeakers); 2) Analyze the reverberation of replaying far-

field recordings. However, these solutions have high false

acceptance rates of up to 17%, which makes them unsuitable

to be used for commercial systems. Recently, many liveness

detection systems are proposed to fight against voice-spoofing

attacks by studying the differences between the human vo-

cal system and loudspeakers using phoneme location [30],

articulatory gestures [29], magnetic fields of loudspeakers [9],

and throat voice [19]. However, all of them are designed for

smartphones. Considering the special locations of microphones

and loudspeakers on AR devices, current liveness detection

solutions cannot be implemented on AR headsets. For exam-

ple, the approach proposed in [29] can fight replay attack by

reusing a pair of microphone and loudspeaker as a Doppler

radar. However, this system requires that both the loudspeaker

and the microphone should be in front of the user’s mouth

during the speech, which is hard to be ensured on AR headsets.

Considering the limitations of current solutions, we propose

a voice-spoofing defense system for AR headsets by leveraging

the internal body propagation of human voices. Our system

determines whether the voice is from the person who is using

the AR headsets by leveraging: 1) Both the internal body

propagation and the air propagation of human voices; 2) An

tiny and low-cost contact microphone to collected internal

body voice. First, human voices propagate through both the

air and the internal body (skull). If two voices are from

the same person, they should share common features in the
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Fig. 1. Human vocal system and two propagation paths of the voice

frequency bands of human voices. Second, by attaching a

contact microphone on the user’s head, we are able to collect

the voice propagating only through the internal body. The

small contact microphone can be easily integrated into existing

AR headsets. To achieve our goal, we solve two challenges in

the design of our system. First, the signal-to-noise ratio (SNR)

of the voice propagates through the internal body is still low,

which makes it hard to extract voice features from the raw

time-domain signals. To address this issue, we transform the

signal from the time domain to the time-frequency domain

and leverage spectrogram enhancement techniques to extract

the voice from raw signals. The second challenge is to measure

the correlation and similarity between the internal body voice

and the air voice of the user. In order to robustly measure the

correlation and similarity between the two voices, we match

high-energy blocks that exist in both spectrograms of two

voices.

We summarize our contributions as follows:

• We show it is feasible to capture the internal body

propagation of human voices using a low-cost contact

microphone. We also present an approach to extract voice

features from noisy internal body voice.

• We propose a robust and low-cost solution for defending

against voice-spoofing attacks on AR headsets with high

accuracy. To our best knowledge, our system is the first

to protect the voice input for AR headsets.

• We develop a prototype and conduct comprehensive eval-

uations. Experimental results show that our system can

successfully defend against obstruction and replay attacks

with an accuracy of at least 98%.

II. PRELIMINARY

A. Human voice production and propagation

As shown in Fig. 1(a), the mechanism for producing the

human voice can generally be subdivided into three parts:

the lungs, the vocal cords, and the articulators (e.g. lips and

tongue). The lung first produces adequate airflow and air

pressure to vibrate vocal cords. The vocal cords vibrate and

chop up the airflow from the lungs into audible pulses that

form the laryngeal sound source. Then, the length and tension

of the vocal cords are adjusted to produce ‘fine-tune’ pitch and

tone. The articulators consisting of tongue, palate, cheek, lips

further filter the sound generated from the larynx to strengthen

it or weaken it. After the voices are produced by the human

vocal system, they mainly propagate through two media, as

(a) Contact microphone (b) Frequency response of contact microphone
[1]

Fig. 2. Contact microphone and its frequency response

shown in Fig. 1(b). First, the voice propagates via the air and

reaches the microphone, which is common for the use case of

current voice input. Besides propagating through the air, the

voice can also propagate through the speaker’s internal body,

and that is why a person’s voice sounds different to them when

it is recorded and played back. Although the tone of the voice

received through the internal body is lower than that of the

voice received through the air due to the special propagation

medium, two voices should have a strong correlation and a

lot of information shared. For the attacker who wants to issue

a fake voice command obstruct the victim’s experience, the

attacker’s voice reaches the AR device only through the air.

Therefore, the internal body voice of the victim should not

have much-shared information with the air voice.

Strong attackers can also use high-quality loudspeakers and

recorders to break voice-based authentication. The loudspeak-

ers usually use an electromagnet to translate an electrical

signal into an audible sound. The electromagnet is a metal coil

that creates a magnetic field when there is an electric current

flow through it. When electrical pulses pass through the coil

of the electromagnet, the direction of the magnetic field is

frequently changed. Also, there is a permanent magnet fixed

firmly into the loudspeaker. With rapidly changing magnetic

field, the coil is attracted to and repelled from the permanent

magnet. As a result, the cone attached on the coil will vibrate

back and forth, pumping sound waves into the surrounding air

and the smartphone’s speaker. Since the replay attacker can

only record and replay the air voice of the victim, there is

no internal body voice during the replay process. Moreover,

since the internal body voice of a person is different from

those of others even for the same word, a stronger replay

attacker cannot impersonate the victim’s internal body voice

by wearing the AR headset and saying the same words.

B. Piezo contact microphone

As shown in Fig. 2(a), contact microphone is a form

of microphone that senses audio vibrations through contact

with solid objects. Unlike normal air microphones, contact

microphones are almost completely insensitive to air vibrations

but transduce only structure-borne sound. By attaching a

contact microphone near the speaker’s temple, we are able

to collect the voice that propagates mainly through the body

of the speaker. In addition, contact microphones have a wide

frequency response, as shown in Fig. 2(b). Since the voiced



speech of a typical adult will have a fundamental frequency

for up to 255Hz [3], the contact microphones have enough

capability to capture the internal body voice.

C. Attack model

In our attack models, a malicious user aims to either spoof

the voice verification system on the AR headset or obstruct the

normal use of voice-based input. The capability of the attacker

is limited in the sense of:

Obstruction attack for voice commands. In obstruction

attack, a malicious user who can show up closely around the

normal user aims to issue a voice command with high volume.

For example, the malicious user can issue a ”remove” voice

command to clear the victim’s virtual objects. The malicious

user can also issue a voice command to display redundant

information in the field of vision of the normal user, which

poses threats if the normal user needs clear sight (e.g. the

normal user is driving). During the attack, we assume that the

victim is not using the voice input, otherwise, the victim’s

voice is expected to overshadows that of the attacker.

Replay attack for voice-based authentication. In this type

of attack, we assume that an attacker can physically access the

victim’s headset in the case of not being noticed. Moreover,

the attacker can record or morph the victim’s voice and replay

it to voice-based authentication system using loudspeakers.

To achieve better attack performance, we assume that the

attack can produce the corresponding internal body voice by

shadowing the replayed voice of the victim.

D. Use case

In order to successfully defend AR users against two types

of attacks, our system requires users to attach a contact

microphone around the temple. Since the AR users need to

wear the AR headset, this condition can be easily satisfied by

integrating the contact microphone into the frame of the AR

headset. We leverage the contact microphone to capture the

internal body voice and use the existing normal microphone

on current AR devices to collect the air voice. The distance

between the normal microphone and the user’s mouth is about

10 centimeters. Since the distance is pretty short, the time

delay between two audio signals is less than 13 samples

when the sampling rate is 44,100 samples per second. While

speaking, the user can be in any stationary posture, like sitting

and standing.

E. Feasibility study and challenges

In order to defend against two attacks we consider, we need

to fully leverage the relationship between voices through the

air and the skull. Fig. 3 shows the spectrograms of two voices

when the user says “Five”. We can observe two facts: 1) There

exists a strong correlation between two voices on both the

time and frequency domains. If a normal user interacts with

the headset using voice, we should observe a voice through

the internal body is produced at the same time. 2) The voice

that propagates through the internal body only reserves partial

low-frequency features (200 Hz to 2000 Hz). If we can see

Air voice

Internal 
body voice

Fig. 3. The spectrograms of voices through air and internal body

high-energy blocks in the spectrogram of internal body voice,

we should see high-energy blocks at the same location in the

spectrogram of the air voice. These observations illustrate that

it is feasible to defend against two attacks by measuring the

correlation and similarity of two voices.

To achieve our goal, we solve two challenges in the design

of our system. First, even with amplifier, the signal-to-noise

ratio (SNR) of the voice that propagates through the internal

body is still low, which makes it hard to extract voice features

from the raw time-domain signals. To address this issue,

we transform the signal from the time domain to the time-

frequency domain and leverage spectrogram enhancement

techniques to extract the features of two voices from their

raw signals.

The second challenge is to measure the correlation and the

similarity between the internal body voice and the air voice.

This is difficult because both voices have different capabilities

for capturing users’ voices. More specifically, the internal

body voice only contains partial low-frequency features, but

it is nonsensitive to environmental noise. The mouth voice

reserves much more features, but it is easy to be influenced

by environmental noise. In order to robustly measure the

correlation between two voices, we first convert the two

voices to spectrograms on the time-frequency domain of three

dimensions: time, frequency, and energy. The correlation and

the similarity of two voices are measured by matching high-

energy blocks that exist in both spectrograms.

III. SYSTEM DESIGN

A. System overview

The key idea underlying our system is to fully leverage

two propagation paths of the human voices. When the AR

user says a voice command, the normal microphone will

capture the user’s voice that propagates through the air, and the

contact microphone on user’s head can record the voice that

only propagates through the user’s body. By comparing the

information in two voices, our system can determine whether

the voice is from the normal user or from two types of

attackers. For a new AR user, there are two stages to use

the system. In the training stage, the new user is asked to say

a few words using our system. These training instances are

used to quickly build a classifier. After the training stage, the

system is ready to be used. In the testing stage, our system will

check whether the command is from the normal user who is

using the AR headset using the trained classifier. If the voice
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Fig. 4. System pipeline

is from the normal user, the user can interact with AR headset

normally. Otherwise, the voice command will not be parsed

to the AR headset for futher verification.

The pipeline of data collection and processing is shown in

Fig. 4. After collecting the user’s voices at two channels, we

first segment the voice for each word to remove the internal

between neighboring words. For the voice signals of each pair

of words, we transform the signals from the time domain

to the time-frequency domain. Since both raw voice signals

contain background noise, we further leverage spectrogram

enhancement techniques to remove the noise and extract the

information of the voices. Then, we measure the correlation

between two enhanced spectrograms of each pair of words.

If the correlation exceeds a threshold, the pair of signals is

further checked for the second round. In the second round, we

measure the similarity of two spectrograms. Here the similarity

is defined as the proportions of shared information between

two voices. If the proportions of shared information fit the

trained classifier, the word is regarded to be from the normal

user. To tolerate wrong classification results, the final detection

result of a sentence (voice command) is determined by a voting

procedure of all words in it. Only if the number of votes that

represent the voices are from the normal user exceeds the

voting threshold, the voice source is regarded as the normal

user.

B. Word segmentation and spectrogram generation

Each audio signal includes two parts: the voice and back-

ground noise. The voice contain abundant features of the user’s

voice, while the noise part only records the acoustic noise in

the background. In our system, we only focus on the user’s

voice in order to reduce the influence of the acoustic noise

in the background. Since the voice recorded by the normal

microphone has much more features of the user’s air voice, we

segment each audio sample into different words by performing

HMM-based word segmentation techniques [18] on the audio

sample recorded by the normal microphone.

Also, we need to find features to measure the relationship

and differences between two voices collected from two mi-

crophones to distinguish whether the voice is from a normal

user. In order to capture features on time-frequency domain,

(a) Raw internal body voice (b) Enhenced spectrogram
Fig. 5. Spectrogram enhancement

we perform STFT on each word and each audio sample with

a window size of about 22 ms based on:

X(τ, ω) =

n=te∑

n=ts

x[n]w[n− τ ]e−jωn (1)

where τ is the time axis, ω is the frequency axis, x[n] is the

an audio signal in the time range (ts, t), w[n] is the window,

and X(τ, ω) is a complex function representing the phase and

magnitude of the signal over time and frequency. Then, for

each time frame, the spectrogram of the complex function

X(τ, ω) is computed based on:

E[f, t] = |X(τ, ω)|2 (2)

where E[f, t] is the power of f th frequency band and tth time

frame. f and t are positive integers with range 1 ≤ f ≤ M
and 1 ≤ t ≤ N .

C. Spectrogram enhancement

In real usage scenarios, the contact microphone cannot touch

the skull directly, which leads to low SNR of recorded internal

body voice even with an amplifier. Also, the air voice is also

influenced by background noise. To extract features from both

voices, we leverage spectrogram enhancement techniques to

extract high-energy clusters that are only produced by the

user’s voice on the generated spectrograms. After obtaining the

spectrogram of each word, we first apply frequency domain

denoising method by subtracting the noise floor (non-voice

part) from the spectrogram. Since the microphone of the

AR headset is close to the user’s mouth, most power should

distribute on the voice part as shown in Fig. 5(a). Therefore,

the noise floor is set to 80% of the power in the spectrogram

of each word. If the resulting magnitude becomes negative

after subtraction, we set it to zero. Second, since the internal

body voice collected from contact microphone contains strong

noise under 800 Hz, we only reserve the spectrograms from

800 Hz to 2000 Hz for the following analysis. As shown in

Fig. 5, most of the noise are removed from the spectrogram,

and only the information of the voice are reserved.

D. Feature extraction and classification

Since two voices are generated from the same vocal system

at the same time, we should be able to observe strong

correlations between them for a normal user. Ideally, the

subtraction of two spectrograms should be zero. In our sys-

tem, we measure the correlation between two spectrograms

instead of directly calculating the differences between them



Fig. 6. Correlation matrix for two voices from the same user

for two reasons. First, both voices have different capabilities

for capturing users’ voices. More specifically, the internal

body voice only contains partial low-frequency features, but

it is nonsensitive to environmental noise. The mouth voice

reserves much more features, but it is easy to be influenced

by environmental noise. Second, even if two microphones

are synchronized, there may still exist small synchronization

bias in the collected voices. Similar to one-dimension cross-

correlation measurement, given two spectrograms S1 and S2,

we measure the correlation between S1 and lagged copies of

S2 as a function of the horizontal lag i and the vertical lag j.

For this copy, assume that S1 and the lagged copies of S2 have

an overlapped area of size M ×N , the correlation coefficient

of the specific shift is:

Corr[i, j] =

k=M, l=N∑

k=1, l=1

O1[k, l]×O2[k, l] (3)

where O1 is the overlapped part of S1, and O2 is the

overlapped part of S2. Hence, the positive integer i is from 1

to 2M − 1, the positive integer j is from 1 to 2N − 1. The

best matching of two spectrograms is found if corresponding

correlation coefficient is maximal. In our system, two voices

are highly correlated, so the highest correlation coefficient

must appear around the center of correlation matrix Corr, as

shown in Fig. 6. Based on this observation, a word is detected

to be from a live user if

|j −M |
2M

< λ and
|i−N |
2N

< λ (4)

where λ is the decision threshold.

A pair of spectrograms that satisfy Equation 4 cannot ensure

that two voices are from the normal user. Although we know

two spectrograms are highly correlated from Equation 4, it

is not clear how much information or features are shared

between two spectrograms. Therefore, we further measure the

similarity between two voices by finding the proportion of

shared information. Based on our observations, the amount

of shared information should make up a large proportion of

either of two voices. In other words, if an entry is non-zero

in the spectrogram of internal body voice, it is very likely to

be non-zero in that of the mouth voice, and vice versa. To

quantitatively describe how similar two spectrograms are, we

first use the measured lags to calibrate our synchronization to
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Fig. 7. Feature analysis

get the best match. For each word, the proportion of the shared

information that is in S1 is defined as:

P1 =
Sizeof({(i, j)|S1[i, j] > 0 & S2[i, j] > 0})

Sizeof({(i, j)|S1[i, j] > 0}) (5)

Similarly, the proportion of the shared information that is in

S2 is defined as:

P2 =
Sizeof({(i, j)|S1[i, j] > 0 & S2[i, j] > 0})

Sizeof({(i, j)|S2[i, j] > 0}) (6)

The similarity between two voices is defined as the smaller

one of P1 and P2.

Fig. 7(a) shows the values of the proportion of the shared

information for both normal user and attacker. Ideally, the

proportion of the shared information should be high for normal

users. However, since different users have different speaking

habits (e.g. different speeds of speech and different accents),

the proportions of shared information may not always be a

high value. Also, unpredictable noise during data collection

may also influence the final results. Therefore, it is hard to

determine the legitimacy of the speaker using a fixed threshold

on each dimension. By studying the data distribution on 2-

dimension feature hyperplane, we find that data of normal

users lies on a straight line, while that of attackers is far away

from the line. Fig. 7(b) shows the distribution of distances from

the data point to the straight line that is fitted using the normal

user’s training data. We can see that over 95% of the normal

user’s data points have the distance less than 2, while over 85%
of the attacker’s data points have the distance larger than 2.

This fact enables us to detect the legitimacy of the speaker by

calculating the distance from the data point to the line that fits

the training data. After collecting several training data from

the user, we first fit a straight line using least squares, as the

yellow line in Fig. 7(a). A word is considered to be from the

normal user if |aP1 + bP2 + c|√
a2 + b2

< γ (7)

where P1 and P2 are the features calculated using Equations 5

and 6, a, b, and c are coefficients of a straight line ax+by+c =
0. γ is the decision threshold and is set to the 95% largest

distance of normal user’s training data. A word is considered

to be from a normal user if and only if both of Equations 4

and 7 are satisfied.

E. decision combination

AR users usually speak a sentence or passphrase that

consists of multiple words to AR headsets. For example, the



Fig. 8. Testbed for collecting internal body voice

general voice authentication systems ask the user to speak

a 6-digit passphrase. In order to give an accurate detection

result for each sentence, we need to combine the results of

multiple words after getting the correlation and similarity

measurement of each of them. In a voting procedure, three

questions need to be answered: 1)Who should be eliminated

from voting; 2)What is the weight of each player; 3) What

is the Minimum number of votes needed to pass a vote. To

answer the first question, the voter whose data cannot satisfy

either of Equations 4 and 7 is eliminated from voting. Second,

since both P1 and P2 reflect the propagations of shared

information between two voices, the word with high values of

P1 and P2 should have a higher weight for voting. Therefore,

for each word in the voting procedure, we let the smaller value

of its P1 and P2 be its weight. Third, to accurately reject the

attacker and accept the normal user, for a sentence or a voice

command with n words, the minimal number of votes is set to

0.2× n. If there is no result whose number of votes exceeds

0.2× n, the user is regarded as the attacker.

IV. EVALUATION

A. Hardware

Our system consists of two components: a testbed for

collecting internal body voice and a smartphone for collecting

air voice. We implemented our testbed using a Raspberry Pi

3, an iRig HD 2 soundcard, and an AXL contact microphone.

Besides, we used a Nexus 5 to collect user’s air voice and

transmit it to the Raspberry testbed through WiFi. Both the

smartphone and the Raspberry testbed were synchronized

to the same server. Our experiments involved 8 volunteers

(5 males and 3 females), and all of them were asked to

repeat saying sentences of different lengths to our system. In

order to make sure the contact microphone can capture the

internal body voice during the data collection, we attached

the contact microphone on a hat and asked each volunteer to

wear it. Each volunteer wore the hat in their own way and

was in a comfortable posture they prefered. For data analysis

and processing, the data was then transmitted to a desktop

computer with Intel(R) Core(TM) Devils Canyon Quad-Core

i7-8700K @ 4.00 GHz CPU and 16 GB of RAM.

B. Overall performance

We first evaluated our system performance for normal users

and against two types of attacks. In this experiment, we used

the voices of 40 words collected from the normal user as the

training data. The correlation threshold λ was set to 0.1, and

the distance threshold γ was set to the 95% largest distance

of normal user’s training data. We asked each user to say a 5-

word sentence 50 times. Moreover, we repeated this procedure

for 10 times to study the variance of true acceptance rates of

different volunteers, and the experimental results are shown in

Fig. 9(a). We can observe that our system can correctly accept

the normal user with mean accuracy of 97% for all users. Even

in the worst case, our system can still achieve a high accuracy

of 92.3% for normal users. By studying normal users’ data that

is wrongly rejected, there are two main reasons that degrade

the performance. First, there are two volunteers who speak

softly, which makes their voice is easier to be covered by

background noise. Second, volunteers’ activities may cause

sight movement of the hat, which introduces high-energy noise

to the internal body voice and reduces similarity between two

voices.

We further evaluated how accurately our system can reject

two types of attacks. To collect the data for the obstruction

attack, we let a volunteer speak loudly while the normal

user (another volunteer) was wearing the hat. To collect the

data for the replay attack, we used a Nexus 6 smartphone

record the victim voice at a distance of 0.5 meters. Then, we

used the loudspeaker of a smartphone to replay the victim’s

voice to our system. At the same time, the replay attacker

said the same sentence to our system while wearing the hat.

Moreover, we made sure the genders of the victim and the

replay attacker are the same. We leveraged the fitted straight

line for the victim to determine the legitimacy of the attacker’s

data, and the results are shown in Fig. 9(a). We can see that our

system can provide high accuracy against both types of attacks.

More specifically, our system can provide a mean accuracy of

99.2% and 98% for defending the obstruction attack and replay

attack, respectively. The accuracy of successful defenses is

not 100% for two reasons. First, some internal body voices

in the training dataset contained noise, which increased the

distance threshold. Second, the slight movement of the user’s

head may also introduce random high-energy influence to

the spectrogram. In rare cases, the filtered spectrogram of

noise was similar to that of some words (e.g. “eight”). As

a whole, our system can provide high-security protection for

users against obstruction attack and replay attack while still

ensuring good user experience for normal users.

C. Influence of training dataset size

In practice, we want the number of training data to be

as small as possible to reduce the training cost for new

users. Therefore, we evaluated how many training data is

needed by our system in order to provide both high-security

protection and good user experience. Fig. 9(b) shows the

system performance with different sizes of the training dataset.

We can see that the average accuracy for the normal user is

improved a lot by using more data for training since we have

more knowledge about the distribution of the normal user’s

data. By contrast, the average accuracy of successful defense

against either of two attacks is almost the same by using

different numbers of training data. The reason behind this is

that the data distribution of the attacker’s data is significantly
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away from that of the normal user. Therefore, our system can

accurately reject two types of attacks even if the training data

is limited. Overall, our system can provide both high-security

protection and good user experience after collecting the voices

of 20 words from the normal user, which is low-cost and easy

to be used for new users.

D. Influence of the ratio of γ relative to the maximum distance

In our default experimental setting, the distance threshold

γ is set to the 95% highest distance in the training data. In

real scenarios, there is a trade-off on determining the value of

γ. A small distance threshold can provide extremely high true

rejection rate against two types of attackers, but it also makes

it hard for normal users to use our system. A high distance

threshold can ensure good user experience, but more attackers

are wrongly accepted. In this subsection, we study what is

the proper value of γ for different users. Fig. 9(c) shows the

system performance with different values of γ. It is clear that

the average accuracy for normal users rises with the increase

of γ, while the average accuracy of successful rejection drops.

When γ is the 95% highest distance in the training dataset, the

true acceptance rate and the true rejection rate are nearly equal.

Therefore, we let the γ be equal to the 95% highest distance in

the training dataset to balance the need for security protection

and user experience.

E. Influence of voting threshold

The performance of our system relies on a successful voting

procedure. Hence, a proper voting threshold is important.

Similar to the distance threshold, there is also a trade-off on

determining the value of the voting threshold. If the voting

threshold is too small, all normal users can be accepted, but

some attacker may also be wrongly regarded as the normal

user. If we assign a high value to the voting threshold, all

attackers can be successfully rejected, but the user experience

of normal users is ruined. In this subsection, we study what

is the proper value of the voting threshold. Here we use c ∗ n
to represent the voting threshold where c is a constant and

n is the number of words in a sentence (voice command).

We evaluated the performance for 5-word sentences using the

default parameters and adjusted the value of c, and the results

are shown in Fig. 10(a). We can see that the average accuracy

for normal users drops rapidly when c is larger than 0.2.

Moreover, our system can provide good security protection

after c reaches 0.2. Therefore, we let the c be equal to 0.2 in

our default system setting.

F. Influence of sentence length

We also evaluated the system performance for sentences of

different lengths. Here the sentence length means the number

of words in the sentence. When the length of the sentence is

short, the wrong classification of a few words may dominate

the voting procedure and give the incorrect detection result.

For longer sentences, the voting procedure can tolerate a

few wrong predictions by involving more players. In this

subsection, we study what is the minimum sentence length

to ensure good security protection and user experience, and

the results are shown in Fig. 10(b). We can see that the

system performance is improved with more number of words

in a sentence. When the sentence length is 6, our system can

provide average accuracy of about 100% for both accepting

normal users and rejecting attackers. Moreover, with more

numbers of words in a sentence (voice command), the variance

of both true acceptance rate and true rejection rate are reduced,

as shown in the error bar in Fig. 10(b). This fact implies

that the robustness of our system is improved by saying a

voice command with more words. Considering most voice

commands supported by current AR applications have lengths

of at least 3 words (e.g. open the navigation), our system can



Fig. 11. Four positions around the temple

provide good enough security protection and user experience

for them.

G. Influence of background noise

Since our system records the air voice using a normal

microphone, the background acoustic noise (e.g. conversation

or music) may cover the features in the air voice and degrade

the performance for normal users. To evaluate the robustness

of our system against background noise in terms of accepting

normal users, we asked one volunteer to speak a 5-word

sentence to our system. During the data collection, we used

two loudspeakers to simulate different noise levels from 45 dB

(average home noise) to 70 dB (inside a car at 60 mph). We did

not consider greater noise in our evaluation for two reasons: 1)

Most voice-based AR applications are not designed for noise

environment (e.g. video call); 2) The performance of voice

recognition and authentication systems can also be degraded

by strong noise. Fig. 10(c) shows the evaluation results. We

can observe that our system can achieve a high accuracy of

at least 99.5% for all noise levels. We found that the reason

why our system can still provide good performance in a

noisy environment is that the AR users will subconsciously

raise their volumes in a noisy environment, which makes

the features of their voices are more significant than those

of background noises. Therefore, by applying spectrogram

enhancement techniques, the background can be largely re-

moved.

V. DISCUSSION

A. Influence of the position of contact microphone

In practice, the user may attach the contact microphone

anywhere around the temple based on the framework design

of the AR headset. Even for the same headset, we cannot

ensure the user can attach it at the same position every time. In

order to evaluate the robustness of our system against different

wearing positions of the contact microphone, we collect the

data from 4 different positions around the temple, as shown in

Fig. 11. The distance between neighboring positions is about

2 cm. We collect training data from L1 to predict the testing

data from the other locations. Experimental results show that

our system can still achieve the same performance (over 97%)

for both normal users and attackers, which implies our system

is robust enough to wearing position change.

B. Long-term stability

Considering the way of speaking may change for long-

term usage, the fitted line that is based on historical training

data may not accurately classify new data. To evaluate the

robustness of our approaches during long-term usage, we

further collect testing data from 2 volunteers after 5 weeks

since collecting their training data. Experimental results show

that our system can still successfully accept a normal user with

an accuracy of 99.1%, which is in line with our expectation.

Our system detects the legitimacy of the speaker by measuring

the correlation and shared information between two voices.

Therefore, as long as two voices are from the same live

speaker, there always exists a high correlation between two

voices no matter what speaking habit the user has. Moreover,

the proportions of shared information should also be stable

during long period since the internal body propagation of each

user will not change too much.

VI. RELATED WORK

Voice-based AR applications. There are several benefits of

involving voice in the interaction methods. First, voice-based

interaction can improve the immersion of AR experience.

Second, it is widely accepted that the audio is processed

faster than the visual stimulus. For example, Barde et al.

[5] showed that audio cues can reduce reaction time up to

50% for shooting games. Therefore, the voice is becoming

one of the major input methods of current AR headset and

applications. Current AR applications and headsets use voice

for either controlling or authentication. Most AR headsets

support speech recognition and voice-based control. For in-

stance, HoloLens [2] uses the voice as the intention mechanism

to issue a command. Besides, voice can also be used for

authentication. These voice-based authentication applications

offer opportunities to attackers who are able to launch a

voice-spoofing attack by imitating a victims voice, tone, and

speaking style. This attack could harm the victims reputation,

safety, and property. The attacker could scam victims friends

and family through fake phone calls and leave fake voice

messages, etc.

Automatic voice recognition and speaker verification.
Automatic speech recognition systems aim to modulate a

speech signal to a series of words so that users can interact

with their devices using the voice interface. In the course of

the last few years, there has been a remarkable advancement

in the domain of speech recognition [8], [17]. For example,

Williams et al. [8] presented a neural network that learns

to transcribe speech utterances to characters. The proposed

approaches can achieve a low word error rate of 8%. Voice can

also be used as the biometrics for authentication using speaker

verification techniques. Typically, an automatic speaker verifi-

cation (ASV) system is designed to accept or reject a speech

sample submitted by a user for claiming certain identity [23].

Recently, the development of ASV systems has made major

progress as they are widely adopted by mobile devices (e.g.

smartphones) and online commerces [12], [15]. Most ASV

systems are text-independent, which means the user needs to

repeat a fixed passphrase. The reason text-independent ASV

systems are widely selected for authentication application is

that they are able to accept arbitrary utterances, i.e., different

speaking habits and languages from speakers [6]. The current

practice of building an ASV system involves two processes:



offline training and runtime verification. During the offline

training phase, the ASV system uses several speech samples

provided by the genuine speaker to extract certain spectral,

prosodic [4], [22], or other high-level features [10], [16] and

uses them to create a speaker model. Then, in the runtime

verification phase, the ASV system uses the trained speaker

model to verify the incoming voice.

Attacks on voice recognition and speaker verification
systems. Both voice recognition and speaker verification sys-

tem suffer from attacks. Recent researches [7], [11], [24],

[28] have shown that spoken words can be mangled such

that they are unrecognizable to humans, which poses a serious

threat to voice recognition systems. For instance, [28] showed

that it is feasible to send inaudible attack commands. Also,

various are proposed to break the biometric identification of

the victim [14], [25]. For example, [25] shows that an attacker

can overcome text-dependent ASV systems by concatenating

speech samples from multiple short voice segments of the

target speaker. Due to the simplicity of voice spoofing attacks,

a few research papers have been published in developing relay

attack countermeasures [9], [19], [20], [26], [30]. However,

all these countermeasure systems are particularly designed for

smartphone, which makes them hard to be implemented on AR

headsets. For example, the liveness detection system proposed

in [29] can detect the replay attacker by reusing smartphone

as a sound radar. However, this work cannot be implemented

on AR headsets since AR headsets do not have a speaker that

is towards the user’s mouth.

VII. CONCLUSION

Voice-based interaction is usually used as the primary

interaction method for AR headsets due to its good user

experience and performance. AR users rely on accurate and

secure voice input to communicate with AR headsets. How-

ever, recent researches have shown that an attacker can easily

perform various attacks with the help of state-of-the-art voice

synthesis/conversion software. To secure the voice input on

AR headsets, we propose a robust and low-cost solution for

defending against voice-spoofing attacks on AR headsets with

high accuracy. Our system leverages a contact microphone to

record the internal body propagation of the voice. A user

legitimacy is determined by measuring the correlation and

similarity between the internal body voice and air voice. To

our best knowledge, our system is the first to protect the voice

input for AR headsets. Experimental results show that our

system can accept normal users with average accuracy of 97%
and defend against obstruction attack and replay attack with

average accuracy of 99.2% and 98%, respectively.
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