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1 Introduction

During the past decade, there has been an exceptional
development and fast deployment of wearable devices.
Based on the data provided by Statista, sales of
smartwatches are forecast to reach 141 million units in
2018 (Smartwatch Sales Worldwide, 2019). Thanks to a
greater range of features and various sensors, smartwatches
are expected to replace smartphones in some scenarios
with better user experience and performance. For example,
people who trust each other can exchange or share
sensitive information (e.g., e-mail address and phone

number) between smartwatches directly without taking out
the smartphone. Such communication between participants
should be protected against access from external devices
and attackers. Existing solutions secure the communication
by either using a four-digit PIN to encrypt the information
or scanning a quick response code (QR code) manually.
However, the PIN-based approaches suffer from brute-force
attack due to limited length, and the QR code-based
approaches can be attacked using a camera.

In the past few years, researchers have proposed many
novel key establishment and device pairing systems to
secure the communication between mobile devices and
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serve as alternatives to traditional PIN code-based and
cryptographic-based approaches. In these systems, multiple
devices share a similar observation of a random signal.
The random signal is then used to generate a secret key.
The random signal can be the wireless channel information
(Azimi-Sadjadi et al., 2007; Jana et al., 2009; Wang et al.,
2011; Liu et al., 2012), human activity (Mayrhofer and
Gellersen, 2007; Yüzugüzel et al., 2015; Ahmed et al.,
2015; Xu et al., 2016; Shen et al., 2018; Xu et al.,
2017), ambient noise (Mathur et al., 2011), magnetic
signal (Jin et al., 2016), or electromyography (Yang et al.,
2016). However, due to the characteristics of the source
signal, existing systems can still be attacked in some
cases. For example, wireless channel information-based
systems can be attacked by blocking the line-of-sight
(LOS) radio propagation between devices, which leads
to various channel information observations on different
mobile devices. Activity-based approaches can pair two
devices by leveraging the same device movement, but
the randomness of its keys is low and can be predicted.
Ambient environment-based systems cannot work well if
the attackers try to control the ambient signal by making
predefined noises or vibrations. The electromyography
(ECG)-based approach needs special hardware support for
both devices. Recently, researchers proposed to pair devices
by generating keys from spectrums of ambient acoustic
signals (Schürmann and Sigg, 2013). However, since they
use the spectrum of a wide frequency band as the random
source, the rich harmonic content significantly reduce the
randomness of generated keys. Moreover, most existing
systems need extra infrastructure to synchronise devices
and trigger the key generation process. Once the central
infrastructure is attacked, these systems cannot work as
expected since mobile devices do not share the same
knowledge of the random signals.

Figure 1 An example application of using AudioKey
for device pairing (see online version for colours)

Notes: Two normal users start generating keys by shaking hands.
The smartwatches extract keys from the acoustic
environment and use them to secure data exchange.

These limitations motivate us to design a usable and
secure device pairing system on smartwatches at the
software level. Our system enables the secure pairing on
two smartwatches by fusing the gesture and the acoustic
information. Specifically, our system uses the handshake

activity to trigger the key generation on two smartwatches
at the same time and generates a unique secret key from
audio signals. There are three key insights that support
our system. The first insight is that two smartwatches
of two normal users share the same movement state
during some states of the handshake, which enables us
to trigger the key generation process on two devices at
the same time without extra synchronisation infrastructure.
The second insight is that the acoustic signals received
by two devices have certain randomness in real scenarios.
Such random audio signals can be used as the source
to generate secret keys on two smartwatches that are
close to each other during the handshake. In addition,
most smartwatches are equipped with microphones and
can collect raw audio signals in one or two channels.
Therefore, such a key generation model can be supported
at the software level and installed on most smartwatches.
Inspired by these facts, we propose AudioKey, a system
that can pair two smartwatches using audio signals during
the handshake. During the handshake of two users, these
two smartwatches independently generate secret keys based
on the collected audio signal. The generated key can be
used to authenticate each other or encrypt the sensitive
data exchanged on the public channel. To realise such
a system, several challenges must be addressed. First, it
is not clear whether the randomness of the audio signal
during the handshake is random enough to generate robust
secret keys. We answer this question by checking the
randomness of generated secret keys in Subsection 5.2.
The second challenge is to start a key generation model
on two smartwatches at the same time without extra
synchronisation. To address this challenge, we design a
handshake detection model in Subsection 3.3 and use it to
trigger the key generation model, so that two smartwatches
can start the key generation at the same time without extra
synchronisation. Another challenge is to design efficient
key generation and error correction models. A secret key
should be generated with sufficient bit rate (BR) and have
enough randomness while ensuring a high matching rate
(MR) between normal users and low MR between normal
users and the attacker. To address this issue, we propose
a key generation scheme that leverages features in both
frequency domain and time domain of the audio signals.

Our contributions in this work lie in the following
aspects:

• Our system is software-based and can be easily
integrated into all smartwatches.

• We propose a usable and secure device pairing system
on smartwatches by fusing the gesture and audio
signals. Compared with gesture-based approaches, our
system greatly improves the randomness of generated
secret keys. Compared with audio-based approaches,
we provide a usable way to synchronise two
smartwatches and a new key generation scheme that
improves the randomness of keys by downsampling
the harmonic content in the audio spectrum.
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• Evaluation results show that our system can achieve a
bit generation rate of at least 13.4 bits/s with a key
agreement rate (KAR) of 96.7% for a 128-bit secret
key, and our system is secure enough against strong
attackers who can show up near normal users, have
the same smartwatch and key generation software,
start the key generation at the same time as normal
users, and monitor the error correction information.

2 Problem formulation

In this section, we will introduce three threat models
we consider in this work. Also, we will discuss the key
insights, user case and the challenges we faced.

2.1 Feasibility study

The propagation of acoustic signals in indoor environment
is dynamic and complicated. Various factors (e.g., walking
human beings and displacement of objects) can influence
the propagation of the signal that broadcasts from each
speaker (human being or loudspeaker). In this paper, we use
Geometrical room acoustics theory (Siltanen et al., 2007)
to model indoor acoustic propagation. For each receiver
(microphone), the received acoustic signal x(t) can be
expressed as

x(t) =

Ns∑
i=1

(
Nl∑
l=1

Hl(si(t), αl, τl)

+

Nl∑
l=1

Hl(si(t), αl, τl)

+

Nl∑
l=1

Hl(si(t), αl, τl)

) (1)

where si(t) is the signals that is broadcasts from the ith

speaker, the subscripts l, r, and d represent LOS, reflection
and diffusion paths, respectively, H(· · · ) is the channel
response of each path with the path gain α and path
delay τ . We can see that the received acoustic signal
x(t) is influenced by many factors. In order to get the
same acoustic signal, all parameters (e.g., the number of
speakers, the number of paths, and so on) should remain the
same. Even the attacker can control or predict the source
signal s(t), received signal x(t) still cannot be completely
estimated due to the dynamics of indoor environment (e.g.,
movement and displacement), which means that the keys
generated from acoustic signals can be random.
To further validate the insights we find from the indoor
acoustic signal model, we collect data from two normal
users who are shaking hands and an attacker who is 1.2
metres away from the normal users and collect the acoustic
signals at the same time as normal users. Figures 2(a)
and 2(b) illustrate the spectra of two normal users. We
can see that two spectra are almost the same although the
energy distributions are different in some small frequency
bands. This indicates that two normal users who are in close

Figure 2 Spectra of audio signals collected on two normal
users and the attacker, (a) Alice (b) Bob (c) the
attacker (see online version for colours)

(a)

(b)

(c)

proximity can receive almost the same audio signal, which
enables us to generate the same secret key for them based
on their shared knowledge. Figure 2(c) shows the spectrum
of the attacker. We find that the spectrum of the attacker
is quite different from that of any normal user. Although
the spectrum of the attack has partial information on normal
users’ spectra, the attacker cannot recover normal users’
spectra without extra knowledge. Moreover, the interactions
between two normal users also introduce unpredictable
variances (e.g., normal user’s), which makes it harder for
the attacker to generate the same spectra. These key insights
inspire us to use the spectrum to generate secrets for a pair
of normal users while ensuring that the attacker will not
generate the same secret key.

2.2 Threat model

Our system consists of two normal users, Alice and Bob,
and one attacker. Each of the normal users carries one
smartwatch that our system is implemented on. Both of
them trust each other and want to pair their devices by
shaking hands. A public channel is available, and everyone
can exchange data through it. Alice and Bob want to
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generate the same secret key using our system to protect
their communication. Each of the two smartwatches works
independently and has no prior knowledge of the other’s
existence. We assume the attacker is able to:

• know every detail of our handshake detection, key
generation, and error correction algorithms

• stand in close proximity (1.2 metres) and can observe
the handshake activity performed by normal users
during the whole process

• eavesdrop on and decode all the packets sent via a
public communication link, e.g., Wi-Fi, Bluetooth, or
NFC

• have the same audio recorder that normal users have.

In this paper, we consider three threat models. In the first
threat model, the attacker has no capacity except randomly
guessing. In the second threat model, the attacker can be
around normal users in close proximity and record the
acoustic signals using the same microphone that normal
users use. However, the attacker does not know the exact
start time of key generation. In the third threat model, the
attacker has all capacities in the second threat model and
knows the exact start time of key generation (e.g., with
the help of extra cameras). In the three threat models, we
assume the attacker cannot perform the jamming attack by
playing extremely loud music since the victims can easily
notice the abnormal situations.

2.3 Use case

In the use case of our system, two normal users trust
each other and agree to share information between two
devices in a social event. The agreement is established by
shaking their hands where their smartwatches are worn. If
a normal user only wants to shake hands with a person
without exchanging information, he or she can disable
this functionality in advance or cancel the file transfer
after the key generation (we assume the system will ask
for confirmation before exchanging information). The key
generation process is triggered on two devices at the same
time by leveraging the shared movement of two hands
during handshakes. The keys are automatically generated on
each smartwatch by leveraging the microphone and motion
sensors embedded in most smartwatches and wearable
devices. The microphone captures the surrounding acoustic
signals, and the motion sensors are used to collect raw
gyroscope data. The distance between two normal users is
about 0.6 metres, and the attacker is at least 1.2 metres
away from normal users.

2.4 Challenges

Although we get insights in Subsection 2.1 that show we
can use acoustic signals to generate secret keys for normal
users, it is still challenging to design a distributed key
generation system. The first challenge is how to ensure

there always exists synchronisation service in practice.
Without proper synchronisation, two devices cannot trigger
key generation at the same time, which will influence
system performance to a large degree. Previous works
(Schürmann and Sigg, 2013; Yang et al., 2016) use the
extra server for synchronisation among devices. However,
we cannot ensure this kind of synchronisation is always
available for users. As a result, a new scheme needs to
be designed to trigger two smartwatches to start generating
the secret key at the same time without introducing extra
synchronisation. To address this issue, we study the general
process of the handshake and leverage the consistency
of devices’ movements during the second stage of the
handshake to trigger the key generation model on two
devices at the same time.

The second challenge is how to select proper features
of audio signals on the time-frequency domain for key
generation. The key generation scheme should maximise the
MR between the keys of normal users and minimise the MR
between the keys of normal users and that of the attacker.
A simple idea is to perform quantisation algorithms on
time-domain signals, which is not suitable for our system
due to the high-frequency noise in acoustic signals. In order
to generate secret keys that are robust against background
noise, we propose an efficient scheme that extracts the
secret key from the audio spectrum on a narrow frequency
band.

The third challenge is that the generated secret
keys should be random enough so that the attacker
in the first threat model cannot easily guess normal
users’ secret key. The spectrum of the audio signal
received at each smartwatch contains rich information of
acoustic environment (e.g., normal users’ voices). However,
as shown in Figure 3, the spectrum reveals its rich
harmonic contents and contains duplicated information
across multiple frequency bands, which would greatly
reduce the randomness of the secret keys if we use
the whole spectrum for key generation. To address this
problem, we only leverage the spectrum on a narrow
frequency band. To further avoid too many subsequences
that contain consecutive and identical bits (e.g., ‘00000000’
and ‘11111111’), we downsample the secret keys.

Figure 3 Duplicated information exist across multiple
frequency bands of the spectrum (see online version
for colours)
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3 System design

In this section, we will introduce the signal pre-processing,
handshake and start point detection, pairing process
triggering, key generation, and error correction schemes.

3.1 Approach overview

The key idea underlying our key generation model is to
fully leverage the shared acoustic environment and the
handshake activity between two normal users. As shown
in Figure 4, the gyroscope in each user’s smartwatch
keeps measuring the angular velocity along the z-axis, and
the microphone records the acoustic signals. Whenever a
handshake activity is detected, each smartwatch triggers
the key generation process. For each user, a secret key
is generated based on the knowledge on both frequency
domain and time domain of the audio signals. Then, we
utilise error correcting codes to further improve the MR
of generated secret keys between normal users. After error
correction, two normal users generate the same secret key,
and this key can be used to pair two smartwatches or secure
the sensitive data transmission between two normal users.

3.2 Pre-processing

The received gyroscope signal contains high-frequency
noise. Such noise needs to be removed before handshake
detection in order to improve the detection performance.
In our system, we use a moving average window with
the window size of 20 samples to smooth received sensor
data. By applying the low-pass filter, important features are
maintained, while high-frequency noise is removed. In the
following subsections, we will show how to use filtered
gyroscope signal to detect handshake and trigger the key
generation on two devices.

Figure 4 System pipeline (see online version for colours)

3.3 Handshaking detection

In our system, we use the handshake to trigger the key
generation process on two smartwatches. Generally, the
handshake activity can be divided into three stages: raising
the arm, a brief up-and-down movement of the grasped
hands, and putting the arm down. These activities introduce

various influences on motion sensors (accelerator and
gyroscope). Although both acceleration data and gyroscope
data can be potentially used to detect the handshake,
we only use gyroscope data along the z-axis to detect
handshake in our system. The reason is that the acceleration
data is more sensitive to minor arm movement during
the handshake compared with gyroscope data. Even if
we accurately detect the handshake, we cannot estimate
the accurate starting time of any stages and trigger the
key generation on two smartwatches at the same time,
which further influences the MR between to normal users.
Moreover, users can enable our system only when they need
to securely exchange or send information, so the energy
cost will not be too high even if we only use the gyroscope
sensor.

We can observe the corresponding effect on gyroscope
data along the z-axis in Figure 5. The arm raising
activity will cause the first significant positive pulse on
the gyroscope waveform. The next several positive and
negative pulses are caused by the brief up-and-down
movement, and the last significant negative pulse indicates
that the user puts the arm down. We also find that different
people share this handshake pattern in our experiments. To
detect handshake, a simple idea is to use a moving time
window and dynamic time warping (DTW) algorithm to
match the filtered gyroscope waveform with the existing
pattern. Once the DTW distance is less than a threshold,
a handshake activity is claimed to be detected. However,
this scheme cannot ensure good detection accuracy since the
amplitudes and speeds of handshake may be quite different
for different people. Also, we do not know how many times
the user will repeat the up-and-down movement, which
means we cannot have a common pattern of the handshake.
As shown in Figure 5, the first user shakes hands more
slightly than the other two users. If we match the pattern of
the first user with that of the second user, the DTW distance
could be very large.

Figure 5 Handshake patterns of three users (see online version
for colours)

To address this problem, we need to extract features that
are robust to different handshake behaviours. We notice
that the whole handshake involves at least three positive
peaks and two negative peaks on the gyroscope signal
along the z-axis. Instead of detecting the handshake based
on the shape, our handshake detection model focuses on
counting the significant positive and negative peaks. We
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set the window size to 3.5 seconds in order to capture the
whole handshake activity. Within each time window, we
implement the peak finding algorithm to find all positive
peaks and negative peaks. After that, we count the number
of significant positive peaks whose amplitude is higher than
80 degrees/s and the number of significant negative peaks
whose amplitude is lower than –150 degrees/s. A handshake
is claimed to be detected if two conditions are satisfied:

1 the number of significant positive peaks is higher than
3 and the number of significant negative peaks is
higher than 2

2 the first negative significant peak appears after the
second positive peak.

3.4 Triggering the pairing process

Since our system is distributed without extra
synchronisation, two wearable devices need to sample the
audio signal at the same time in order to establish the
same secret key. Although we can accurately detect the
handshake, it is hard to know the exact start time of the
handshake of each user. Also, two users may not raise their
arms at the same time, which means we cannot use the start
time of the handshake to trigger the key generation process.
To solve this problem, we leverage the consistency of
the two devices’ movement during the brief up-and-down
movement. Since two hands are held tightly, they should
move up and down almost at the same time. In our system,
we trigger two devices at the same time by robustly
exploring the first negative peak in the second stage, which
is the start of the second stage. After handshake detection,
we locate the first negative peak whose amplitude is lower
than –150 degrees/s. The timestamp of the located peak is
the start time of the secret key generation.

3.5 Key generation

After obtaining the audio signal, we need to improve the
randomness of the audio signal and find efficient key
generation schemes to extract secret keys with a high BR.
Some existing works adopt quantisation algorithms for key
generation. Quantisation schemes parse the sample values
into binary bits based on different rules. Some systems (Liu
et al., 2012; Zan et al., 2012) adopt quantisation schemes
that use one or two thresholds to quantise samples to 0 or
1. However, these schemes limit the diversity of generated
keys by generating a series of 1 or 0 sequences. Other
systems (Yang et al., 2016) use advanced schemes that
divide the whole waveform into several sub-sequences. In
each sub-sequence, waveforms are converted to binary code
based on their trend (rising, dropping, or steady). Though
the key diversity is improved compared with traditional
approaches, only three directions are considered in these
schemes, which leads to the diversity of key to not be
as expected. Besides quantisation, audio fingerprinting is
an approach to deriving a characteristic pattern from an
audio sequence (Cano et al., 2012). Some works leverage

music-specific properties (e.g., rhythm information and
pitch). However, such features might be lost in ambient
audio, which makes these methods not applicable to our
system.

In our system, we extract secret keys from both the
frequency domain and the time domain of the audio signal.
As we discuss in Subsection 2.4, the whole spectrum of
the audio signal contains duplicated information, so we
focus on one narrow frequency band that only contains one
harmonic for key generation. Basically, the audio signal
is first divided into a set of non-overlapping time frames.
Within each time frame, we apply a short-time Fourier
transformation (STFT) and split the spectrum into a set of
non-overlapping frequency bands. Then, we calculate the
sum of energy in each frequency band and store the sum
to an energy matrix, E that has energy per time frame per
frequency band:

E[i, j] =
∑

bandfilter(ws,we)(Si)

ws = w × j we = w × (j + 1)

i = 1, 2, . . . , N j = 1, 2, . . . ,M

(2)

where Si is the spectrum of the narrow frequency band we
choose of the ith time frame, ws is the starting frequency
of the jth frequency band, we is the ending frequency of
the jth frequency band, bandfilter(ws,we)(Si) is a bandpass
filter that only reserves the spectrum Si from ws to
we, M is the number of frequency bands of each time
frame, and N is the number of time frames. Also, we let
M ×N = C, where C is constant. With a larger time
frame, more samples will be included in STFT, and the
granularity of STFT is better. As a result, the number of
frequency bands should be larger.
After getting the energy matrix E, the most naive way to
extract a secret key is to define a threshold. Each entry of
E is parsed to ‘0’ if its energy is less than the threshold.
Otherwise, it is parsed to ‘1’. This scheme is easy to
implement, but it limits the randomness of generated secret
keys. As shown in Figure 6(a), the entries with high energy
are usually clustered together, which produces several long
sequences of continuous ‘1’ or ‘0’. Instead of using a
single threshold, we extract a binary representation of audio
from changes in the energy of both successive frequency
bands and time frames. A key x is generated based on the
following equation:

x[u, v] =


1 (E[u+ 1, v] > E[u, v]) ∧ (v > ⌊(v/2)⌋)
0 (E[u+ 1, v] ≤ E[u, v]) ∧ (v > ⌊(v/2)⌋)
1 (E[u, v + 1] > E[u, v]) ∧ (v ≤ ⌊(v/2)⌋)
0 (E[u, v + 1] ≤ E[u, v]) ∧ (v ≤ ⌊(v/2)⌋)

(3)

where u = 1, 2, ..., N − 1 and v = 1, 2, ..., M − 1.
Each entry of the right half of x represents the change
in the energy of successive frequency bands. If x[u,
v] = 1, it means current frequency band has more energy
than successive frequency band. Similarly, each entry of
the left half of x represents the change in the energy of
successive time frames within the same time frame. If x[u,
v] = 1, it means current time frame has more energy than
successive time frame within the same frequency band.
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Figure 6 Key generation results of three different schemes,
(a) based on single threshold (b) based on our
scheme (c) after downsampling (see online version
for colours)

(a)

(b)

(c)

Figures 6(a) and 6(b) show the generated keys of the
single threshold-based scheme and our scheme. We can
see that the single threshold-based scheme produces long
‘0’s or ‘1’s since the entries with high energy are usually
clustered together, which greatly reduces the randomness of
the secret keys. Since our scheme considers the difference
between two neighbouring entries instead of only one
entry, this issue can be greatly improved. However, long
‘0’s or ‘1’s still exist along each column, which largely
influence the randomness of generated keys. To further
improve the randomness of generated keys, we downsample
the generated key by an integer factor D along columns.
Figure 6(c) illustrates the key after downsampling the

results in Figure 6(b). We can see that the average length of
continuous ‘0’s or ‘1’s is further reduced, which indicates
that the randomness of generated keys is better.

3.6 Error correction

After key generation, the two keys on two smartwatches are
expected to be identical for a successful pairing. However,
due to the potential bias in triggering key generation and
random noise in audio signals, mismatched bits may exist
in generated secret keys. Suppose two smartwatches A and
B generate two keys kA and kB , respectively. To correct
the mismatched bits between two keys, we utilise the Golay
code G = (24, 12) (Golay, 1949) to correct the mismatched
bits between two smartwatches. Since the G = (24, 12)
cannot directly deal with a long key (e.g., 128 bits), we
first equally segment each of kA and kB into a sequence
of non-overlapped subkeys, and each subkey has the same
length of λ bits. The λ is a positive integer that is at
least 4 and no more than 12. To meet the requirement of
G = (24, 12), we extend each subkey with λ bits to 12 bits
by adding 0. We correct the mismatched bits in each pair
of subkeys based on the following scheme.

Assume a and b are a pair of subkeys of kA and kB .
We first generate a 24-bit code by adding 12-bit redundant
information δ after a. Instead of sending the subkey a to
smartwatch B, the smartwatch A only sends the redundant
information δ to reduce the information leakage. Since δ
contains limited knowledge of a, the smartwatch B can
correct the mismatched bits in b by applying decoding
function on b and δ. The value of λ determines the ability
of error correction. Since the Golay code G = (24, 12) can
correct at most three error bits, a small λ can ensure a high
bit MR between normal users after error correction, but the
attacker can also have more knowledge about the victim’s
secret key. If the value of λ is large, it is harder for the
attackers to guess the key, but the bit MR between normal
users may decrease since more than four error bits may
exist in a subkey.

4 Evaluation

In this section, we first will show the detailed
implementation of our system. Testing scenarios and
evaluation metrics are then introduced in the following
subsections. Finally, we will discuss the system’s
performance in different settings to show that AudioKey is
accurate and robust enough for smartwatch paring.

4.1 Experiment setup

Figure 7(a) shows a prototype of AudioKey. Each user
wears a smartwatch on their wrist and shakes hands with
each other. In order to help to collect data, we build an
application on Samsung Gear 3 smartwatches with a UI
design, as shown in Figure 7(b). Both devices of normal
users and the attacker keep collecting gyroscopes and raw
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audio signals with sampling frequencies of 100 Hz and
16,000 Hz, respectively. Audio signals are collected on a
single channel.

4.2 Testing scenarios and data collection

To evaluate the effectiveness and robustness of our system,
we conduct various experiments including nine volunteers
in four different scenarios, including a quiet office room,
supermarket, roadside, and noisy places. Nine volunteers
are university students who age from 22 to 29. In each
scenario, we evaluate our system performance between two
normal users and the resistance of our system to three
attacks we consider. Across all experiments, the attacker
is equipped with the same smartwatch that the normal
users wear. In order to evaluate the influence of the attack
distance, we adopt the Edward T. Hall’s proxemics theory
to emulate how closely an attacker can show up around
the normal users. As shown in Figure 7(c), for a successful
attack, the attacker cannot appear within 1.2 metres away
from the normal users since it is the personal space and
the attacker can be easily noticed. The attacker in our
experiments can appear anywhere as long as he or she is at
least 1.2 metres away from any normal user.

4.3 Evaluation metrics

In all the experiments, three metrics are used to measure
the performance of AudioKey.

• BR: In our experiments, the BR is defined as the
average number of bits our scheme can generate in
one second before error correction.

BR = ((M ×N) mod D)/T (4)

where T is the time duration of audio signal, M is
the number of frequency bands of each time frame,
N is the number of time frames, and D is the integer
factor for downsampling.

• MR: The MR is defined as the ratio of matched bits
divided by the total length of the generated secret key
after error correction. It reflects the level of
consistency between two secret keys.

MR = Nmatch/L (5)

where Nmatch is the number of matched bits and L is
the length of generated secret key.

• KAR: The KAR is defined as the rate at which two
keys generated on two smartwatches are identical.

5 System performance

In this section, we evaluate the performance of our
handshake detection model and key generation model. Also,
we will examine the randomness of generated secret keys
in our system.

Figure 7 Experiment setup, (a) prototype (b) UI (c) illustration
of attackers’ locations (see online version for colours)

(a)

(b)

(c)

5.1 Handshake detection

Since our key generation model is triggered by the
handshake detection model, the accuracy of the detection is
an important performance indicator. In our experiments, we
ask the nine volunteers to repeat handshake 20 times and
evaluate the handshake detection performance. Our results
show that our handshake detection model can achieve
average detection accuracies of 98.9%, which means in
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most cases our handshake detection model can accurately
trigger the key generation model.

5.2 Randomness of generated keys

To ensure the randomness of generated keys, we leverage
the standard randomness test suit from NIST to examine the
randomness level of our secret keys after downsampling.
NIST randomness test suit involves a series of randomness
tests with a null hypothesis that the input key is random
and computes the p-value. If the p-value is less than a 1%
then the hypothesis is rejected, and the keys we generate is
non-random.

Table 1 Randomness test

Tests p-value Tests p-value

Frequency 0.659937 Cum. sum (forward) 0.027023
Block frequency 0.665073 Cum. sum (backward) 0.787595
Approximate entropy 0.030886 FFT 0.926884
Runs 0.114544 Serial (p-value1) 0.890679
Longest run 0.583223 Serial (p-value2) 0.961107

We collect the audio signals in different scenarios including
office room, road, and so on, and use them to generate
secret keys with a downsampling factor of 8. Table 1
shows the p-values across all tests. We can see that the
keys generated in different scenarios can pass all tests
with a high p-value, which indicates enough randomness of
generated secret keys. Our experimental results also show
that when the downsampling rate is 4 or less, generated
secret keys cannot pass the NIST randomness test.

5.3 Bit rate

One important performance indicator of key generation
scheme is how fast it can generate secret bits. In our
system, the BR before error correction largely depends on
the downsampling factor D. With a small D, we can get
a higher BR, but more noise bits will be included and the
randomness decreases. With a large D, we can expect a key
with better randomness, but the BR will be low. In order
to understand how downsampling factor influences the BR,
the MR, and the randomness of secret keys, we conduct
experiments to find the optimal downsampling factor D.
Figure 8(a) illustrates the BR under different downsampling
factors. When we do not perform downsampling, our
scheme can achieve an extremely high BR of 110.2 bits/s.
When the downsampling factor is 8, the BR is 13.8 bits/s,
which we argue is the minimal BR we can accept in our
use case.

We also evaluate whether downsampling can influence
the MR between two normal users after error correction.
It is clear in Figure 8(a) that the downsampling operation
will not reduce the MR between two normal users. In
contrast, it can improve the MR. When we do not perform
downsampling on the secret keys, the MR after error
correction is 97.39%, while it is at least 97.87% after

downsampling. It is because the error bits are not uniformly
distributed on original secret keys and are usually clustered
together. By downsampling, we can reduce the average
number of error bits in every 12-bit word.

Figure 8 System performance, (a) the influence of
downsampling factor on BR before error correction
and MR (b) system performance in different
scenarios (c) bit MR between normal users and the
attacker when the attacker is at different distances
from normal users (see online version for colours)

(a)

(b)

(c)

As shown in Table 2, we also compare the BR of AudioKey
with existing key generation systems. We can see that the
BR of our system is only lower than those of Magpairing
(Jin et al., 2016) and Shake-n-Shack (Shen et al.,
2018). However. Shake-n-Shake (Shen et al., 2018) only
discuss the resistance against mimicry attacks rather than
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the randomness of generated keys. Since Shake-n-Shake
generates keys using the behaviour of handshake that only
contain minor changes across different people, generated
keys may not be random so that attackers can have much
knowledge on the victim’s keys. Magpairing (Jin et al.,
2016) proves the security of generated keys by checking
the approximate entropy of keys. However, it is not clear
if their keys can pass more randomness test such as block
frequency test and FFT test. Compared with existing works,
our system can generated keys that can pass the NIST
randomness test with a better BR of 13.4 bits/s. With less
randomness requirement, our system can also provide a
high BR of about 100 bits/s.

Table 2 BRs of different key generation systems

Systems AudioKey
ProxiMate ShakeMe
(Mathur (Yüzugüzel

et al., 2011) et al., 2015)

BR (bits/s) 13.4 1.8 8

Systems
EMG-KEY Magpairing Shake-n-Shack
(Yang et al., (Jin et al., (Shen et al.,

2016) 2016) 2018)

BR (bits/s) 5.51 28.4 90

5.4 Influences of different scenarios

To evaluate the system performance in different scenarios,
we examine the KAR after error correction in three
scenarios, including quiet office room, roadside, and
supermarket. In each scenario, we trigger the key generation
for 20 times to generate 20 128-bit secret keys on each
smartwatch. In these experiments, the attacker is about 1.2
metres away from two normal users, and the λ is set to
4. Here, we consider the attackers in both the second and
the third threat models. The attacker in the third threat
model starts the key generation at the same time as normal
users, and the attacker in the second threat model starts 0.75
seconds after the normal users generate keys. Figure 8(b)
shows the KAR in three scenarios and two threat models.
We can see that the keys of normal users have much higher
KAR (at least 90%) than that between the normal users and
the attacker (no more than 20%) in any threat model, which
indicates that the attacker only has limited knowledge of the
keys of normal users in all scenarios even if the attacker
is close enough to the normal users and can monitor the
error correction information. On average, when λ = 4, our
system can achieve a mean key agreement probability of
96.7% for normal users and a low key agreement of 10.8%
for attackers in terms of a 128-bit secret key.

Also, we notice that the KAR between normal users
and the attacker in quiet places is higher than that in
noisy places (roadside and supermarket). In quiet places,
generated secret keys largely depend on the voice of two
normal users and much less background noise will be
included, so that the attacker can acquire more knowledge
about the secret key. Even if the attacker can show up

closely around normal users and hear the content of what
normal users say, our system can still ensure a mean low
KAR of 12.5% between normal users and the attacker.

Figure 9 Key MR after 1-round error correction with different
λs in three scenarios, (a) quiet office room
(b) roadside (c) supermarket (see online version
for colours)

(a)

(b)

(c)

5.5 Influences of distances between normal users and
the attacker

In real scenarios, the attacker will appear at any location
without being noticed by normal users. The attacker can
be very close to normal users (about 1.2 metres) or very
far from them. To evaluate the attacker’s knowledge about
normal users’ key after error correction when the attacker
is at different distances from normal users. Figure 8(c)
shows the average MR with error bars between normal
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users and the attacker after correcting 3-bit errors in every
8-bit key (λ = 8) when the attacker is at six different
distances away from normal users. As the reference, the
MR between normal users is above 98.5% in the same
scenario. We can see that all attackers have very limited
knowledge about normal users’ secret keys when they are
at least 1.2 metres away. The attacker who starts the key
generation at the same time has the highest MR of 73.25%
when the attacker is 6 metres away, and the attacker who
starts the key generation 0.75 seconds later than normal
users has the highest MR of only 61.45%. We also notice
that the MRs of attackers do not drop with the increase of
the distances. This is because all these attackers generate
keys based their own spectrum, and the MR depends on
how similar their spectrum is to that of normal users, which
is random. That is why the attacker who is 6 metres away
can have a higher MR than the attacker who is 1.2 metres
away from normal users. Also, note that the attackers in
this experiment almost have the highest ability. Although
the attacker can have a bit MR of about 75%, the number of
unknown bits are about 32 bits. As a reference, the number
of unknown bits of PIN-based Bluetooth encryption (used
by current smartwatches) is 20 bits. Moreover, the locations
of mismatched bits are unknown to the attackers. These
facts imply the keys generated by our system is much more
secure than existing solutions.

5.6 Influence of different λ

In Subsection 3.6, we improve the MR after error correction
between two normal users by using shorter sub-keys for
error correction. However, it is not clear what is the proper
value of λ in different scenarios. If the λ is too small,
the attacker can acquire too much knowledge about normal
users’ keys and can recover it easily. If the λ is too large,
we cannot ensure good MR between normal users, although
the attacker gets very limited knowledge about the keys.
To understand what is the proper value of λ in different
scenarios, we adjust the value of λ from 4 to 12 and see
its influence on the MR between two normal users and
between normal users and the attacker after 1-round error
correction, and evaluation results are shown in Figure 9. We
can see that the MRs drop with the decrease of λ in all
scenarios. This is in line with expectations since a smaller λ
can provide better error correction capability. Moreover, we
notice that the difference between two MRs rises with the
increase in λ. Although more error bits cannot be corrected
in 1-round error correction with larger λ between normal
users, the attacker gets much less knowledge of normal
users’ secret keys. If the normal users pay more attention
to the security, we can set λ to a large integer and perform
error correction for multiple rounds between normal users
to ensure they generate the same keys. If the users value
time efficiency more and accept keys with lower security,
we can set λ to a small integer. In all cases, we can
ensure the security of generated secret keys. The users can
choose different security levels and time efficiency levels
by adjusting the values of λ.

6 Related work

• Wireless channel information: Recently, various
system are proposed to generate secret keys by using
wireless channel information (Azimi-Sadjadi et al.,
2007; Jana et al., 2009; Wang et al., 2011; Liu et al.,
2012). The work in Azimi-Sadjadi et al. (2007) is the
first one to generate a secret key from wireless signal
strength. Liu et al. (2012) propose star-based and
chain-based approaches to generate a secret key
among multiple wireless devices to ensure secure
group communication. However, these approaches can
still be attacked by blocking the LOS radio
propagation between devices, which leads to different
channel information observations on different mobile
devices. Moreover, accurate channel information
measurements rely on special devices, which are not
supported on current smartwatches.

• Human activity: Mayrhofer and Gellersen (2007)
propose ShaVe and ShaCK that can generate a secret
key from an accelerometer waveform through shaking
two devices together. A similar system called
ShakeMe (Yüzugüzel et al., 2015) is designed for key
generation from a shared motion. Another system
called Checksum Gestures (Ahmed et al., 2015) uses
a single-continuous gesture to generate an
authentication code in order to replace the traditional
PIN input for wearables. Gait is exploited in Xu et al.
(2016) to generate a shared secret key for all on-body
devices. Those systems are designed for mobile
devices that are held together, which is not convenient
for users during interactions. Also, these approaches
can be attacked if target’s activities are captured by a
hidden camera.

• Ambient environment: ProxiMate presented in Mathur
et al. (2011) allows wireless devices in proximity to
securely pair with one another autonomously by
generating a common cryptographic key directly from
their shared time-varying wireless environments.
However, ProxiMate asks mobile devices to emit a
trigger signal for synchronisation on a private channel
before key generation. A system using ambient sound
is proposed in Schürmann and Sigg (2013) by putting
several mobile devices together with synchronisation.
These ambient noise-based approaches can still be
threatened by making predefined noises.

• Magnatic signal: The system designed in Jin et al.
(2016) attaches tiny magnets to a mobile device and
exploits the correlated magnetometer readings for key
generation. The new implementation in this work is
not suitable for small mobile devices.

• Electromyography: EMG-KEY (Yang et al., 2016)
leverages electrical activities caused by human muscle
contraction to generate a secret key. This approach
requires that both the transmitter and the receiver are
equipped with EMG sensors, which introduces more
implementation costs.
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• Visual information: The visual information-based
approaches (e.g., QR code) are widely adopted by
current mobile applications to establish the trust
between two devices. A similar idea is proposed in
McCune et al. (2005). However, these approaches still
suffer from shoulder-surfing attacks.

7 Discussion

In this section, we will discuss the two factors that may
influence system performance and limitations of our system.

• Threat of jamming attack: In practice, there exists the
attacker who just wants to generate the same key of
normal users by altering the acoustic environment. For
example, the attacker can carry a loud speaker and
play sounds with high volumes. In this case, it is very
likely the attacker can acquire higher MRs. However,
this attack cannot work since we use low frequency
part of the spectrum for key generation (under 1,000
Hz). This kind of attack can be easily noticed by the
normal users who are in the key generation process.

• Threat of body movements during handshake
detection: During handshake, the users do not always
keep steady, and some body movements may be
involved, which may generate influences on motion
sensors. We argue that the handshake detection
scheme will not be influenced by body movements as
long as the users follow the three steps of handshake.
The reason is that we only use the gyroscope
measurements on the z-axis. Since people usually
wear their smartwatches on wrists, gyroscope readings
on the z-axis are mainly influenced by raising and
putting down the arm during handshake.

Next, we will discuss the limitations and future work
of our system. Our system involves a limited number
of participants, and all users are university students. To
better understand the performance of our system, it will be
necessary to involve more participants with a more diverse
background. Also, the experiments are conducted within
one month. Since our system uses handshake activity to
trigger the key generation model, a long-term evaluation
can be conducted considering that the human behaviour and
habits may change.

8 Conclusions

In this paper, we develop a usable and secure device pairing
system called AudioKey for smartwatches. AudioKey fuses
the gesture and audio signals to pair two smartwatches.
More specifically, AudioKey detects the handshake activity
between two normal users and triggers the key generation
process on two devices at the same time. After handshake
detection, a secret key is extracted from both the frequency
domain and the time domain of audio signals and
used to authenticate each other or encrypt the sensitive

data exchanged on the public channel. Evaluation results
performed on nine volunteers under three different scenarios
show that our system can generate keys with sufficient
randomness and robustness against strong attackers, and
achieve a high handshake detection accuracy of 98.9% and
a bit generation rate of 13.4 bits/s with a mean KAR of
96.7% for a 128-bit secret key. The generated secret keys
can pass the standard randomness test suit from NIST with
high p-values.
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