Defending Against Voice Spoofing: A Robust Software-based Liveness Detection System

Jiacheng Shang, Si Chen, and Jie Wu

Center for Networked Computing
Dept. of Computer and Info. Sciences
Temple University

Biometrics: Voiceprint

- Voiceprint
 - Promising alternative to password
 - Primary way of communication
 - Better user experience
 - Integration with existing techniques for multi-factor authentication

Biometrics: Voiceprint

Voiceprint example

Voiceprint-based authentication

Threats

- Human voice is often exposed to the public
- Attackers can "steal" victim's voice with recorders
- Security issues
 - E.g. Adversary could impersonate the victim to spoof the voice-based authentication system

Reverse Turing Test

CAPTCHA

Completely Automated Public Turing test to tell Computers and Humans

Previous work

Systems	Limitations
Automatic speaker verification	 Verifying the speaker's identity (Bob or Alice) Cannot defend against replay attack
Phoneme localization-based liveness detection (distance) 1. User speaks an utterance, e.g., "voice" with phonemes: [v][3][1][5]. 1. User speaks an utterance, e.g., "voice" with phonemes: [v][3][1][5]. 1. User speaks an utterance, e.g., "voice" with phonemes: [v][3][1][5]. 1. User speaks an utterance, e.g., "voice" with phonemes: [v][3][1][5]. 1. User speaks an utterance, e.g., "voice" with phonemes: [v][3][1][5].	 Low true acceptance rate (TAR): the smartphone needs to be static relative to the mouth VoiceLive: A Phoneme Localization based Liveness Detection for Voice Authentication on Smartphones (L. Zhang et al. CCS 2016)

Previous work

Systems Limitations Articulatory gesture-based Low true acceptance rate (TAR): the smartphone needs to be static liveness detection (e.g. lip motion) relative to the mouth (Doppler effect) Hearing Your Voice Is Not Enough: An Articulatory Gesture Based Mobile Voice Authentication (L. Zhang et al. CCS 2017) Leveraging the magnetic fields of Low TAR: cannot work if magnetic noise exists loudspeakers Low true rejection rate (TRR): cannot work if the attacker uses non-conventional loudspeaker You Can Hear But You Cannot Steal: Defending against Voice Impersonation Attacks on Smartphones (S. Chen et al. ICDCS 2017) 250° 260° 270° 280° 290°

Basic idea

 Leveraging the structural differences between the vocal systems of human and loudspeakers

Attack model

Attack model:

- A simple replay attack: only stealing victim's voice at the mouth and replaying it
- A strong replay attack: stealing victim's throat motions and voices at both mouth and throat from the database and replaying it

System Architecture

Voice-based solution (Simple attack model)

Computing the spectra using Short-time Fourier transform (STFT)

$$spectrogram\{x[t]\}(m,\omega) = |\sum_{n=-\infty} x[n]w[n-m]e^{-j\omega n}|^2 \text{Convolution}$$
 Time domain to frequency domain

x[n]: voice w[n]: window ω : angular frequency

Voice-based solution for simple attack

Normal user: two voices are different

- The voice (prime microphone) does not contain information of the unvoiced part.
- The voice (prime microphone) contains low-frequency information of the voiced part.

Attacker: two voices are similar

- The voice (prime microphone) contains information of the unvoiced part.
- The voice (prime microphone) contains most information of the voiced part.

- Motion-based solution for simple attack
 - Using accelerator to capture throat motions
 - 7 features: Variance, minimum, maximum, mean, skewness, kurtosis, standard deviation
 - SVM-based classification model for decision

- Random noise-based solution for strong attack
 - Attackers who can steal victim's voices and throat motions from the database and use multiple loudspeakers to imitate the victim

Our solution:

- Injecting a random vibration while the user is speaking
- Checking the number of vibration in the voices

Random noise-based solution

-40

For normal users

20

For the attacker

Computed by STFT

- The vibration introduces high energy to the high-frequency band.
- A vibration is detected if the energy of a moving window exceeds a threshold.

Evaluation

- Methodology
 - Implementing our system on real smartphones
 - Using two loudspeakers to perform replay attack

Maker	Model	Number of trumpets
Willnorn	SoundPlus	2
Amazon	Echo	2

Performance metrics

- The standard automatic speaker verification metrics
- True Acceptance Rate (TAR)
- True Rejection Rate (TRR)

Evaluation

Influence of locations on random noise-based approach

Locations	TAR	TRR	
1	100%	100%	
2	100%	100%	
3	100%	100%	
4	97.5%	100%	

Influence of acoustic noise on spectrum-based approach

7 training instances from the user are sufficient

Evaluation

- Overall performance
 - Simple replay attack

Solutions	TAR	TRR	Computation cost
Voice-based	100%	100%	Medium (SVM+STFT)
Motion-based	93.3%	88.93%	Low (SVM)

Strong replay attack

Solutions	TAR	TRR	Computation cost
Voice-based & random noise	97.5%	100%	High (SVM+2*STFT)
Motion-based & random noise	91.0%	100%	Medium (SVM+STFT)

Conclusion

- Smartphone-based liveness detection system
 - Leveraging microphones and motion sensors in smartphone - without additional hardware
 - Easy to integrate with off-the-shelf mobile phones software-based approach
- Good performance against strong attackers

