A Robust Sign Language Recognition System with Sparsely Labeled Instances Using Wi-Fi Signals

Jiacheng Shang, Jie Wu

Center for Networked Computing
Dept. of Computer and Info. Sciences
Temple University

MASS 2017
Motivation

- Wi-Fi signals are available almost everywhere.
- Wi-Fi signals can monitor surrounding activities using Channel State Information (CSI).
Motivation

- Sign language (SL) mainly uses manual communication to convey meaning.
Motivation

- Automatic SL Recognition is still in its infancy.
- Currently, all commercial translation services are human-based, and therefore, expensive.

Play the new video.
Motivation

- Automatic SL Recognition is still in its infancy.
- Currently, all commercial translation services are human-based, and therefore, expensive.
Motivation

- Automatic SL Recognition is still in its infancy.
- Currently, all commercial translation services are human-based, and therefore, expensive.
- American Language Services offers interpreters starting at $125 per hour and a two-hour minimum is required.
Problem Statement

Sign language recognition using Wi-Fi signals

- Uses commercial Wi-Fi devices (routers and laptops) to recognize sign language.

Strengths

- Can work in the dark
- Avoids breaching user privacy
- No need to wear sensors
- Low cost
Limitations of Existing Systems

- Limitations of existing systems: models are trained based on a large dataset
 - Large training datasets are usually hard and expensive to get in practice.
 - Many works have the potential requirement that label distributions in the training dataset and the testing dataset should be the same.
- Our approach: reduce the size of the training dataset by leveraging the knowledge in the unlabeled dataset and others' training datasets
Limitations of Existing Systems

- Why are current models trained using a large dataset?
Limitations of Existing Systems

- Why are current models trained using a large dataset?

Accuracy: 79%
Sign Language Recognition Pipeline

Data collection and preprocessing
- Data collection
- Low-pass filter
- Spikes removal
- Subcarrier selection

Sign language recognition
- Feature extraction
- Semi-supervised learning based approach
- Transfer learning based approach

Fine-grained sign language recognition
Signal Preprocessing

- Subcarrier Selection
 - Different subcarriers have different sensitivities to different human activities

MASS 2017
Signal Preprocessing

- **Noise removal**
 - Smoothing: removes outliers
 - Low-pass filter: removes high frequency noise
 - The average amplitude and the average median absolute deviation are chosen as the features.
Leverage knowledge in unlabeled datasets

- Labeled instances are often very time consuming and expensive to obtain.
- The new user may only be able to label some instances while most instances stay unlabeled.
- Knowledge in unlabeled instances can be used to improve the recognition’s performance.
- Co-training is an efficient semi-supervised learning paradigm.
Leverage knowledge in unlabeled dataset

Extracted knowledge: those unlabeled instances that are predicted as the same label by both (of two) classification models
Reuse others’ training datasets

- The ability to recognize and apply knowledge obtained in previous tasks

Why Reuse?

- Build every model from scratch?
 - Time consuming and expensive
- Reuse knowledge extracted from existing tasks and datasets
 - More practical

How can we decide what data should be transferred to the new user?
Reuse others’ training dataset

- Transfer algorithm: find those useful instances from existing labeled source domain data
 - Features value discretization on each dimension with a grid size of τ.
 - A source domain instance is transferred to target domain iff there is a target domain instance with the same label in the same grid.
Reuse others’ training dataset

- Transfer algorithm: find those useful instances from existing labeled source domain data
 - Features value discretization on each dimension with a grid size of τ.
 - A source domain instance is transferred to target domain iff there is a target domain instance with the same label in the same grid.
Reuse others’ training dataset

- Source domain data
- Auxiliary set finding algorithm
- Predictive models (SVM)
 - Target domain data
- A few labeled data collected from the new user
- Unlabeled testing data

MASS 2017
Evaluation

- Commercial hardware with no modifications
 - Transmitter: TP-Link TL-WR1043ND Wi-Fi router
 - Receiver: Lenovo X100e laptop with Intel 5300 NIC
 - Downloading a large file from an FTP server within the same local network area
Evaluation Results

- **Mean accuracies vs. different solutions**
 - Two proposed solutions can achieve better accuracies with sparsely labeled training data.

![Mean Accuracy Chart](MASS 2017)
Evaluation Results

- **Mean accuracies vs. different users**
 - Our approaches can achieve a mean prediction accuracy of about 87% for all participants.
Evaluation Results

- Accuracies vs. different τ
 - There is no linear relationship between the accuracy and τ.
 - τ is determined based on the distribution and density of the data.
Evaluation Results

- Accuracies vs. different iterations
- We set the number of iterations to 5 in our system.
Conclusion

- CSI measurements contain fine-grained movement information and can be used to recognize sign language.

- Propose a sign language recognition system that can achieve a good performance with sparsely labeled data.
 - Leveraging the knowledge in an unlabeled dataset.
 - Reusing others’ training datasets.

- Experimental results show that our system can achieve a mean prediction accuracy of about 87%.
Thanks!

Q & A