
ARTICLE IN PRESS
Journal of Network and

Computer Applications ] (]]]]) ]]]–]]]
1084-8045/$ -

doi:10.1016/j

�Correspo
E-mail a

ilyas@fau.ed
www.elsevier.com/locate/jnca
Secure and efficient key management in mobile
ad hoc networks

Bing Wua,�, Jie Wua, Eduardo B. Fernandeza, Mohammad Ilyasa,
Spyros Magliverasb

aDepartment of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
bDepartment of Mathematics, Florida Atlantic University, Boca Raton, FL 33431, USA

Received 28 July 2005; accepted 28 July 2005
Abstract

In mobile ad hoc networks, due to unreliable wireless media, host mobility and lack of

infrastructure, providing secure communications is a big challenge. Usually, cryptographic

techniques are used for secure communications in wired and wireless networks. Symmetric and

asymmetric cryptography have their advantages and disadvantages. In fact, any cryptographic means

is ineffective if its key management is weak. Key management is also a central aspect for security in

mobile ad hoc networks. In mobile ad hoc networks, the computational load and complexity for key

management are strongly subject to restriction by the node’s available resources and the dynamic

nature of network topology. We propose a secure and efficient key management (SEKM) framework

for mobile ad hoc networks. SEKM builds a public key infrastructure (PKI) by applying a secret

sharing scheme and using an underlying multi-cast server groups. We give detailed information on

the formation and maintenance of the server groups. In SEKM, each server group creates a view of

the certificate authority (CA) and provides certificate update service for all nodes, including the

servers themselves. A ticket scheme is introduced for efficient certificate service. In addition, an

efficient server group updating scheme is proposed. The performance of SEKM is evaluated through

simulation.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Mobile ad hoc networks; Key management; Secret sharing; Security; Server group
see front matter r 2005 Elsevier Ltd. All rights reserved.

.jnca.2005.07.008

nding author.

ddresses: bwu@fau.edu (B. Wu), jie@cse.fau.edu (J. Wu), ed@cse.fau.edu (E.B. Fernandez),

u (M. Ilyas), spyros@fau.edu (S. Magliveras).

www.elsevier.com/locate/jnca


ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]2
1. Introduction

A mobile ad hoc networks is a special type of wireless network in which a collection of
mobile hosts with wireless network interfaces may form a temporary network, without the
aid of any fixed infrastructure or centralized administration. In mobile ad hoc networks,
nodes within their wireless transmitter ranges can communicate with each other directly
(assume that all nodes have the same transmission range), while nodes outside the range
have to rely on some other nodes to relay messages. Thus a multi-hop scenario occurs,
where the packets sent by the source host are relayed by several intermediate hosts before
reaching the destination host. Every node functions as a router. The success of
communication highly depends on the other nodes’ cooperation.
While mobile ad hoc networks can be quickly and inexpensively set up as needed,

security is a more critical issue compared to wired or other wireless counterparts. Many
passive and active security attacks could be launched from the outside by malicious hosts
or from the inside by compromised hosts (Luo and Fang, 2003; Ilyas, 2003).
Cryptography is an important and powerful tool for security services, namely

authentication, confidentiality, integrity, and non-repudiation. Cryptography has two
dominant approaches, namely symmetric-key (secret-key) and asymmetric-key (public-
key). There is a variety of symmetric or asymmetric algorithms available, such as DES,
AES, IDEA, RSA, and EIGamal (Salomaa, 1996; Tanenbaum, 2003; Burnett and Paine,
2001). Threshold cryptography (Shamir, 1979) is a scheme quite different from the above
two approaches. In Shamir’s ðk; nÞ secret sharing scheme, a secret is split into n pieces
according to a random polynomial. The secret can be recovered by combining k pieces
based on Lagrange interpolation. These cryptographic approaches are widely used in wired
and wireless networks; obviously they could also be used in mobile ad hoc networks.
Key management is a basic part of any secure communication. Most cryptosystems rely

on some underlying secure, robust, and efficient key management system. Secure network
communications normally involve a key distribution procedure between communication
parties, in which the key may be transmitted through insecure channels. A framework of
trust relationships needs to be built for authentication of key ownership in the key
distribution procedure. While some frameworks are based on a centralized trusted third

party (TTP), others could be fully distributed. For example, a certificate authority (CA) is
the TTP in PKI, a key distribution center (KDC) is the TTP in the symmetric system, while
in PGP no such a trusted entity is assumed.
We introduce here a secure and efficient key management (SEKM) scheme. The major

contribution of our scheme is that SEKM is designed to provide efficient share updating
among servers and to quickly respond to certificate updating, which are two major
challenges in a distributed CA scheme. The basic idea is that server nodes form an
underlying service group for efficient communication. For efficiency, only a subset of the
server nodes initiates the share update phase in each round. A ticket-based scheme is
introduced for efficient certificate updating. Normally, because of share updating, recently
joining servers could be isolated from the system if they carry outdated certificates. Our
scheme does not isolate new servers, and is open for regular nodes for easy joining and
departing. SEKM creates a view of CA and provides secure and efficient certificate service
in the mobile and ad hoc environment. The framework of SEKM is described in Section 4.
This paper is organized as follows: Section 2 reviews related work. Section 3 discusses

the key management and trust model in mobile ad hoc networks. Details of the SEKM



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 3
scheme are described in Section 4. A performance evaluation of the proposed approach is
conducted in Section 5. In Section 6, we conclude the paper and discuss possible future
work. Throughout the paper, we use the terms node and host interchangeably.

2. Related work

Recently, security has become a hot research topic in mobile ad hoc networks. Several
secure routing protocols have been proposed in the literature. For example, SRP
(Papadimitratos and Haas, 2002), SEAD (Hu et al., 2002), and SAODV (Zapata, 2002)
address security attacks in routing protocols and propose different means to counter
particular threats. However, almost all of them rely on the existence of a public-key
management system. Even in TESLA (Perrig et al., 2000), delivery and authentication of
the first element in a hash chain requires an asymmetric key management framework. So,
the existence of an effective key management framework is fundamental to secure routing
protocols. There are some other research papers which focus on either secure data
transmission, intrusion detection, or key management in mobile ad hoc networks.
Although these topics are closely related, we emphasize key management and ignore the
rest of them here. We will address those topics in future work.
Zhou and Haas (1999) presented a secure key management scheme by employing ðt; nÞ

threshold cryptography. The system can tolerate t � 1 compromised servers. However, this
scheme does not describe how a node can contact t servers securely and efficiently when the
servers are scattered in a large area. A share refreshing scheme is proposed to counter
mobile adversaries. However, efficient and secure distribution of secret shares is not
addressed.
Luo and Lu (2004) proposed a localized key management scheme called URSA. In their

scheme all nodes are servers. The advantage of this scheme is the efficiency and secrecy of
local communication as well as system availability; on the other hand, it reduces system
security, especially when nodes are not well protected physically. One problem is that when
the threshold k is much larger than the network degree d, nodes will have to keep moving
to get their certificates updated. The second critical issue is convergence in the share
updating phase. Another critical issue is that too much off-line configuration is required
before accessing the networks.
Yi et al. (2002) put forward a scheme called mobile certificate authority (MOCA) key

management. In their approach, certificate service is distributed to MOCA nodes, which
are physically more secure and powerful than other nodes. In their scheme, a node could
locate k þ a MOCA nodes either randomly, through the shortest path, or based on the
freshest path in its route cache. But the critical question is how nodes can discover those
paths securely since most secure routing protocols are based on the establishment of a key
service.
Capkun et al. (2003) considered a fully distributed scheme that has the advantage of

configuration flexibility. However, it lacks any trusted security anchor in the trust
structure. Many certificates need to be generated. Every node should collect and maintain
an up-to-date certificate repository. Certificate chaining is used for authentication of public
keys. The certificate graph, which is used to model this web of trust relationship, may not
be strongly connected, especially in the mobile ad hoc scenario. In that case nodes within
one component may not be able to communicate with nodes in different components.
Certificate conflict is just another example of a potential problem in this scheme.



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]4
Recently, Yi and Kravets (2004) provided a composite trust model. In their scheme they
combine the central trust and the fully distributed trust models. This scheme takes
advantage of the positive aspects of two different trust systems. Actually, it is a
compromise between security and flexibility. Some authentication metrics, such as
confidence value, are introduced in order to glue two trust systems. However, proper
assignment of confidence values is a challenge.
In summary, the schemes proposed in (Zhou and Haas, 1999; Yi et al., 2002; Luo and

Lu, 2004) are based on the secret sharing technique. Zhou and Haas (1999) focuses on the
share updating procedure. Yi’s scheme (Yi et al., 2002) emphasizes efficient communica-
tions among MOCA nodes. Luo’s approach (Luo and Lu, 2004) addresses the problem of
share updating and certificate service in a localized environment. (Capkun et al., 2003)
discusses the problem of key repository maintenance and certificate chaining in a fully
distributed way.

3. Key management in ad hoc networks

Key management is a basic part of any secure communication structure. Most secure
communication protocols rely on a secure, robust, and efficient key management system.
General key management primitives and trust models are described below.

3.1. Key management primitives

The key is a piece of input information for cryptography algorithms. First, if the key is
discovered, the encrypted information can be revealed. The secrecy of the private key must
be assured locally. The key encryption key (KEK) approach could be used at local hosts.
Second, key distribution and key agreement over an insecure channel are risky and

suffer from potential attacks. In the traditional digital envelope approach, a session key is
generated at one side encrypted by the public-key algorithm, and then delivered and
recovered at other end. In the Diffie– Hellman (DH) scheme, the communication parties at
both sides exchange some public information and generate a common session key. Several
enhanced DH schemes have been proposed to counter the man-in-the-middle attack. Many
complicated key exchange or distribution protocols and frameworks have been designed
and built. However, in mobile ad hoc networks the computational load and complexity of
the key agreement protocol are strongly restricted by the node’s available resources, the
dynamic network topology, and network synchronization difficulty.
Third, key integrity and ownership should be protected from key attacks. Digital

signatures, message digests and hashed message authentication codes (HMAC) are
techniques used for data authentication or integrity purposes. Similarly, the public key is
protected by public-key certificates, in which a trusted entity, called a certificate authority
in PKI, vouches the binding of the public key with the owner’s identity. In systems which
lack a TTP, public-key certificates are vouched by peer nodes in a distributed manner, such
as is done in pretty good privacy (PGP). Obviously, a certificate cannot prove whether an
entity is ‘‘good’’ or ‘‘bad’’, but only the ownership of a key, i.e., it is for key authentication
purposes.
Fourth, the key could be compromised or disposed after a certain period of usage. Since

the key should no longer be usable after its disclosure, some mechanism is required to
enforce this rule. In PKI, this can be done implicitly or explicitly. A certificate contains a



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 5
lifetime of validity; it is not useful after an expiration date. But in some cases, the private
key could be compromised during the validity period, which would require the CA to
revoke a certificate explicitly and notify the network by posting it onto a certificate

revocation list (CRL) to prevent its usage.
3.2. Trust models

The authentication of key ownership is the first step for secure communication.
Otherwise, it is easy to forge or spoof someone’s key. Some trusted framework must be
present to verify the key ownership. For PKI in the public-key cryptosystem, there are two
dominating trust models, namely, centralized and web-of-trust trust models. For network
scalability, the centralized trust model could be a hierarchical trust structure instead of a
single CA entity. Multiple CA roots could be necessary for a large network, such as the
Internet. There are two major variations proposed in ad hoc networks, which we name
CA-view and hybrid trust models. The hybrid model glues the centralized and the
distributed trust together (Yi and Kravets, 2004). See Figs. 1(a)–(d) for different trust
models.
In the figures, all nodes within the circle form a network domain. In Fig. 1(a), there is

one entity (in black) who is trusted by all nodes within the domain. In Fig. 1(b), there is no
entity trusted by all hosts in the network domain, instead peer nodes trust each other and
produce ‘‘certificates’’ based on local trust. Fig. 1(c) shows that quorum nodes (in gray)
collaboratively create a view of the CA, which functions as the CA within the domain. The
quorum nodes jointly produce the certificate. Fig. 1(d) shows a combination of (a) and (b)
where some nodes are certified by the central CA (in black), and some are certified by peer
nodes. For example, nodes 8 and 12 are CA certified, node 9 is not certified by the CA but
by node 8. Node 13 is not trusted by any node within the domain. The confidence value of
CA trust is higher than the value of the peer trust. For example, the value of a solid trust
line is higher than that of a dashed line. Each trust line could have different values. Of
course, this hybrid trust mode could have further variations. For example, the central CA
could be distributed to a quorum of nodes.
Obviously, in mobile ad hoc networks, a framework for key management built on a fully

centralized mode is not feasible, not only because of the difficulty to maintain such a
6

7

2

3

4

5

1

9

10

13

8

11

12

CA trust

CA root regular node shareholder

non CA trust

(a) (b) (c) (d)

Fig. 1. Trust models.



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]6
globally trusted entity but also because the central entity could become a hot spot of
attacks. Meanwhile a completely distributed model may not be acceptable because there is
no well-trusted security anchor available in the whole system. One feasible solution is to
distribute the central trust to multiple (or entire network) entities based on a secret sharing

scheme. In SEKM, the system public key is distributed to the whole network, while the
system private key is split between all server nodes. The server group creates a view of a
CA in PKI for mobile ad hoc networks.

3.3. Secret sharing

In a mobile ad hoc network environment, a single CA node could be a security
bottleneck if it is not well protected. Multiple replicas of CA are fault tolerant, but
the network is as vulnerable to break in as single CA or even worse since breaking
one CA means breaking all CAs, while it could be much easier for attackers to locate a
target. An elegant secret sharing scheme is proposed in mobile ad hoc networks with
different implementations. To better understand this scheme, a short overview is
given here. A system-wide secret is distributed to multiple nodes. No single node knows
or can deduce the secret from the piece it holds. Only a threshold number of nodes
can deduce the secret. The study and proof of the basic algorithms are in (Shamir,
1979; Herzberg et al., 1995; Felman, 1987; Stadler, 1996). Some algorithms have
been proposed to enhance basic secret sharing schemes (Zhou and Haas, 1999; Desmedt
and Jajodiay, 1997; Wong et al., 2002; Shoup, 2000). For example, providing a
way for a shareholder to verify the validity of a received share, periodically updating
shares, share recovery and partial certificates, etc., which are implemented in SEKM
with proper modification and are given in Section 4. In summary, the secret sharing
algorithms make it feasible to reduce trust and adapt to the distributed and unreliable
environment of mobile ad hoc networks. This is the main reason that we adopt these
techniques in SEKM.

4. Secure and efficient key management (SEKM) scheme

4.1. Notations and assumptions

Some notation used in SEKM is introduced below. We assume that every node
carries a valid certificate from off-line configuration before entering the network.
A smart card can be used for this preconfiguration. The format of a certificate is
similar to the X.509 structure with two extra attributes defined as server flag and share

version. The server flag is set to 1 for servers and 0 for non-servers. The share version is also
set to 1 for servers and 0 for non-servers. Version is increased by 1 after every share
updating. Each server has its secret share stored in an encrypted format such as in
password-based or KEK schemes. Each server also has a copy of the encrypted share
verification parameters fgK�1

ca mod p; ga1 mod p; ga2 mod p; . . . ; gak�1 mod pg. Some notations
are listed in Table 1.

The structure of a certificate is:
IDi
 T valid
 Ki
 flag
 ver
 sign.
 issuer
 algo.



ARTICLE IN PRESS

Table 1

Some notation

ts Timestamp

ns Nonce, one time random number

IDi Node i’s identity

Ki=K�1

i
Node i’s public key/private key pair

K ca=K�1
ca

CA’s public key/private key pair

m Control message or data

ðmÞ
Ki m is encrypted by node i’s public key

ðmÞ
K�1

i m is signed by node i’s private key

hðmÞ The digest of m

k Threshold value

Si Node i’s secret share

B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 7
Certi Certificate of node i’s public key
4.2. Overview of SEKM

In the SEKM framework, K�1

ca is distributed to m shareholders. Normally, the number of
shareholders is significantly less than the total number of nodes (n) in the network. For
example, 20–30% nodes are secret shareholders. We name these shareholders as CA-view
or server nodes in short. They are basically normal nodes except that they hold a system
private key share and are capable of producing partial certificates. A quorum of
kð1okpmÞ servers can produce a valid certificate. It is easier to connect all servers and
form a special group rather than to search each one of them separately and frequently.
This arrangement is communication-efficient, bandwidth-saving, and easy for manage-
ment. From a node point of view, it is easier to locate the server ‘‘block’’ rather than each
‘‘point’’. From the server point of view, it is easier to coordinate within the group rather
than the entire network. We name this special group as a multicast server group, or server
group in short, though it is quite different from the traditional source–receiver multicast
groups. This server group consists of server nodes and forwarding nodes. The forwarding
nodes within the group are regular nodes. The framework of SEKM consists of several
phases, namely server group formation phases, group maintenance phases, share updating
phases, certificate renew/revocation phases, and handling new server nodes phases. A
substructure snapshot of a server group is illustrated in Fig. 2. The substructure of a server
group in essence creates a view of CA for certificate services and efficient share updating.
For simplicity, we state that server groups produce certificates without explicitly excluding
the non-server forwarding nodes.

4.3. Secure server group formation and maintenance

In the server group formation phase, the SEKM scheme is similar to the existing on-
demand multicast routing protocol (ODMRP) (Lee et al., 2002). ODMRP is an on-
demand protocol, where a source-rooted or receiver-rooted forwarding group is formed
based on periodical Join-Data and Join-Table messages. Rather than a tree structure, a
mesh structure is maintained to forward multicast data. However, the difference is that the
group formation phase is secure and there is no specific source and receiver in SEKM;
instead, only server nodes initiate the group formation and become members of the group



ARTICLE IN PRESS

Secret holder forwarding node regular node

Fig. 2. Server group substructure snapshot in SEKM.

B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]8
in their lifetime. A subset of non-server nodes could be forwarding nodes in a certain
period, and become part of the group. The structure of the server group is a mesh with a
soft state maintenance scheme. In general, the mesh structure is more stable than the
traditional tree structure. Although the tree-based structure is more communication
efficient, it is easy to break in a high dynamic situation and incurs excessive control traffic
for link recovery. Maintaining the connection of the server group is essential for the
normal operation of SEKM. It is necessary to maintain at least a quorum of server nodes
connected by periodically sending control packets before some link is broken. So, it is a
soft state maintenance scheme rather than a hard state approach. In this paper, we assume
that the network is a connected graph and one server group is maintained. In our future
work we will consider the scenario where there are multiple server groups.

4.3.1. Group creation

The server group formation procedure consists of a request phase and a reply phase.
When a secret shareholder enters the network, it broadcasts a server advertising packet,
which is called JoinServeReq and is done in a scoped flooding way. Only the server nodes
can initiate the JoinServeReq packet, which is enforced by the server flag attribute in
certificates. By doing this we can prevent malicious nodes from flooding the join request
packet. The JoinServeReq packet contains message m which includes fIDi;SEQi;TTLg

together with its hashed signature f½hðIDi;SEQiÞ�
K�1

i jðTTLÞ
K�1

i g (symbol j denotes
concatenation). Node i could attach its certificate fCertig for the first time. When a node
receives a non-duplicate JoinServerReq packet, it needs to verify that the packet is from the
authenticated source, and without any change except for the TTL field. The TTL value
decreases by 1 as the packet leaves the node. The change of TTL is signed by intermediate
nodes and verified by neighbors. The packet is discarded if any of those conditions is not
satisfied. After verification, the routing table is updated based on the information
contained in the message and through the route backward learning process. The server
certificate could also be stored in this table. Nodes that receive a valid JoinServerReq will
rebroadcast the JoinServerReq packet if TTL is 40. A compromised node could modify
the TTL field unpredictably but the misbehavior is assumed to be monitored by neighbors.



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 9
Also, the ðIDi;SEQiÞ pair can help to identify and discard the duplicate packet. If the node
is a server, it will send a JoinServerReply packet as well as forwarding the request packet.
Similar to the JoinServerReq packet, a JoinServerReply packet is also protected by the
replier’s signature. The server could delay for a while before it sends out a reply message so
that a better path could be selected based on certain metrics, or the server could build
multiple paths by sending reply messages to multiple upstream neighbors.
When a node receives a JoinServerReply it checks the validity of the packet first. After

verification, the node could update its routing table based on the forwarding learning
process. If the next hop field matches its own ID it will mark itself as a forwarding node
and forward the reply based on the routing table. Note that a server node could be a
forwarding node as well if it is on the shortest path between a pair of servers. The
procedure continues until the reply reaches the initial request server. Thus, all server nodes
together with the forwarding nodes form a mesh structure. Detailed examples are
described below.

4.3.2. Examples

In the example, nodes 1; 2; 16, and 22 are servers. Fig. 3(a) shows the JoinServeReq

initiated by server node 1 and gives a snapshot of the dissemination of the request and
reply messages. When a node receives a request packet, it checks first the validity of the
packet before taking any further actions. It also discards duplicate, non-authenticated, or
illegally altered packets. In the example, we assume that the validity of all packets in the
process are verified. After neighbor nodes 14, 18 and 20 receive the request they
rebroadcast it. This process continues at other nodes. When server 16 receives the packet
from node 21 first, it could send back a JoinServerReply message to node 21 instantly, or it
could delay for a while until it receives the same request from node 12. Server 16 could
send replies to both nodes 21 and 12 in order to enforce multiple paths. Node 16
rebroadcasts the join request message if the TTL is more than 0. When node 21 receives the
join reply packet from node 16 it learns that (1) node 16 is a server node and (2) it is on the
Server Node

JoinServerReply packet JoinServerReq packet

Nongroup NodeForwarding Node

3

4

6

7

5

8

10

11

12

13

15

18

19

24

1

2

20
9

14

16

17
21

23

22
8

9

6

7

11
13

3

10 5

18

12

19

24
17

21

20

1

23

22

152

14

16

4

(a) (b)

Fig. 3. Server group setup illustration. (a) Node 1 initiates the join request packet; (b) node 16 initiates the join

request packet.



ARTICLE IN PRESS

3

12

18

14

4

6

7

5

8

10

11

13

15

19

17

9

24

1

2

21

23

20

16

22

15

16

12, 21

12, 21

Server Next Hop

1

2

16

22

Server 16’s table

(a) (b)

Server Node Nongroup NodeForwarding Node

Fig. 4. Server group mesh and table snapshot.

B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]10
selected path between server 1 and server 16, and thus (3) sets its forwarding flag and
updates its forwarding table. The same process happens on nodes 12 and 20. Eventually,
the join reply packet from node 16 reaches server node 1, which is the join request initiator.
When server 1 receives the reply packet it learns that server 16 is reachable through
neighbor 20. It updates the routing table entry. After a certain amount of time, replies
from all servers arrive at node 1. Node 1 has the knowledge of all reachable servers.
Fig. 3(b) shows the join procedure initiated from server 16. After all servers finish the join
procedure the group mesh structure is formed, and each server has a routing table
established. Fig. 4(a) shows the server group mesh and Fig. 4(b) shows a snapshot of the
table created by node 16. Every server node maintains a table and the table is referenced
for subsequent certificate service phases and share updating phases.

4.3.3. Group maintenance

The server group structure should be maintained during the entire lifetime of the
network. The mesh structure is more reliable than the conventional tree structure where
there is only one path available between any pair of servers. However, for a mesh structure,
there are multiple possible paths between pairs of servers. Thus if one link is broken, an
alternative link could be utilized instead of launching a costly recovery procedure. In
SEKM, the periodical message JoinServerRequest and JoinServerReply are sent out in
order to refresh the server group. Thus, a soft state scheme is adopted to react to the
dynamic network topology and possible link breaks. Since this soft state scheme is quite
expensive for a large network, the frequency for refreshing should be scheduled carefully
according to node mobility.

4.4. Secret share updating

Every server node has a piece of the system secret key K�1

ca . Although the Si is stored at
local storage protected in encrypted format by some means, there is still the risk that the
node is captured and compromised, revealing the secret share. Once a mobile attack

compromises enough shares the system secret is disclosed. In order to counter these types
of attacks, a periodical share updating scheme is proposed in some papers using different
implementations. In SEKM, updating the shares held by servers is quite simple. The idea
is that only threshold k servers within the server group initiate the share update phase.



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 11
We name these servers active servers for convenience. Active servers generate new shares
and send them to the corresponding servers in the group. Obviously, active servers
consume more energy than non-active ones. In order to avoid some servers continuing to
work as active servers, this phase is operated in rounds and teams of servers are ‘‘selected’’
as active servers alternatively. Similar to the scheme in Heinzelman et al. (2000), the update
phase is broken into rounds. A percentage is defined as g ¼ bk

m
c. At every round every

server i generates a random number bi between 0 and 1 and a threshold value ti. ti is
defined as

ti ¼

g
1� g 
 ðrmod 1gÞ

if i 2 SG;

0 otherwise;

8<
: (1)

where r is the current round, and SG is the set of server nodes that have not ever initiated
update phases in the 1g rounds. During round 0ðr ¼ 0Þ, each server has a probability g to
initiate the share update. If bioti, this server will become an active server. In each round
there are about k active servers. The algorithm for the share update phase is shown below.
Share Updating:
1.
 Each active server i randomly selects a (k � 1)-degree polynomial

giðxÞ ¼ ðbi;1x þ bi;2x
2 � � � þ bi;k�1x

k�1Þmod p, or giðxÞ ¼
Pk�1

d¼1 bði;dÞðxÞ
d mod p in short.

Note: gið0Þ ¼ 0.

2.
 Server i broadcasts the witness for polynomial coefficients fgbi;d : j1odokg and its

hashed signature f½hðgbi;d Þ�
K�1

i : j1odokg to the server group.

3.
 Each active server i computes a share for server j, with Si!j ¼ giðjÞmod p, which is

encrypted with j0s public key Kj, then sent to the corresponding server jð1pjpkÞ in

the form of f½Si!j�
Kj g.
4.
 Each server will receive about k new shares. It decrypts each new share, checks its
validity and combines k new shares with its old share to produce the final new

share. Server j’s new share S0

j ¼ Sj þ
Pk

i¼1 Si!j. The new share will replace the old

share as the new partial certificate signing key.
4.5. Handling new servers

In SEKM, new servers can join the network while some servers may leave the network.
In case a server leaves the network, the soft state server group maintenance mechanism can
handle the change of server group topology. However, when a new server joins the group,
some mechanism is required to handle a possible share inconsistency. As we know the
server group updates shares periodically, a new joining node could carry an outdated share
from off-line configuration. In order to handle this situation the new node r needs to
contact at least k servers to ‘‘catch up’’ with the latest server group with a renewed share.
As we described above, a new node sends the JoinServerReq message the first time it enters
the network. The server group checks the incoming join group request. A message could be
sent out to notify requesting node r by checking the version field in the certificate. After
that, a share renewing process will be launched. The algorithm is shown in the next page.



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]12
4.6. Certificate updating

There is an attribute, T valid, defined in the public-key certificate. A certificate is only
valid for a period of time after being issued. Each node (including servers) needs to
periodically update its certificate before expiration. A node needs to get at least a
threshold (k) number of partial certificates to reconstruct a valid certificate. It is
advantageous to update certificates based on the server group structure in SEKM. Once
a server node receives a CertUpdateReq and verification of the request, instead of
sending the request to all server group nodes, it attaches a ticket and just sends the
request to sufficient k þ D servers. D is the marginal safety value in case some partial
certificates are corrupted. Since each server knows the path to all other server group
members, it is wise to utilize the ticket scheme. Here the ticket is basically used as a
counter. The ticket could be split at intermediate nodes. For a small server group,
broadcasting certificate requests within the group is good enough. But for a large server
group with m bk, broadcast requests to all servers cause significant processing and
bandwidth waste.
Handling a new server:
1.
 The receiving server in the server group locates a subset of servers (o : jojXk).
Each server iði 2 oÞ randomly chooses a polynomial f iðxÞ with degree k � 1, where
f iðrÞ ¼ 0 and f ið0Þa0.
2.
 Each server node i broadcasts the witnesses for coefficients while it distributes
share f iðjÞ to the corresponding server jðj 2 oÞ, encrypted with Kj.
3.
 Server j receives shares f iðjÞði 2 oÞ, combines them with share hðjÞ ¼ S0

j þP
i2onfrg ðf iðjÞÞ (here S0

j is j’s current shares), and sends the resulting share to the

requesting server r in encrypted format.

4.
 Server r decrypts these shares and interpolates them to renew S0

r using the secret

reconstruction algorithm described in Section 3.
Take Fig. 4(a) as an example. Assume k is 3. When server node 1 receives a certificate
updating request from a regular node or from itself, it could produce a partial
certificate itself, while it sends two tickets attached to the CertUpdateReq message to
node 20 and no ticket to node 14. These two tickets would be split into two separate
tickets with one ticket being sent to node 9 and one going to node 21. Eventually, the 2
tickets reach server nodes 16 and 22. There are many other options to split the tickets.
Note that the ticket is used within the server group, and it is transparent for the non-group
members. Any secure routing protocol could be used to find a path from the requesting
node to the server group before it sends out the CertUpdateReq message. The
CertUpdateReq message m0 should be signed by the original requester i. It includes

fIDi;SEQig together with its hashed signature f½hðm0Þ�
K�1

i g. Similar to the procedure
of processing JoinServeReq, intermediate verification is required. The intermediate
nodes on the path relay the CertUpdateReq message until it reaches the server d,
where a ticket is generated and processed within the server group. The algorithm is shown
below.



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 13
Certificate updating:
1.
 The receiving server d on the server group produces k þ D tickets attached to
requester i’s request packet.
2.
 Each server j that receives a ticket produces a partial certificate for requester i.

Certj!i ¼ ðKiÞ
Sj
lj ð0Þmod p and sends it back to server d.
3.
 Server j decreases ticket by 1, and splits it if necessary, then forwards the request
together with the ticket.
4.
 Server d combines k partial certificates into one certificate

Certi ¼
Qk

j¼1 Certj!i ¼
Qk

j¼1 K
Sj
lj ð0Þ

i mod p ¼ ðKiÞ

Pk

j¼1
Sj
lj ð0Þmod p ¼ K

K�1
ca

i , and

sends it back to the requesting node i. Note: server d could send k þ D partial
certificates back to requesting node i and let the certificate be combined at i instead
of at server d.
4.7. Handling certificate expiration and revocation

A certificate will expire after a predetermined period of time. A node with an invalid
certificate is prevented from participating in any network activity. In SEKM, nodes need to
update the certificates before expiration. It is possible that a node could recover its expired
certificate from the server group based on certain criteria. In this paper, for simplicity, a
node with an expired certificate needs some off-line or in-person reconfiguration.
A node’s certificate could be revoked by the server group within its validity period for

several reasons. A server node could be compromised, and thus initiate inconsistent shares
during the share updating/renewing phase. A node could refuse to issue certificates or issue
wrong partial certificates for other nodes. A non-server node could misbehave in relaying
the join request/reply messages for maintaining the server group; or in the phase of
certificate service, routing information dissemination or data transmission. In the
occurrence of any misbehavior or malicious attacks, an accusation with the signature of
the initiator should be sent to the server group. Once the server receives the accusation, it
checks the validity of the packet first; if verified, it marks the certificate state of the accused
node as suspect. There is a counter and timer associated with it. The counter could decrease
after a certain amount of time. Once the counter accumulates to a threshold value u within
the predefined time period r, a collaboration of k servers can revoke the accused node’s
certificate. The revoked certificate is put onto the CRL. The CRL is broadcast to the entire
network periodically. Some information associated with the accuser must be stored in the
server’s database to prevent abuse of accusations. A node with a revoked certificate needs
reconfiguration before reentering the network.

4.8. Summary

In summary, a server group is formed securely and stays connected. The certificate
updating request is processed by the server group in a ticket-based approach. The system
secret held by each server is refreshed periodically in a fair and efficient way. New joining
servers with outdated shares could be renewed. Node’s misbehavior is monitored and



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]14
could be accused by other network nodes. A certificate can be revoked by the server group.
Nodes with expired or revoked certificates need off-line reconfiguration.

5. Performance evaluation

In this section, we analyze the performance of the SEKM scheme. The simulation was
implemented in Matlab. The simulation was conducted in a 100� 100 2-D free-space by
randomly allocating a given number of nodes ranging from 40 to 100 nodes. We assume
every node has the fixed transmission range r ¼ 25. A unit disk graph is randomly
generated, where the node connections depend on node distances. Two nodes are
neighbors if their distance is within each other’s transmission range.
We implemented 1024-bit RSA cryptographic key pairs. The system secret is distributed

to all servers based on a randomly generated polynomial. The coefficients of the
polynomial are 512 bits long. The structure of certificates is based on Section 4(A) where
all fields, such as ID, time stamp and flags are concatenated, hashed using MD5, and then
signed by the system secret key or shares. The witnesses of the polynomials are generated
using a public generator g ¼ 2 with the module n (1024 bits). The broadcast of witnesses is
for the purpose of share verification. Partial certificates are generated and combined
according to the algorithm described in Section 4(F). We used a Math Toolbox included in
Matlab for handling large numbers.
In the simulation, we analyzed the average distance from a node to the server group, the

average size of the forwarding nodes, the average delay for certificate verification in the
group formation phase, and the convergence time for the parallel sharing updating, partial
certificate generation/combination among server nodes. We also conducted the analysis for
the impact of the key length on the convergence time in the parallel share updating phase.
In the current simulation, we ignored the communication cost and network delay. We
conducted four sets of experiments according to the percentage of server nodes p, where
p ¼ 20%, 30%, 40%, and 50%. Another four sets of experiments are based on the
percentage of server threshold tp, where tp ¼ 50%, 60%, 80%, and 100%. For instance, if
the total number of nodes is 100, p ¼ 20%, and tp ¼ 60%, then there are 20 server nodes,
and the threshold is 12. Four sets of key sizes were evaluated, which are 256, 512, 1024, and
2048 bits. The simulation results are shown from Figs. 5–7.
Fig. 5(a) shows the network parameters of the randomly generated connected graph for

the case when p is 30%. The average distance (in hops) between a pair of nodes (labeled as
Overall) is about 3.2, which is close to the average number of hops between server nodes
within the server group (labeled as Within group). It also shows that the average distance
from a node to the server group (labeled as To group) is almost equal to 1 hop. This is an
obvious advantage of the SEKM scheme. It proves that both accessibility and delay are
improved by requesting the server group rather than contacting each server individually.
Fig. 5(b) shows that the average distance from a node to the server group is close to 1 hop,
unrelated to the server rate p. Fig. 6(a) shows the average number of forwarding nodes,
which connect the server nodes and form the server group, with all server nodes. The size
of the forwarding nodes shrinks as the server rate p increases while the total number of
nodes in the network is more than 50. But as we can see in the following experiment, the
higher the server rate p, the longer the computation delay.
Fig. 6(b) shows the average computation time for the certificate verification during the

server group formation phase. As we know in the SEKM scheme, any server node must



ARTICLE IN PRESS

6

8

10

12

14

16

18

20

22

24

26

28

40 50 60 70 80 90 100

Si
ze

 o
f 

Fo
rw

ar
d 

N
od

es

Number of Nodes

p=20%
p=30%
p=40%
p=50%

5

10

15

20

25

30

35

40

40 50 60 70 80 90 100

A
ve

ra
ge

 T
im

e

Number of Nodes

p=20%
p=30%
p=40%
p=50%

(a) (b)

Fig. 6. (a) Average size of forwarding nodes. (b) Average delay of server group formation.

1

1.5

2

2.5

3

3.5

40 50 60 70 80 90 100

A
ve

ra
ge

 N
um

be
r 

of
 H

op
s

Number of Nodes

Overall
Within group

To group

1

1.5

2

2.5

3

3.5

4

40 50 60 70 80 90 100

A
ve

ra
ge

 N
um

be
r 

of
 H

op
s

Number of Nodes

p=20%
p=30%
p=40%
p=50%

(a) (b)

Fig. 5. (a) Average distance for a connected graph with p ¼ 0:3. (b) Average distance to the server group.

B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 15
carry a valid certificate before joining the server group and participating in network
activity thereafter. This obviously raises the computation load since every server node
needs to apply the verification process for every other server node who is willing to join the
group. From Fig. 6(b) we can see that the average delay increases almost linearly in
accordance with the number of network nodes. It also shows that the higher the server rate
p, the higher the delay. For instance, when the total number of nodes is 100, the delay is
about 14 s for 20 servers ðp ¼ 20%Þ, 22 s for 30 servers ðp ¼ 30%Þ, 29 s for 40 servers
ðp ¼ 40%Þ, and 36 s for 50 servers ðp ¼ 50%Þ.
Fig. 7(a) shows the average convergence time for the parallel share updating phase when

the server rate p is 30%. Here, the delay is the sum of all time components, which includes
the generation of random polynomials, evaluation of sub-shares, encryption of the
polynomial coefficients, and combination of all sub-shares. Since only the threshold
number of servers participate in all the computations, the larger the threshold, the longer



ARTICLE IN PRESS

0

1

2

3

4

5

6

7

8

40 50 60 70 80 90 100

C
on

ve
rg

en
ce

 T
im

e

Number of Nodes

tp=50%
tp=60%
tp=80%

tp=100%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

40 50 60 70 80 90 100

A
ve

ra
ge

 T
im

e

Number of Nodes

256 bits
512 bits

1024 bits
2048 bits

(a) (b)

Fig. 7. (a) Average convergence time of share updating with p ¼ 0:3. (b) Computation time of different key
lengths with p ¼ 0:3, tp ¼ 0:6.

B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]16
the computation time. As an example, when the total number of nodes is 100, among them
30 are servers. If the threshold is 15 ðtp ¼ 50%Þ, the average convergence delay is 4 s, about
6 s for thresholds of 18 and 24 (tp ¼ 60%, 80%), and about 8 s when the threshold is 30
ðtp ¼ 100%Þ.
Fig. 7(b) shows the impact of the selection of key size on the computation time when

p ¼ 30%, tp ¼ 60%. By intuition, we can imagine that the longer the key size, the higher
the security strength, and the more computation it requires. From Fig. 7(b) we can see that
the difference of computation time is not quite significant when the key size increases from
256 bits to 1024 bits. However, the computation time almost doubles when the key size
increases to 2048 bits. Obviously, it is a trade off between security strength and
computation delay. In practice, the selection of key lengths of 512 bits or 1024 bits is
appropriate for most circumstances.
6. Conclusion

Security is an important issue for mobile ad hoc networks. For security we mainly
consider the following attributes: availability, confidentiality, integrity, authentication,
authorization and non-repudiation. Several security mechanisms and protocols have been
designed and proposed for mobile ad hoc networks. Key management is the central aspect
of the security of mobile ad hoc networks, and it is still a weak point. In this paper we
propose a key management scheme, SEKM, which creates a PKI structure for this type of
network in mobile ad hoc networks. In SEKM, server nodes form a mesh-based server
group. SEKM is based on the secret sharing scheme, where the system secret is distributed
to a group of server nodes. The server group creates a view of a CA. The advantage of
SEKM is that it is easier for a node to request service from a well maintained group rather
than from multiple ‘‘independent’’ service providers which may be spread in a large area. It
is much easier for servers to coordinate within the group rather than with the entire
network during the secret share updating phase.



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 17
A detailed SEKM framework and operational phases are described in this paper. In
SEKM, the server group provides a certificate update service for all nodes including the
servers themselves. A ticket scheme is introduced for efficient certificate service. In
addition, an efficient server group periodical updating scheme is proposed. Simulations
show that both accessibility and efficiency for certificate services and share updating are
achieved. The security of SEKM is ensured by the entire framework of threshold
cryptographic primitives. In our future work, we will extend SEKM to multiple server
groups in large networks including partitioned networks.

Acknowledgements

This work was supported in part by NSF Grants CCR 0329741, CNS 0422762, CNS
0434533, ANI 0073736, EIA 0130806, and by a federal earmark project on Secure
Telecommunication Networks. The preliminary version of this paper appeared in the
Proceedings of the 19th IEEE IPDPS, The First International Workshop on Security in
Systems and Networks (SSN’2005) (Wu et al., 2005).

References

Burnett S, Paine S. RSA security’s official guide to cryptography. RSA Press; 2001.

Capkun S, Buttyan L, Hubaux J. Self-organized public-key management for mobile ad hoc networks. IEEE Trans

Mobile Comput 2003;2(1).

Desmedt Y, Jajodiay S. Redistribution secret shares to a new access structures and its application. University of

Wisconsin-Milwaukee; 1997.

Felman P. A practical scheme for non-interactive verifiable secret sharing. Proceedings of the 27th IEEE

symposium on the foundations of computer science. 1987. p. 427–37.

Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless

microsensor networks. Proceedings of the 33rd Hawaii international conference on system sciences, vol. 8.

January 2000.

Herzberg A, Jarecki S, Krawczyk H, Yung M. Proactive secret sharing or: how to cope with perpetual leakage.

Proceedings of Crypto’95, vol. 5. 1995. p. 339–52.

Hu Y, Johnson D, Perrig A. SEAD: secure efficient distance vector routing in mobile wireless ad-hoc networks.

Proceedings of the 4th IEEE workshop on mobile computing systems and applications (WMCSA’02). 2002.

p. 3–13.

Ilyas M. The handbook of ad hoc wireless networks. Boca Raton, FL: CRC Press; 2003.

Lee S, Su W, Gerla M. On-demand multicast routing protocol in multihop wireless mobile networks. ACM/

Baltzer Mobile Networks and Applications, a special issue on Multipoint CommunWireless Mobile Networks

2002;7:441–53.

Luo W, Fang Y. A survey of wireless security in mobile ad hoc networks: challenges and available solutions. In:

Ad hoc wireless networking. Dordrecht: Kluwer Academic Publishers; 2003. p. 319–64.

Luo H, Lu S. URSA: ubiquitous and robust access control for mobile ad-hoc networks. IEEE/ACM Trans

Networking 2004;12(6):1049–63.

Papadimitratos P, Haas Z. Secure routing for mobile ad hoc networks. Proceedings of the SCS communication

networks and distributed systems modeling and simulation conference (CNDS 2002). 2002.

Perrig A, Canetti R, Tygar J, Song D. The TESLA broadcast authentication protocol. Internet Draft, July 2000.

Salomaa A. Public-key cryptography. Berlin: Springer; 1996.

Shamir A. How to share a secret. Commun ACM 1979;22(11):612–3.

Shoup V. Practical threshold signatures. Proceedings of Eurocrypt 2000. 2000. p. 207–20.

Stadler M. Publicly verifiable secret sharing. Proceedings of Eurocrypt’96. 1996. p. 190–9.

Tanenbaum AS. Computer networks. PH PTR; 2003.

Wong T, Wang C, Wing J. Verifiable secret redistribution for threshold sharing schemes. Technical Report

CMU-CS-02-114-R, School of Computer Science, Carnegie Mellon University; September 2002.



ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]]18
Wu B, Wu J, Fernandez E, Magliveras S. Secure and efficient key management in mobile ad hoc wireless

networks. Proceedings of the 19th IEEE international parallel and distributed symposium (IPDPS 2005). The

first international workshop on security in systems and networks (SSN’2005). 2005. p. 288.

Yi S, Kravets R. Composite key management for ad hoc networks. Proceedings of the 1st annual international

conference on mobile and ubiquitous systems: networking and services (MobiQuitous’04). 2004. p. 52–61.

Yi S, Naldurg P, Kravets R. Security-aware ad-hoc routing for wireless networks. Report No.UIUCDCS-R-2002-

2290, UIUC, 2002.

Zapata M. Secure ad hoc on-demand distance vector (SAODV). Internet draft, draft-guerrero-manet-saodv-

01.txt, August 2002.

Zhou L, Haas Z. Securing ad hoc networks. IEEE Network Magazine 1999;13(6):24–30.

Bing Wu received a M.S. in Computer Science from Florida Atlantic University in 2002.

He is currently a Ph.D. student in computer science at Florida Atlantic University. His

research interests include wireless networks and mobile computing. He is also working as

research assistant at Motorola. He has published seven papers including journal and

conference proceedings. Currently, he is doing research on security in mobile ad hoc

networks. He is a student member of IEEE.
Jie Wu (jie@cse.fau.edu) is a Professor at the Department of Computer Science and

Engineering, Florida Atlantic University. He has published over 300 papers in various

journals and conference proceedings. His research interests are in the area of ad hoc and

sensor networks, routing protocols, fault-tolerant computing, and interconnection

networks. Dr. Wu was the recipient of the 1996–1997 and 2001–2002 Researcher of the

Year Award at Florida Atlantic University. He served as an IEEE Computer Society

Distinguished Visitor. Dr. Wu is a member of ACM and a senior member of IEEE.
Eduardo B. Fernandez (http://www.cse.fau.edu/�ed) is a professor in the Department of

Computer Science and Engineering at Florida Atlantic University in Boca Raton, FL.

He has published numerous papers as well as three books on computer security and

object-oriented analysis and design. His current interests include security patterns and

web services security. He holds a M.S. in Electrical Engineering from Purdue University

and a Ph.D. in Computer Science from UCLA.
Dr. Mohammad Ilyas received his Ph.D. in Electrical Engineering in 1983 from Queen’s

University, Kingston, Ontario, Canada. At present he is Associate Dean for Graduate

Studies and Research in the College of Engineering and Computer Science, Florida

Atlantic University, Boca Raton, FL. Research interests of Professor Ilyas include

congestion control in broadband/high-speed communication networks, traffic character-

ization, wireless communication networks, performance modeling, and simulation. He

has published one book, five handbooks, and over 150 research articles. He has

supervised 10 Ph.D. dissertations and more than 35 M.S. theses to completion. Professor

Ilyas is a senior member of IEEE.

http://www.cse.fau.edu/~ed
http://www.cse.fau.edu/~ed


ARTICLE IN PRESS
B. Wu et al. / Journal of Network and Computer Applications ] (]]]]) ]]]–]]] 19
Dr. Spyros Magliveras received his B.E.E. and M.Sc. degrees from the University of

Florida, and his Ph.D. degree in mathematics from the University of Birmingham,

England. He is presently Chair of the Mathematical Sciences Department at Florida

Atlantic University, and Director of the ‘‘Center for Cryptology and Information

Security’’. His research interests include cryptology, network security, data compression,

finite groups, combinatorics, the design and complexity of algorithms, and finite

geometry. Professor Magliveras was recently awarded the 2001 ICA Euler Gold Medal

Award for his lifetime research in combinatorial mathematics.


	Secure and efficient key management in mobile �ad hoc networks
	Introduction
	Related work
	Key management in ad hoc networks
	Key management primitives
	Trust models
	Secret sharing

	Secure and efficient key management (SEKM) scheme
	Notations and assumptions
	Overview of SEKM
	Secure server group formation and maintenance
	Group creation
	Examples
	Group maintenance

	Secret share updating
	Handling new servers
	Certificate updating
	Handling certificate expiration and revocation
	Summary

	Performance evaluation
	Conclusion
	Acknowledgements
	References


