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Abstract 

We propose a fault-tolerant broadcasting algorithm for hypercubes with link faults. This algorithm is based on an 
extended spanning binomial tree structure that still keeps the simplicity of conventional binomial-tree-based broadcasting. In 
addition, it is optimal in the sense that exactly n steps are required to complete a broadcast in an n-dimensional injured 
hypercube with up to n - 2 faulty links. We .also show that n - 2 is the maximum number of faulty links that can be 
tolerated in any optimal broadcast scheme in an n-dimensional hypercube. To implement the proposed algorithm each node 
keeps information of nearby faulty links in terms of addresses for those faulty adjacent m-s&cubes that contain at least 
m - 1 faulty links. 
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1. Introduction algorithms. The basic broadcasting algorithm was 

‘Ike hypercube structure [12,4] is one of the most 
popular message-passing architectures, and several 
multicomputer configurations have been prototyped 
or marketed [5,13]. Broadcasting [6] concerns trans- 
mitting a data set from one node to all the other 
nodes in a network. Broadcasting is an important 
operation frequently used in a variety of linear algo- 
rithms, database queries, and linear programming 

’ Email: jie@cse.fau.edu. 

introduced in [14] based on the binomial tree struc- 
ture. When a component (links or nodes) in the 
hypercube fails during a long computation, which is 
not uncommon, hours of computation will be wasted 
if no proper fault-tolerant mechanism exists. There- 
fore, there is a need for fault-tolerant broadcasting 
dealing with successful broadcasting in the presence 
of faulty components. In general, fault-tolerant 
broadcasting can be classified based on (1) the way 
each destination receives the broadcasting data, (2) 
the amount of information kept at each node, (3) the 
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type of faulty components, and (4) the number of 
faulty components. 

There are in general two ways that each destina- 
tion receives the broadcast data: (1) Each node might 
receive more than one copy, and the corresponding 
algorithm is called redundant broadcasting [I I]. 
Normally, in a redundant broadcasting the source 
node simultaneously sends copies of broadcasting 
data to its neighbors. This approach has its merit of 
simplicity and it doesn’t require backtracking during 
the broadcasting. The flaw with this approach is the 
extra network traffic. It is clear that redundant broad- 
casting is not necessary in the absence of faulty 
components. (2) Each node can only receive one 
copy of broadcast data. Therefore, broadcasting algo- 
rithms should be designed such that the broadcast 
data is sent to each node once and only once. 
Algorithms of this type are called nonredundant 
broadcast algorithms. In a broadcasting process, the 
amount of faulty component information kept at each 
node can be classified as local, limited global, and 
global. Local information contains only adjacent 
faulty components. Limited global information con- 
tains the distribution of faulty components in the 
neighborhood. Global information contains the distri- 
bution of all the faulty components. There are two 
types of faulty components: faulty link and faulty 
node. The number of faulty components can be 
either bounded or unbounded. 

Among the approaches based on local network 
information. Al-Dhelaan and Bose [I] proposed a 
binomial-tree-based broadcasting for limited link and 
node faults. This approach was enhanced by Wu and 
Femandez [ 171 which guarantees time-step optimal. 
Li and Wu [s] proposed a general broadcasting 
scheme with local network information that can tol- 
erant any number of faults. However, backtracking is 
required and network information (faulty component 
information) has to be incorporated as a queue into 
the broadcast data. Broadcasting schemes based on 
global information normally use routing tables [9] to 
keep global information. By taking the advantage of 

hypercube topology, Wu [ 161 proposed an efficient 
broadcasting using global information. The type of 
faults under consideration is link faults and the num- 
ber of faults is limited to the dimension of hypercube 
minus one. Baghavendra [lo] studied a broadcasting 
approach based on the concept of free-dimension 
that also uses global information. 

The fault-tolerant broadcasting based on local in- 
formation normally requires a routing history as part 
of the message to be broadcast in order to reach each 
node once and only once. While the fault-tolerant 
broadcasting based on global information, although it 
has its merit of simplicity, requires a process which 
collects global information. The broadcasting based 
on limited global information is a compromise of the 
above two schemes. On one hand this broadcasting 
scheme is relatively simple and no backtracking is 
required contrasting to approaches using local infor- 
mation. On the other hand collecting limited global 
information is much less expansive than the ap- 
proaches using global information. The challenge is 
to identify the right type of limited global informa- 
tion based on which cost-effective broadcasting can 
be derived. 

In this paper, we study an optimal broadcasting 
scheme based on an extended binomial tree structure 
and which can tolerate at least n - 2 link faults. 2 In 
the proposed scheme, each node keeps limited global 
information about the faulty links distribution. The 
concept of faulty adjacent subcube, an m-dimen- 
sional subcube that contains at least m - 1 faulty 
links, is used to represent the basic unit of informa- 
tion. In the absence of faulty links, no information is 
required to be kept at each node. Results show that 
the depth of any broadcasting tree is n for an 
n-dimensional hypercube with no more than n - 2 
faulty links. To our best knowledge, the proposed 

‘The proposed method can also be applied to faulty hyper- 
cubes with more than n - 2 faulty links. However, the optimality 

cannot be guaranteed. 
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scheme is the first limited-global-information-based 
broadcasting that achieves time optimality in injured 
hypercube with link faults. We also show that n - 2 
is the maximum number of faulty links that can be 
tolerated in any optimal broadcasting scheme in an 
n-dimensional hypercube. We also study the fault- 
tolerant broadcasting under a modified definition of 
faulty adjacent subcube, where an m-dimensional 
faulty adjacent subcube is defined as a cube that 
contains at least m (instead of m - 1) faulty links. 
We show that all the results based on the original 
faulty adjacent subcube definition are still valid un- 
der this modified definition of faulty adjacent sub- 
cube. The only exception is that the depth of the 
broadcasting tree in an n-dimensional hypercube 
with n - 1 faulty links is n under most cases and is 
n + 1 under few cases. Obviously, one more fault 
can be covered based on this modified definition and 
one more time step is required in a broadcasting in 
the worst case. The idea of using limited global 
information in fault-tolerant broadcasting has also 
been applied to hypercubes with node faults [ 181. 
However, a different definition of limited global 
information is used. 

This paper is organized as follows. In Section 2 
we define basic notation and preliminaries. In Sec- 
tion 3 we propose a fault-tolerant hypercube broad- 
casting with limited network information, where the 
faulty adjacent subcube is used as the basic unit of 
information. An optimal implementation of the pro- 
posed scheme is discussed in Section 4. The broad- 
casting based on another type of limited network 
information is discussed in Section 5. It is shown 
that a broadcasting can be completed optimally in n 
steps, except a few cases with low probability that 
require n + 1 steps. Finally, in Section 6 we present 
some conclusions. 

2. Notation and preliminaries 

An n-dimensional hypercube (or n-cube) Q, con- 
tains 2” nodes. Every node a has a binary address 

a,a,- , . . . a,, where a, is called the i-th bit (also 
called the i-th dimension) of the address. Every 
m-subcube Q, has a unique ternary address 
u,u,- , . . . U]’ with USE {O,l,*}, and there are ex- 
actly m bits take the value *, where * is a don’t 
care symbol. The extended Hamming distance be- 
tween two subcubes U=u,u,-,...u, and W= 

. w, in cube Q, is defined as H(U,W) = 
~;~ii;;,w., h , , w  ere h(u,,w;) is 1 only when one 
and only one of ui and wi is 1; otherwise it is 0. For 
example, H( 0 * *,*ll)= 1 and H(OO1,100)=2. a’ 
is a node that is adjacent to node a along the i-th 
dimension. For example, if a = 1101 then a* = 1111. 
The extended Hamming distance between two sub- 
cubes u = u,u,- , . . . u, and W = w,,w,- ] . ..W] 
cube Q, is defined as H(U,W) = Cj’= ,h(ui,wl! 
where h(u,,wi> is defined in Table l(a). The excfu- 
sive-or 8 operation between two subcubes U and W 
is defined as U fB W = v,,v,,- , . ..V]. where vi=ui$ 
wi as shown in Table l(b). 

Definition 1. A Q, with no fault is called healthy 
hypercube. A Q, with at most n - 2 link faults is 
called injured hypercube. A Q, with more than 
n - 2 link faults is called faulty hypercube. 

Broadcasting is a process which sends a data set 
from one node (called the source node s> to all the 
other nodes. The broadcast data visits each node 
exactly once and forms a spanning broadcast tree in 
the cube. A commonly used spanning tree in hyper- 
cubes is the spanning binomial free [2]. A O-level 

Table I 
Definition of (a) h(ui,w,), and (b) u,fB w, 
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binomial tree (B,) has one node. An n-level bino- 
mial trees (B,,) is constructed out of two (n - 1) 
level binomial trees by adding one edge between the 
roots of the two trees and by making either root the 
new root. We assume that hypercubes under consid- 
eration are capable of n-port broadcasting, that is, 
each node in a cube can communicate with all its 
neighboring nodes concurrently. 

Another view of a binomial tree is proposed in 
[18], where a Q, with the source node s is parti- 
tioned into {Q’,,-,,Q’,-, ,..., Q’,,Qb,s), such that 
d( s,Q’,- i> = 1, 1 < i < n. The sequence 
{ Cl,q,.*.r c,,}, a permutation of bit positions in Q, 
which take value *, is called the courtinure se- 
quence (CS). This sequence determines the structure 
of the binomial tree at first level: Q’,- i is connected 
to s along the c,-th dimension. Fig. 1 shows such a 
partition. 

The above partition process is also called a split- 
ting process. When this process is recursively ap- 
plied to each element in the partition, it is called a 
recursive splitting process. To be more specific, 
given a Q,. a subcube of Q,, with the source node s 
and CS = {c,,c,,. . . , cm), the partition can be derived 
by applying the following recursive splitting pro- 
cess: Q’,- , is derived by splitting the Q, along the 

c,-th dimension. The other part Q,,, _ I that contains s 
will be further split along the c,-th dimension. QL _ 2 
is the part which doesn’t contain s. This process 
continues until Q’, is split into two nodes, where one 
is Qb and the other is Q, = s. Then this process is 
recursively applied to each cube in 
(~m-,.~m-2Y.. (2,) at a node (called forward 
node) which is adjacent to s. We consider the source 
node s as a special forward node. By connecting 
source nodes at two subsequent splits, a binomial 
tree is derived. Note that CS used at each split could 
be global or local. If CS used at different nodes are 
subsequence of one coordinate sequence of n dimen- 
sions, then it is global; otherwise, it is local. 

More formally, we have the following definition 
of the splitting process: 

Definition 2. A splitting process of Q, at s = 
s,s,-I... s,, with CS = (c, ,c2, . . . ,cJ, forms a par- 
tition of Q, by replacing bit positions in Q, which 
take value * by binary values: 

Q, = Q,-, +Q’,n-, 

Qm- I = Q,-2 + Q’,-2 

Ql = Q,+eb, 

Fig. 1. A partition of Q, at s with respect to CS = cIc2 . . . c,. 
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where Q,- i (Q’,,,-J stands for a (m - i - l)-cube 
obtained by replacing the c,-th bit in Q,,,-i+, with 
s,{S,,), 1 5 i S m. 

Obviously, {&- ,,Q’,- 2,. . . ,Q&Q, = sl is a par- 
tition of Q,. 

Proposition 1. Every two cubes in IQ”,- , ,Q,- *, 
. . . ,Qb,s> are adjacent. 

The following definition describes an extended 
binomial tree structure used in the proposed broad- 
casting scheme. 

exist an extended spanning binomial tree in a given 
injured hypercube? The answer to this question is 
shown in the following two theorems. Theorem 1 
shows how to find those links to connect elements in 
any given partition of an injured hypercube. More- 
over, the selected links should be close to s so that s 
can determine the extended binomial tree by using 
only limited global information, i.e., the distribution 
of faulty links which are close to s. The selection of 
those links is shown in the proof of Theorem 1. 
Theorem 2 ensures that the approach used can be 
applied recursively to each subsequent partition. 

Definition 3. Suppose IQ’“- , ,Q’,, _ *, . . . ,Qb,s) is a 
partition of Q, at s following the splitting process 
defined in Definition 2 and EB,- , is an extended 
binomial tree of Q,.,l 5 i < n, and EB, = Qb. The 
extended binomial tree EB, of Q, with source node 
s is constructed by adding (arbitrary) n - 1 edges 
that connect EB,,- i,EBna2,. . . ,EB,,s into a con- 
nected graph. 

Theorem 1. There exisf n - 1 healthy links that 
connect cubes in any partition {Qk _ , ,gn _ *, . . . ,Qb, s) 
of an injured cube Q,. Moreover, these links are 
either adjacent to or one extended Hamming dis- 
tance away from s. 

Obviously the conventional binomial tree is a 
special extended binomial tree where all the n - 1 
edges are placed at s. In a partition {Q,,- , ,Q’,- *, 
. . . ,Qb,s], if the link that connects QkPi, 1 s i s n, 
to s is faulty then QnSi is called a disconnected 
cube with respect to s; otherwise, it is a connected 
cube. Obviously, if there is at least one disconnected 
cube generated from a splitting process in the recur- 
sive splitting process then the extended binomial tree 
is not a conventional binomial tree. 

3. Fault-tolerant broadcasting with limited global 
information 

Proof. Suppose there are r healthy links adjacent to 
s and therefore there are n - t faulty links which 
connect s to the remaining n - t subcubes in an 
arbitrarily selected partition. Let Q’,-, be a discon- 
nected cube and QkUi be one of the r connected 
cubes in a partition, we have the following connec- 
tions among s, Q’,- j, and Qnei as shown in Fig. 
2(a) and Fig. 2(b). Apparently, there are t node-ad- 
jacent detour paths as shown Fig. 2(a): s -+ sC; + 
(s’l)‘j + scj when j < i, and Fig. 2(b): s + sC; --* 
(sci)‘j when j > i which connect s to a node in 
Q’,- j. Since there are at most (n - 1) - (n - t> = t 
- 1 faulty links which are not adjacent to s, there is 
at least one healthy path among these t paths. More- 
over the link connecting QL _ i and Q’“- j is one 
extended Hamming distance away from s. Cl 

There may not exist a binomial tree B, with s as The next theorem indicates the existence of such a 
the root node in an injured hypercube, since any partition in which each subcube is a nonfaulty cube. 
faulty link that is adjacent to s destroys the corre- Therefore, Theorem 1 can be recursively applied at 
sponding branch originated from s. Then does there each split, generating an extended binomial tree. 
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Theorem 2. There exists a partition {Q’,- , ,QL _ 2, 
. . . ,Qb,s) of an injured hypercube Q, such that 

Q’,-;, Osiln, is a nonfaulty subcube, i.e., a 
healthy or injured subcube. Such a partition is called 
a safe partition. 

Proof. By induction on n. When n = 2 and there 
exists at most one fault, it is obvious that Qz can be 
partitioned into (Q’, ,Q;,s,} where Q’, is a healthy 
cube. Assume it is true for all n, such that n < k. 
When n = k, determine a dimension i along which 
there exists at least one faulty link and then split the 
Qk into two Qk-, ‘s along dimension i. Clearly both 
Qk- ,‘s contain at most k - 2 faults. By using the 
induction assumption at step 2, we prove Theorem 2 
when n = k. 0 

Based on the above Theorems 1 and 2, we have 
the following result: 

Corollary. There exists an extended binomial tree 
originated from any node in an injured hypercube. 

With the results of Theorems 1 and 2, we can 
easily generate a broadcasting algorithm (Algorithm 
1). Note that if a subcube Q’,,‘,_j is disconnected from 
the source node s then another cube Q’,- i has to be 
used to direct the corresponding destination set, 
which represents the node set in QL _ j, from s to a 
node in Q’,- j. Therefore, a forward node (a node in 
Q’,-,> would receives more than one destination 
subcube. In general, a forward node a receives 

(Q,,(Q,,,b,),(Q,,,b,), . . . ,(Q,,,b,k where Q, is 
the subcube to which a belongs. Q,,,,, 1 < i I k are 
disconnected nodes with respect to the parent node 
of a. bi, consisting of either one dimension (Fig. 
2(b)) or two dimensions (Fig. 2(a)), is a dimension 
sequence used to direct a broadcast data to each 
subcube. 

Algorithm 1: (fault-tolerant hypercube broadcast- 

ing) 

(At forward node a with destination cubes 

(Q,,(Q,,,b,),(Q,,,b,), . . . ,(Q,,&)). Initially only 
the source node s has destination cube Q,.) 

Broadcast Q,: 

1. Find a CS = (c, ,c2, . . . ,c,,J such that the corre- 
sponding partition (Qk _ , ,QL - 2, . . . ,Q&a} is safe. 

2. Send Qkei to nodes a” if the links between a 

and a’1 are healthy. For each Qk _ j that the link 
between s and S’J is faulty, find a dimension ci 
such that one of following two conditions is 
satisfied: 

(a) j < i and the path s + a’! + (ar3)c~ + a’) is 
healthy. 
(b) j > i and the path s + acf + (aCf)‘l is 
healthy. 
If condition (a) is true, (Q’,- j,(cj,ci)) is sent to 
node acl. If condition (b) is true, <Q’,- j,(cj}) is 
sent to node a”. 

Broadcast (Q,;,b;>, 1 I i I k: 

1. If bi = (cj} then send Q,, to node aCJ, a neighbor 
along dimension cj. If b, = {cj,ci} then send 

(Qm,? ci) to a”. 

The proposed scheme performs as a normal bino- 
mial-tree-based broadcasting when the hypercube is 
healthy (and for injured or faulty hypercubes under 
certain faulty link distributions). In this case, each 
forward node a only receives one destination cube 

Q m, such that a E Q,. Therefore step 1 of broadcast 
Q, of Algorithm 1 is a normal splitting process by 
randomly selecting a CS. In step 2, each Q’,- i will 
be directly sent to node ~‘1. 

Note that if the largest subcube (the left most 
subcube in Fig. 1) in a partition is a disconnected 
cube, then one extra step is required. In the worst 
cast when this situation occurs in the subsequent 
splitting, a total of (n - 1) extra steps are required to 
complete a broadcast in Q,. 
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(a) W 
Fig. 2. The connecting path among s, Q’,,uj and Q’,:,- ,. 

Question. How can each individual partition be per- 
formed such that no extra step is required in a 
broadcasting process? 

The answer to the above question is that the link 
connecting the largest subcube at each partition 
should be healthy. 
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(4 (b) 
Fig. 3. An injured Q3 with one faulty link. 
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Definition 4. A safe partition {Q\ _ , ,Q’,,- z, 
. . . ,Qb,Q,) of an injured Q, is optimal if the source 
node s connects Q’,,- i through a healthy link. 

Note that when there is no faulty adjacent link, 
any safe partition is considered optimal. Before the 
discussion of the implementation of a safe partition, 
let’s first look at the following theorem which shows 
the depth, i.e., the time steps, of any extended bino- 
mial tree generated from an optimal partition at each 
node of the cube. 

Theorem 3. There exists an extended binomial tree 
of depth n in an recursive partition of an injured Q, 
in which each partition is optimal. 

Proof, We prove the theorem by induction on the 
dimension of the hypercube. Clearly the theorem 
holds for any Q, and Q2. Assume that the theorem 
holds for all Q,‘s, with n < k. Then for Q,. with 
n = k, we perform an optimal partition (Q;- ,, 
Qk-*,..., Qb.Q,} of Qk at s. Based on the assump- 
tion, broadcasting at each Q;- j, 1 5 j 5 k can be 
completed in k-j if it is initiated from a node in 
Qk- j. Since a disconnected cube Qiej can be con- 
nected through a path of length two or three, any 
disconnect cube Q;- j, j > 2 requires no more than n 
steps starting from node s. For a disconnected Qk- 2, 
we can always find a connected Q;- i, 2 < i s k to 
connect Q;- 2 to s (since there are at most k - 2 
faulty links in Qk). Based on Fig. 2 the length of the 
path connecting Q;- 2 to s via Qiei is two. There- 
fore a total of n steps are required based on the 
induction assumption. 0 

Consider the Q, in Fig. 3, where link 1 *O is 
faulty. Suppose a message to be broadcast is gener- 
ated at node 110. A safe partition of * * * with 
respect to CS = {2,1,3} is (Q; = *0 * ,Q’, = * 11 ,Qb 
= 010,s = 110). However, Q; = *0* is a discon- 
nected cube and it can be reached via Q’, or QO. Fig. 
3(a) shows a possible optimal broadcasting where Q; 

is reached via Q”. The number of time steps required 
is four which is non-optimal. An optimal safe parti- 
tion of * * * is with respect to CS = {3,1,2) and a 
possible broadcasting is shown in Fig. 3(b), where 
Q’, is reached via Qb. Clearly the number of time 
steps required is three. 

Theorem 3 shows the existence of an extended 
binomial tree of depth n (optimal) in an injured Q, 
with no more than n - 2 faulty links. Then, does 
there exist an extended binomial tree of depth n in 
an injured Q, with more than n - 2 faulty links? 
More strongly, can we prove that n - 2 is the maxi- 
mum number in order to maintain optimality for an 
extended binomial tree, or even stronger for any 
spanning broadcasting tree? The answer is given in 
the following theorem. 

Theorem 4. n - 2 is the maximum number of faulty 
links that can be tolerated in any optimal broadcast- 
ing in an n-cube. 

Proof. It suffices that we provide a counter example. 
Let’s consider a node a in Q, which is n - 1 
distance away from the source s. If all the n - 1 
faults are adjacent to s and all those faults are along 
n - 1 Hamming distance paths from s to a, then a 
can only be reached through a detour path with one 
detour, and this path has a length of (n - 1) + 2 = n 
fl. Cl 

The results in this section show mainly the exis- 
tence of certain features, such as safe partitions in an 
injured hypercube. A more challenging issue is how 
to realize these features in an efficient way. More 
specifically, we shall find an efficient way to per- 
form a safe partition, and, more importantly, an 
optimal safe partition in a given injured hypercube. 
These issues are discussed in the next section. 

The optimal safe partition describes only the con- 
nection of the largest subcube in a safe partition. The 
distribution of faulty adjacent links that connect other 
subcubes in the partition is not important if the 
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number of time steps used in a broadcasting is the 
only concern. Sometimes, it is also desirable that the 
broadcast data reach each node through a Hamming 
distance path. In this case, the percentage of nodes in 
an injured hypercube that receive the broadcast data 
through a Hamming distance path from the source 
node is used to measure the quality of a broadcast. 
This percentage can be controlled by the splitting 
process at each node. In particular, the placement of 
adjacent faulty links at each split. The objective here 
is to reduce the number of detour nodes - nodes that 
receive the broadcast data through a non-Hamming 
distance path. Suppose node s in a Q, has k adja- 
cent faulty links. The placement of these k adjacent 
faulty links in the CS = {c, ,cz, . . . ,c,,} could be ar- 
ranged in the following three approaches: 

* Random selection: in which k adjacent faulty 
links are randomly placed in k dimensions in CS. 

* Right-jirst selection: in which faulty links are 
placed in k right-most dimensions in CS, i.e., 
dimensions: c,,-(~- I),~,-(m-2), . . . .c,-(~-~). 

. Lef-jirst selection: in which faulty links are placed 
in the k left-most dimensions in CS, i.e., dimen- 
sions c, ,c2,. . . ,ck. 

It has been shown [ 151 that the right-first selection 
outperforms both the left-first and the random selec- 
tions in reducing the number of detour nodes. There- 
fore, an optimal safe partition at a node a should be 
determined such that faulty adjacent links of a are 
used to connect small subcubes in the partition. 
However, the strict right-first selection may not al- 
ways be possible for certain configurations of injured 
hypercubes. For example, in an injured Q, with four 
faulty links located in a Q2 that contains the source 
node s, there are two possible placements of two 
adjacent faulty links to two right-most dimensions in 
a partition, but neither of them is safe. A relaxed 
version of the right-first selection can be adopted 
where adjacent faulty links are used to connect small 
subcubes in the partition as long as they do not 

violate the safe partition condition. This approach is 
implicitly used in the implementation of the pro- 
posed scheme as described in the next section. 

4. Implementations 

In this section, we describe an efficient implemen- 
tation of the proposed broadcast algorithm, and ex- 
amine the type and the amount of limited global 
information required at each node. 

Obviously, the way to perform a safe partition is 
the key. One possible method is based on the proof 
of Theorem 2, where at each split of the cube at least 
one faulty link must be along the splitting dimension, 
i.e., the remaining subcube is nonfaulty. There are 
two flaws with this approach. First, each node needs 
to know global information to locate faulty links in 
the cube. In general, it is expansive to maintain an 
updated global information on each node. Second, 
optimality can not be guaranteed. For example, sup- 
pose the source s has one adjacent faulty link (along 
dimension d,) and it is the only faulty link in the 
injured Q,, then the dimension d, has to be selected 
as the first element of CS. In this case Q’,- , is a 
disconnected cube. We try to determine an optimal 
safe partition method which uses limited global in- 
formation. Moreover, this method should be effi- 
cient, which requires a time complexity in an order 
of O(m) to determine a CS of length m at each 
node. 

At each node, locations of adjacent faulty sub- 
cubes and dimensions along which faulty links are 
located in these subcubes are kept as limited global 
information associated with each node. Adjacent 
faulty links are considered to be an adjacent faulty 
Q,. The process that collects information of adjacent 
faulty subcubes at each node is beyond the scope of 
this paper. This process can be determined following 
a similar approach used in [19]. Note that such an 
information collection process is not necessary in the 
absence of faulty links, i.e., this process is activated 
only when one or more faulty links are detected. 
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Let I = <Q,,,,,d,),(Q,,,d,), . . ,(Q,,,d,) be the 
faulty adjacent subcube l&t attached to node a, that 
is H(Q,,,a)= 1. Q,, in the tuple (Q,,,,,d;) repre- 
sents the absolute address of a subcube, and the 
number of * in each subcube determines the size of 
the subcube with the exception of one * which could 
represent a faulty adjacent Q, or Q,. For example, 
Q,, = * * 1 is an adjacent 2-cube to s = 010. The 
location of 1 in s @ Q,, = * * 1 represents the di- 
mension along which Q,, and s are connected. If 
there is no occurrence of 1 in s @ Q,, then Q,, is a 
faulty adjacent link. dj, faulty dimension set, is a set 
of dimensions along which faults in Q,( occur. In 
Fig. 3, the di for 1 *0 is (2). Apparently, when Q,, 
is a O-cube or a l-cube, di is not necessary. 

The basic idea used in the implementation of step 
1 of broadcast Q, in Algorithm 1 is to ensure that 
all the subcubes in the partition of Q, are nonfaulty 
(injured or h ea y and Q’,- , is a connected sub- lth > 
cube to achieve an optimal safe partition. The chal- 
lenge here is to determine an optimal partition of a 
destination subcube Q, in an order of O(m). 

The following notation is used in the implementa- 
tion: 

A: A set of dimensions of adjacent faulty links. 
Those dimensions are not contained in faulty di- 
mension sets in other faulty adjacent cubes. 
AF: A set of dimensions of adjacent faulty links 
and those dimensions are contained in faulty di- 
mension sets in other faulty adjacent cubes. 
F: A union of faulty dimension sets excluding 
those dimensions in AF. 
N: A set of dimensions not in A, AF or F. 

Clearly, A, AF, F, and N can be directly derived 
from the union of the faulty dimension sets ( lJ d,) in 
I and faulty adjacent links. Let a, uf, f, n denote 
elements in A, AF, F, N, respectively. 1 XI repre- 
sents the cardinality of the set X. 1 X lY is a random 
sequence of y with a length I Xl. ( XjY . (X’>, is a 
concatenation of two dimension sequences. The opti- 

ma1 selection of CS = c,c2 . . . c, at each node to 
partition a subcube Q, can be described using the 
following scheme: 

c,cz...c, = IFly a, +@I.,-P;IAl, 

where 

cw=min(INI,IAFl+IAl} 

and 

‘= ;Nl-CY i 

if (Y= INI, 

if a=IAFl+lFI. 

In the above equation, the A, AF, F, and N in 
the above equation are subsets of respective A, AF, 
F, N which contain only those dimensions with * in 
the destination cube. Clearly, with the randomness 
used in the selection process, the above scheme 
determines a CS that corresponds to an optimal 
partition in O(m). 

Theorem 5. The partition of an nonfaulty Q, using 
the above scheme is safe and optimal. 

Proof. This theorem can be proved in two steps. We 
first prove that each Qt., 1 I i I n - 1, in Q, = 

IQ’,- ,,Ql- *, . . . ,Q’, ,Qb,Q,} is a nonfaulty cube and 
Q’,- , is a connected cube. Therefore the partition is 
safe and optimal. 

To prove that all subcubes in any partition are 
nonfaulty (which are either injured or healthy), we 
need to use the following two facts: (1) If a Q, is an 
injured hypercube and it is split along a dimension 
along which there exists a faulty link, then both 

Qn- I and Q’,-, in Q,,=Q,-,+Q’,-, are non- 
faulty. (2) Any faulty adjacent link of node s is not 
contained in subcubes in any partition with node s as 
the source node. Based on fact (11, we can first 
select those dimensions in F and the resulting sub- 
cubes are guaranteed nonfaulty. Using fact (21, we 
can then select a (I / AF I + I Al) dimensions from N 
without generating faulty subcubes. Dimensions from 
AF are selected without generating faulty subcubes 
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because each dimension in AF contains at least two 
faulty links, although the rest of the selection from 
A and the remaining N can be random. We give 
priority to dimension from N to reduce the number 
of detour nodes. 

The partition is optimal since I FI + 1 AFI + 1 Al 2 1 
in an injured hypercube, i.e., no dimension from A 
or AF is selected as the first element in CS. 0 

Since the union of faulty dimension sets is avail- 
able at each node, together with the information of 
faulty adjacent links, we can easily derive A, AF, 
F, and N. The CS can then be determined through a 
simple concatenation of random sequences of dimen- 
sions from A, AF, F, and N. 

An optimal partition does not automatically guar- 
antee an optimal broadcasting. Care should be token 
to connect each disconnected subcube via a con- 
nected subcube. More specifically, in a partition of 
Q,, we should connect the disconnected Qk _ 2 via a 
connected subcube with a smaller dimension, i.e., 
Q’,- 2 is connected via a path of length 2 form the 
source. This selection is reflected in Algorithm 2, an 
implementation of step 2 of broadcast Q, in Algo- 
rithm 1, where the distribution of faulty adjacent 
O-cubes (or faulty adjacent links) and faulty adjacent 
l-cubes are the only information required. 

Algorithm 2: (Implementation of Algorithm 1, 
step (2) of broadcast Q,} 

{Suppose an optimal safe partition {Qa- ,, 

Q’,- 2,. . . ,Q’, ,a) is given at node a) 

1. For each Q’,- ; with healthy adjacent O-cube along 
ci, send QhPi to node acf along ci. 

2. For each remaining Q’,-, with each faulty adja- 
cent O-cube along cj, find a nonfaulty 2-cube 
containing node a that spans along dimensions cj 
and ci. When j = 2, i should be selected such 
that 2 < i < n. Such a Q2 can be determined by 
examining the adjacent O-cubes and l-cubes of 
node a. 

3. Send Q’,-j together with cj, (or cj,cI) to node U’J 
when j > i (when i > j). 

Table 2 shows the faulty dimension set associated 
with each node of a Q4 in Fig. 4, with two faulty 
links I*01 and lOO*. Six faulty subcubes are lOO*, 
l*Ol, l*Ol, l**l, lo**, l***.The A, AF, F, 
and N for each node is also shown together with the 
CS that generates optimal safe partition at each node. 
Suppose node 0001 is the source node, the CS : { 1,3) 
. (2,4} represents four possible selections: 1324, 
1342, 3124, and 3142. For example, CS = 1324 
generates the optimal safe partition 
(* * *O,*l*l,*Oll,lOOl,OOOl}. Actually, each 
subcube in the partition is a healthy one. Therefore 
the optimality is guaranteed which is independent of 
the subsequent splitting processes. Fig. 4 shows a 
possible broadcasting in this cube, where the subse- 
quent splitting processes on each subcube are based 

Table 2 

Faulty adjacent hypercube set 

Nodes u 4 

cl* * * (I,31 
IOCNI (1,3) 
1001 {I,31 

l*I* {1,3) 
Ii00 {1,31 
1101 (I.31 

A 

111 
(I,31 

II 

(3) 

F 

(I.31 
I31 

II 
1131 
II,31 

(1) 

N 

(X4} 
@Al 
tL41 
{2,4) 
GY) 
(2.4) 

Optimal CS 

II,31 (24) 
13). (2341 (1) 

(2.4) . (I,31 
(I ,3) (2,4) 

(I,31 {2,4) 
(11. (2.4). (3) 
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1 rmo I 1001 
I---------------I :,-: 

Fig. 4. An injured hypercube Q4 with two faulty links. 

on the global CS = 4321. For other CSs at node 
0001, they may or may not generate a broadcasting 
tree with a depth equals to the dimension of hyper- 
cube. For example, it is easy to see that any CSs in 
the format of (4) . { 1,2,3} will generate a broadcast- 
ing tree of depth at least five. On the other hand, the 
CS = 1423 at 0001 could generate a broadcast tree 
of depth four, although the corresponding partition is 
not safe (the Q; is a faulty hypercube). 

The amount of limited algorithm information can 
be further reduced by maintaining information of 
faulty adjacent subcubes whose dimensions are 
smaller than two (based on Algorithm 2, the imple- 
mentation of step 1 of broadcast Q,>. For other 
faulty adjacent subcubes, only the union of their 
faulty dimension sets (lJ di) in the faulty adjacent 
subcube list is required to determine the optimal safe 
partition. 

5. Extensions 

In this section, we study another way of defining 
limited global information. Actually, we still use the 

same concept of the faulty adjacent subcube but it is 
defined differently. The main objective is to get 
insights into different trade-offs. In this case, the 
performance (in terms of the number of time steps in 
a broadcasting) is traded by the degree of fault 
tolerance. To be more specific, the scheme studied in 
this section can tolerate (n - 1) faulty links (one 
more fault to be tolerated than the previous scheme) 
and a broadcasting in an injured Q, still can be 
completed optimally in n steps, except in a few 
cases with low probability which require n + 1 steps. 

The following is the modified Definition 1: 

Definition 1’. A Q, with no fault is called healthy 
hypercube. A Q, with at most n - 1 link faults is 
called injured hypercube. A Q, with more than 
n - 1 link faults is called faulty hypercube. 

It is easy to verify that all theorems and algo- 
rithms in the previous sections are still applicable to 
injured hypercubes under the above definition. The 
proof is left to the reader. The only exception is that 
Theorem 3 does not hold any more. It can be rewrit- 
ten as the following theorem: 

Theorem 3’. Any extended binomial tree generated 
from an optimal partition at each node of an injured 
hypercube has a depth of n or n + 1. 

Proof. We prove the theorem by induction on the 
dimension of the hypercube. Clearly the Theorem 
holds for any Q, and Q2. Assume that this theorem 
holds for all Q,‘s, with n < k, then for Q,, with 
n = k, we perform an optimal partition 

IQ;- ,vQ;-, , . . . ,Qb,Q,) of Qk at s. Based on the 
assumption, each Q;- i, 1 I i < k, can be completed 
in k - i and k - i + 1 steps. Since cube Q;- , is 
connected through a healthy link, (k - 1) + 1 or 
(k- 1) + 1 + 1 = k+ 1 steps are required to com- 
plete broadcasting among nodes in Q;- ,. Since the 
other Q;- i may be connected through faulty links, 
the worst case, in terms of the longest path from s to 
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a leave, occurs when Q’,-, (a healthy subcube) or 
Qn- 3 (an injured subcube) is connected to s by a 
faulty link. In the former case, Q’,- 2 can be reached 
only through a detour path. Since Q’,-, is a healthy 
subcube, (n - 2) additional steps are required to 
complete broadcasting inside Q’,- 2. Therefore, a 
total of (n - 2) + 1 + 2 = n + 1 steps are required. 
In the later case, Q’,- 3 can be reached only through 
a detour path. Since Q’,-, is an injured hypercube 
and based on the induction assumption, a total of 
((n - 3) + 1) + 1 + 2 = n + 1 steps are required in 
the worst case. 0 

Clearly both Algorithms 1 and 2 can be used here. 
To estimate the probability of generating a broad- 
casting tree of depth n + 1, we have the following 
observations: Suppose s is the source node in a 
destination subcube Q,, an extra step is required 
when all the m - 1 faults in Q, are adjacent to s. 
This extra step will cause an extra global time step 
only when the source node (in a subsequent split) is 
a node in the longest path in the broadcasting tree 
(the left-most path in the tree>. 

A simulation study has been conducted on Q,‘s 
with n - 1 faulty links, where n ranges from 2 to 
10. Under the assumption of random distribution of 
faulty links, we obtain the percentage of non-optimal 
broadcasting for cubes of different sizes as follows: 
50% for Q,, 4% for Q,. 0.1% for Q4, 0.01% for Qs, 
0.0001% for Q6, and close to 0% for Q,, Qs, Q,, 
and Q,,. Clearly, the percentage of non-optimal 
broadcasting decreases drastically as the size of the 
cube increases. 

6. Conclusions 

In this paper, we have studied an optimal broad- 
casting scheme that can tolerate n - 2 faulty links. 
This process is based on an extended spanning bino- 
mial tree structure which keeps the simplicity of 
conventional binomial-tree-based broadcasting. We 

have also shown that n - 2 is the maximum number 
of faulty links that can be tolerated to achieve an 
optimal broadcasting. The proposed broadcasting can 
be achieved efficiently and each node only needs to 
know limited global information captured in a faulty 
adjacent subcube list. 

There are other issues that have not been included 
but can be treated separately. One issue is the dead- 
lock problem which could happen when multiple 
nodes send their broadcast data simultaneously. In 
general, deadlock could be avoided using message 
buffers and virtual channels [3] at a lower level of 
implementation. The integration of the deadlock- 
freeness feature and different communication 
schemes has been discussed in 171. 

Acknowledgements 

Thanks to Tianan Wu for providing help in ob- 
taining simulation results. 

References 

[II 

121 

131 

141 

[51 

[61 

[71 

A. Al-Dhelaan and B. Bose, Efficient fault tolerant broad- 
casting algorithm for the hypercube, Proc. oj4rh ConjI on 
Hypercube Concurrent Computers und Applications (1989) 

123-128. 
M.R. Brown, Implementation and analysis of binomial queue 
algorithms, SIAM Journal of‘ Computing (Aug. 1978) 161- 

164. 
W.J. Dally and C.L. Seitz, Deadlock-free message routing in 
multiprocessor interconnection networks, IEEE Transactions 

on Computers 3ti5) (1987) 547-553. 
J.P. Hayes and T.N. Mudge, Hypercube supercomputers, 
Proceedings of the IEEE 77( 12) ( 1989) 1829- 1841. 

W.D. Hills, The Connection Machine (MIT Press, Cam- 
bridge, MA, 1985). 
S.L. Johnson and C.-T Ho, Optimal broadcasting and person- 
alized communication in hypercubes, IEEE Trclnsactions on 

Computers 41(10) (I 992) 1249- 1268. 
T.C. Lee and J.P. Hayes, A fault-tolerant communication 
scheme for hypercube computers, lEEE Trunsuctions on 

Computers 41(10) (1992) 1242-1256. 



380 

[81 

[91 

[lOI 

1111 

1121 

[131 

[141 

[I51 

I161 

[I71 

J. Wu/ Journul of Systems ArchiIecrure 42 (1996) 367-380 

Z. Li and J. Wu, A multidestination routing scheme for 

hypercube multiprocessors, Proceedings of 199I Inrerna- 
tionul Conference on Purullel Processing, Vol. II, Aug. 
1991, 290-291. 

M. Perrcy and P. Banerjee, Distributed algorithms for short- 
est-path, deadlock-free routing and broadcasting in arbitrarily 
faulty hypercubes, Proceedings of 20th International Sympo- 

sium on Fault-Tolerant Computing, 1990, 218-225. 
C.S. Raghavendra, P.J. Yang and S.B. Tien, Free dimensions 
- An effective approach to achieving fault tolerance in 

hypercubes, Proceedings of 22nd Internutionul Symposium 

on Fault-Toleranr Computing, 1992, 170- 177. 
P. Ramanathan and K.G. Shin, Reliable broadcast in hyper- 

cube multicomputers, IEEE Trunsucrions on Computers 
37(12) (1988) 1654-1657. 

Y. Saad and M.H. Schultz, Topological properties of hyper- 
cubes, IEEE Trunsuctions on Computers 37(7) (1988) 867- 
872. 

C.L. Seitz, The cosmic cube, Communicarions of the ACM 
28(l) (1985) 22-33. 

H. Sullivan, T. Bashkow and D. Klappholz, A large scale, 
homogeneous, fully distributed parallel machine, Proceed- 

ings of 4th Annual Symposium on Computer Architecture, 
March 1977, 105-124. 
J. Wu, Broadcasting in injured hypercubes using incomplete 

spanning binomial trees, Technical Report, TR-CSE-92-29, 
Department of Computer Science and Engineering, Florida 
Atlantic University, Nov. 1992. 

J. Wu, Fault-tolerant nonredundant broadcasting in Hyper- 
cubes, Proceedings of the 21th Internationul Conference on 
Parallel Processing, Sept. 1992, 23-26. 

J. Wu and E.B. Femandez, Broadcasting in faulty cube-con- 

netted-cycles with minimum recovery time, Proceedings of 
CONPAR92, Springer-Verlag, LNCS 634, Sept. 1992, 833- 

834. 
[18] J. Wu and E.B. Femandez, Reliable broadcasting in faulty 

hypercube computers, Microprocessing und Microprogrum- 
ming, 39 (1993) 43-53. 

[ 191 J. Wu, Broadcasting in Injured Hypercubes using incomplete 
spanning binomial trees, IEEE Truns. Compur. 44(5) (May 

1995) 702-705. 

Jie Wu received a B.S. Degree in com- 
puter engineering in 1982, an M.S. in 
computer science in 1985, both from 
Shanghai University of Science and 
Technology, Shanghai, People’s Repub- 
lic of China, and a Ph.D. in computer 
engineering from Florida Atlantic Uni- 
versity, Boca Raton, Florida, in 1989. 
During 1985- 1987, he taught at Shang- 
hai University of Science and Technol- 
ogy. Since August 1989, he has been 
with the Department of Computer Sci- 
ence and Engineering, Florida Atlantic 

University, where currently he is a tenured Associate Professor. 
He has authored/co-authored over 60 technical papers in various 
journals and conference proceedings including IEEE Transactions 
in So&ore Engineering, IEEE Transactions on Purullel and 
Distributed Systems, IEEE Transucrions on Computers, Journal 
of Parallel and Distributed Computing, and Parallel Processing: 
Practice and Experience. His research interests are in the area of 
fault-tolerant computing, distributed algorithms, interconnection 
networks, Petri net applications, and computer security. Dr. Wu is 
member of Upsilon Pi Epsilon and ACM, and a senior member of 
IEEE. He has been on the program committees of the IEEE 
International Conference on Distributed Computing Systems and 
International Conference on Computer Communications and Net- 
works, among others. 


