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Abstract—Massively deployed cameras form a tightly con-
nected network which generates video streams continuously.
Benefiting from advances in computer vision, automated real-
time analytics of video streams can be of practical value in various
scenarios. As cameras become more dense, cross-camera video
analytics has emerged. Combining video contents from multiple
cameras for analytics is certainly more promising than single-
camera analytics, which can realize cross-camera pedestrian
tracking and cross-camera complex behavior recognition. Some
works focused on optimization of cross-camera video analytic
applications, but most of them ignore specific network situa-
tion between cameras and edge servers. Furthermore, most of
them ignore the super resolution technique, which is proven
to be a source of efficiency. In this paper, we first verify the
potential gain of super resolution on cross-camera video analytic
tasks. Then, we design and implement a cross-camera real-time
video streaming analytic system, Scrava, which leverages super
resolution to augment low-resolution videos and simultaneously
reduce bandwidth consumption. Scrava enables real-time cross-
camera video analytics and enhances video segments with the
SR module under poor network conditions. We take cross-
camera pedestrian tracking as an example, and experimentally
verifies the effectiveness of super resolution on real-time cross-
camera video analytics. Compared with using low-resolution
video segments, Scrava can improve the F1 score by 47.16%,
verifying the feasibility of exploiting super resolution to improve
the performance of real-time cross-camera video analytic systems.

Index Terms—Edge computing, video analytics, cross camera,
super resolution.

I. INTRODUCTION

LTHOUGH real-time video stream analytics based on

single camera can achieve powerful functions such as
object detection, semantic segmentation, and pedestrian recog-
nition, single camera has only a limited coverage field of view,
and information caught by single camera cannot fully describe
the behavior of a specific object when the object moves within
a large spatial scale (e.g., campus, city). Generally, to achieve
a complete surveillance of a specific area, multiple cameras
are deployed with complementary views between them.

In such scenarios, cross-camera real-time video stream ana-
Iytics is essential, which is capable of combining information
from multiple cameras to achieve functions that cannot be
achieved by single-camera video analytics. For example, when
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a suspect escapes the scene of an incident and roams around
the city, constantly appearing in the view of different cameras,
cross-camera real-time video analytics is indispensable to help
the police continuously track the suspect.

Figs. 1(a) and 1(b) illustrate a classic cross-camera dataset,
i.e., DukeMTMC [29], which is composed of videos captured
by eight cameras deployed at Duke University, where Fig-
ure 1(a) shows the deployment of these cameras, including
locations and fields of view coverage, and Figure 1(b) gives
a sample image of the video captured by all eight cameras. It
can be seen that multiple cameras provide a more complete
coverage of the campus, thus allowing for continuous tracking
of specific objects of interest at a larger spatial scale.

However, cross-camera video analytics is obviously a more
difficult task than single-camera video analytics, in the sense
that cross-camera video analytics requires not only analyz-
ing video streams from each camera, but also capturing the
cross-camera correlation information, such as associating the
same person appearing in different cameras. To associate
information across different cameras, lots of works on re-
identification (ReID) have been studied, especially pedes-
trian re-identification [38]. Pedestrian re-identification initially
emerged in conjunction with multi-camera tracking [30], and
then gradually developed into an independent research sub-
ject. The development of deep learning has also sparked
the development of pedestrian re-identification, and neural
networks have been introduced into the field of pedestrian re-
identification, becoming a popular solution in the field [20],
[32].

At the same time, limited by the computing resources of
the cameras, video streams are continuously transmitted from
the cameras to the associated edge servers for analytics, and
the more cameras deployed, the larger the amount of data
to be transmitted, and the higher the requirements for the
network bandwidth. In single-camera video analytics, network
conditions affect the resolution of the video transmitted to the
server, thus affecting the performance of the video analytic
task on one single camera, while in cross-camera video
streaming analytic tasks, the impact of the network conditions
on the final task performance is amplified, as the network
conditions not only affect video analytics on a single camera,
but also affect data correlation between multiple cameras.

In summary, the challenges of implementing a real-time
cross-camera video analytic system are as follows:

o Changes of video resolution within one camera. The
video segments transmitted from a camera to an edge
server are faced with changes in video resolution due to
fluctuations in network bandwidth, which can affect real-



IEEE TRANSACTIONS ON MOBILE COMPUTING

(b) Samples

Fig. 1: DukeMTMC [29], a classic cross-camera dataset, is
composed of videos captured by eight cameras deployed at
Duke University. (a) shows the deployment of eight cameras,
including locations and fields of view coverage, and (b) gives
a sample image of the video captured by all eight cameras.

time video analytic applications within a single camera,
such as object tracking. In object tracking, when video
resolution switches, the coordinates and features of the
tracked object will change accordingly, probably leading
to tracking interruptions, errors, and other problems.

« Variation in video resolution across cameras. Since
network conditions between different cameras and the
edge server vary, video segments transmitted to the edge
server for real-time video analytics would have different
resolutions. When performing cross-camera data associ-
ation, low-resolution video segments from some cameras
would result in difficulty in cross-camera information
association due to the loss of information caused by the
reduced resolution.

o High bandwidth requirements. In cross-camera real-
time video streaming, on one hand, video data captured
by multiple cameras need to be transmitted simultane-
ously. On the one hand, video data is a highly storage-
intensive data type. Nevertheless, the transmission must
be achieved in real-time, which finally translates into high
bandwidth requirements.

There have been several works focusing on cross-camera
video analytics [24], [25], [14], [11]. For example, Cae-
sar [24] studies cross-camera complex behavior recognition,
and presents a hybrid design combining rule-based and DNN-
based detection to determine whether the complex behavior
occurs; Spatula [14] reduces the computational overhead of
cross-camera video analytics by exploiting the spatio-temporal
correlation between cameras through offline statistics; Cross-
Rol [11] divides each frame evenly into rectangular blocks
and runs the existing algorithm [19] on synchronized videos
from different cameras to determine the overlapping areas of
cameras by the same object that appears in the field of view
of multiple cameras. However, these works hardly took super
resolution into consideration, and thus lost the opportunity of
utilizing the power of super resolution.

This paper is the first to use super resolution for the opti-
mization of cross-camera video analytics, which improves the
performance of cross-camera video analytic applications under
bandwidth constraints and provides a possible optimization
direction for future cross-camera video analytics. We first
verify the effectiveness of super resolution (SR) on cross-
camera video analytic tasks. Then, we design and implement
Scrava (Super resolution-based Cross-camera bandwidth-
efficient video analytics), which exploits super resolution to
enhance low-resolution video segments at the edge server side,
mitigate the impact of inadequate and unstable (wireless) net-
work bandwidth in the edge environment on real-time cross-
camera video analytics, and thus improve the performance
of cross-camera video analytic tasks under poor network
conditions. Finally, we evaluate the effectiveness of super
resolution in cross-camera real-time video stream analytics
using cross-camera pedestrian tracking as an example.

The contributions of this paper are three-fold:

« To our best knowledge, this paper applies super resolution
to real-time cross-camera video analytic tasks for the
first time. Through pilot experiments, we show SR can
significantly improves the effectiveness of real-time video
analytic applications within one single camera as well
as across cameras under restricted network conditions,
and improves the stability of cross-camera video analytic
results.

o« We design and implement a scalable, real-time cross-
camera video analytic system, Scrava, which integrates
an SR module into the detection/tracking module, the
bandwidth prediction module, and the re-identification
module. Scrava enables real-time cross-camera video
analytics and enhances video segments with the SR
module under poor network conditions.

« We take cross-camera pedestrian tracking as an example,
and experimentally verifies the effectiveness of super
resolution on real-time cross-camera video analytics.
Compared with using low-resolution video segments,
Scrava can improve the F1 score by 47.16%, verifying
the feasibility of exploiting super resolution to improve
the performance of real-time cross-camera video analytic
systems.

The rest of this paper is organized as follows. We provide
related works in Section II. Section III motivates the design
of Scrava. Section IV provides the design of Scrava and
implementation issues. Section V evaluates the performance
of Scrava. Before concluding the paper in Section VII, we
show limitations and future works in Section VI.

II. RELATED WORKS

Existing studies can be classified into two broad types:
single-camera and cross-camera video analytics.

Single-camera video analytics. Many existing works on
single-camera video analytics focus on reduce bandwidth
consumption. Vigil [34] utilizes a lightweight preprocessing
at mobile devices to obtain some preliminary results, which
are then transmitted to edge servers for deciding the set of
frames to be processed at servers. Glimpse [5] and 02 [12]
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TABLE I: Comparison between existing cross-camera video analytics methods with our work

Existing Studies l Target Environment l

Optimization Goal l

Main Approach

Caesar [24] Overlapping fields of views

Support complex activity query

Rule-based and DNN-based detection

CONVINCE [25] Overlapping fields of views

Reduce bandwidth and computation overhead

Filter out irrelevant frames

Spatula [14] Non-overlapping fields of views

Reduce bandwidth and computation overhead

Offline statistics-based correlation

CrossRol [11] Overlapping fields of views

Reduce bandwidth and computation overhead

Eliminate spatial redundancy

Polly [17] Overlapping fields of views

Reduce inference latency

Position mapping and results merging

Scrava Overlapping fields of views

Reduce bandwidth overhead
and improve cross-camera RelD

Augment low-resolution videos with SR

observe that object detection is accurate but slow, while object
tracking is fast but it may accumulate errors; therefore, they
intelligently switch between on-device tracking and on-server
detection to filter out unnecessary frames. Taking one step fur-
ther, Reducto [21] adapts filtering decisions to the time-varying
correlation between feature type, filtering threshold, query
accuracy, and video content, thus achieving a better filtering
performance. EIf [35] offloads video analytics tasks within a
frame to multiple edge servers to optimize analytics latency.
Some other related studies optimize single-camera video ana-
lytics through adjusting video configuration. Chameleon [15]
finds the best video configuration by maintaining a set of top-
K configurations. DDS [6] uses a two-phase method: in the
first phase, a client transmits low-resolution video to an edge
server for analytics, and in the second phase, after receiving
feedbacks from the server, the client transmits high-resolution
regions, which are not identified with a high confidence level,
to the server. JCAB [33] utilizes the Lyapunov optimization
framework to decouple the long-term optimization problem of
video configuration selection and bandwidth allocation into a
series of short-term one-slot problems. These works provide
efficient single-camera analytics approaches that better support
Scrava.

Cross-camera video analytics. There have been several
works focusing on cross-camera video analytics. Tab. I sum-
marizes the comparison results between existing cross-camera
video analytics methods with our work. Caesar [24] proposes
a hybrid design combining rule-based and DNN-based detec-
tion, based on which Caesar matches the behavior definition
graph by object detection and association results to determine
whether the complex behavior occurs. CONVINCE [25] ex-
ploits the spatio-temporal correlation of cameras to eliminate
redundant frames, thereby reducing bandwidth and computa-
tional overhead. Spatula [14] determines the spatio-temporal
correlation between cameras through offline statistics and
is thus more reliable. CrossRol [11] observes that, densely
deployed cameras are likely to have overlapping views be-
tween them, therefore, CrossRol divides each frame evenly
into rectangular blocks and runs the DiDi-MTMC [19] al-
gorithm on synchronized videos from different cameras to
determine the overlapping areas of cameras by the same
object that appears in the field of view of multiple cameras.
Polly [17] utilizes position mapping and results merging to
share inference results across cameras, thus eliminating the
redundant inference work for objects in the same physical
area. Although these works represent substantial effort towards
efficient cross-camera video analytics, most of them ignore the

super resolution technique, which is proven to be a source of
efficiency in improving cross-camera RelD.

III. MOTIVATION

In this section, we verify the improvements of super resolu-
tion in stateful computer vision tasks, taking object tracking as
the example. We set the results obtained by running the object
tracking algorithm on raw-resolution video segments as the
ground truth for evaluation. We first present the metrics used
in pilot experiments, then we show the experimental results in
both the single-camera scenario and the multi-camera scenario.

A. Metrics

In multi-object tracking, the commonly used evaluation
metrics are /DF1 and MOTA, where IDF1 emphasizes
the association accuracy rather than detection accuracy, it
calculates the bijection between the set of predicted trajectories
prID and the set of ground truth trajectories gtID in order
to evaluate the prediction result, while MOT A is matched
at the object detection level. IDF'1 combines the IDP and
IDR, where IDP (ID precision) represents the precision of
recognition and it is calculated as:

\IDTP|
|IDTP|+ [IDFP|’

and I DR (ID recall) represents the recall of recognition, which
is calculated as:

IDP =

(D

\IDTP|
|IDTP|+ |[IDFN|’

besides, I DF'1 considers both precision and recall, which is
calculated as:

IDR = )

\IDTP|
\IDTP| + 0.5/IDFN|+ 0.5[IDFP|’

IDF1 = 3)

In the above equations, |I DT P| represents the number of
trajectories that correctly match between prID and gtID (tra-
jectory overlap greater than a threshold), |IDF P| represents
the number of trajectories in prID that do not match any
trajectory in gtID, and |IDF N| represents the number of
trajectories in gtI D that do not match any trajectory in prID.

MOTA is a multi-object tracking metric at the object
detection level, which calculates the bijection between the
predicted bounding box set prDets and the ground truth
bounding box set gtDets in each frame, and two bounding
boxes are considered as a match (IT'P) if they are spatially
similar enough. F'N denotes the case where there is no match
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(b) 6 people scenario

Fig. 2: The EPFL dataset [8] is a pedestrian video dataset containing multiple cameras, all of which are located approximately
2 meters above the ground and recorded in a synchronized manner, monitoring the same area from different angles. (a) and
(b) give two examples of laboratory sequences in the EPFL dataset, which are captured by four cameras with a duration of
about 2.5 minutes, a resolution of (360, 288), and a frame rate of 25.

TABLE II: Comparison between four super-resolution models

SR Model PSNR (dB) SSIM F1 score
EDSR X4 27.71 0.74% 42.43
EUSR X4 26.21 0.78% 41.29
MSRN X4 26.39 0.79% 45.19
RCAN X4 28.82 0.80% 43.36

in the set of predicted bounding boxes with the ground truth
bounding box set, i.e., the case of missed detection. F'P
denotes bounding boxes are detected in the predicted bounding
box set but not present in the ground truth bounding box set.
The M OT A metric also considers the case of Identity Switch
(IDSW), including the case where the tracker mistakenly
swaps the object ID or the tracking is lost and reinitialized.
MOTA is calculated as:

_ |FN|+|FP| +|IDSW|

MOTA=1
|gt Dets|

“4)

B. Potential Gain from Super Resolution on Single-Camera
Video Analytics

We conducted experiments with laboratory sequence (6 peo-
ple) from the EPFL dataset [8] to validate the enhancement of
super resolution in the single-camera object tracking case. The
EPFL dataset is a pedestrian video dataset containing multiple
cameras, all of which are located approximately 2 meters
above the ground and recorded in a synchronized manner,
monitoring the same area from different angles. Figures 2(a)
and 2(b) give two examples of laboratory sequences in the
EPFL dataset, which are captured by four cameras with a
duration of about 2.5 minutes, a resolution of (360, 288), and
a frame rate of 25. In our experiments, we set the tracking
interval to 10, i.e., 1 frame is processed and the next 9 frames
are skipped. Besides, We use YOLOVS8 [4] for object detection
and ByteTrack [36] for object tracking.

Theoretically, any super-resolution model could be used
in Scrava, as long as the efficiency and cost of the model
could be accepted. We implemented EDSR [22] , EUSR [22],
MSRN [1], and RCAN [18]. We run them on the VIPeR
dataset [9], the results on average are shown in Table II. We see
that, all four models perform similarly on the VIPeR dataset.
We choose to use EDSR to achieve video super resolution.

The results are shown in Table III. In Table III, the ‘LR’
row represents the score on the low-resolution video and the
‘LR+SR’ row represents the score on the low-resolution video
enhanced by super resolution, where the super resolution DNN
is obtained by offline training on video segments left out by the
four cameras. It can be seen that super resolution is effective in
improving the performance of single-camera object tracking,
no matter what metric (/DF'1 or MOT A) is used. Note that,
a super resolution model is actually predicting pixels for each
input image, thus super resolution may improve the details of
an object of interest as well as introduce additional noises. For
example, if the quality of an input image is too low for even
humans cannot identify an object in it, then super resolution
probably introduces more noises than details. In such case,
performing detection on the original image may be better than
on the image after super resolution. In summary, although
super resolution on low-resolution videos sometimes brings
a reduction in precision, it can improve recall which makes
up for the drawback in either metric.

C. Optimization for Cross-Camera Video Analytics

There have been several works focusing on cross-camera
video analytics. Among them, Caesar [24] studies cross-
camera complex behavior recognition, for which the authors
propose a hybrid design combining rule-based and DNN-
based detection. Caesar provides an extended rule definition
language that enables users to easily define complex behaviors.
Based on the proposed complex behavior definition, Caesar
generates a representation, and subsequently matches the be-
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TABLE III: Super resolution enhancements to single-camera
object tracking

Metric IDP IDR IDF1 | MOTA ‘
Camera 1 LR | 0.7697* | 0.5288 | 0.6269 | 0.6685
LR+SR | 0.6985 | 0.5741* | 0.6303* | 0.7918*
Camera 2 LR ]0.6386* | 0.4279 | 0.5125 | 0.6394
LR+SR | 0.6292 | 0.5276* | 0.5734* | 0.7805*
Camera 3 LR 0.8261 | 0.6540 | 0.7301 | 0.7662
LR+SR | 0.8333* | 0.7524* | 0.7908* | 0.8717*
Camera 4 LR 0.7060 | 0.4960 | 0.5827 | 0.6800
LR4+SR | 0.7378* | 0.6539* | 0.6933* | 0.8588*

havior definition graph by object detection and association
results to determine whether the complex behavior occurs.

Some existing cross-camera video analytic works analyze
each video stream independently without exploiting the spatio-
temporal relationships between neighboring cameras, leading
to a network overhead that grows linearly with the number
of cameras and an exponentially increasing computational
overhead. To address these issues, CONVINCE [25] proposes
a centralized, cross-camera video analytic system that exploits
the spatio-temporal correlation of cameras to eliminate redun-
dant frames, thereby reducing bandwidth and computational
overhead. CONVINCE assumes that each camera has an
Al chip, uses lightweight DNN preprocessing to filter out
irrelevant frames to reduce bandwidth consumption. Take
pedestrian counting as an example, the camera transmits the
frame to the edge server for analytics only when a new object
is detected in CONVINCE. In addition, CONVINCE increases
the confidence level that a object is detected in the overlapping
field of view of multiple cameras, enabling information sharing
between neighboring cameras and thus improving the accuracy
of video analytics.

CONVINCE manually sets the correlation between cam-
eras based on observations. Different from CONVINCE,
Spatula [14] aims to reduce the computational overhead of
cross-camera video analytics by exploiting the spatio-temporal
correlation between cameras. Spatula determines the spatio-
temporal correlation between cameras through offline statistics
and is thus more reliable.

CrossRol [11] is an effort to reduce video transmission
bandwidth consumption by eliminating spatial redundancy in
multiple cameras. Densely deployed cameras are likely to have
overlapping views between them, and when the views overlap,
as long as one camera transmits and analyzes that part, the
remaining cameras can spare the bandwidth consumption due
to transmitting the videos monitoring the same area. Therefore,
CrossRol divides each frame evenly into rectangular blocks
and runs the DiDi-MTMC [19] algorithm on synchronized
videos from different cameras to determine the overlapping
areas of cameras by the same object that appears in the field
of view of multiple cameras. When enough information is
obtained, CrossRol solves the optimization problem: the total
number of rectangular blocks to be transmitted is minimized
while including all objects of interest, thus eliminating the
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Fig. 3: Overview of Scrava

transmission of overlapping camera views and reducing band-
width consumption.

In general, cross-camera video analytics is a relatively new
research area with large potential for its application. This paper
is the first to use super resolution for the optimization of
cross-camera video analytics, which improves the performance
of cross-camera video analytic applications under bandwidth
constraints and provides a possible optimization direction for
future cross-camera video analytics.

IV. DESIGN OF SCRAVA

In an edge environment, multiple cameras are deployed
in the same area and managed centrally by an organization
(e.g., campus, company, and city). Usually, these cameras are
connected to a cluster of edge servers via a wired or wireless
network and continuously transmit video segments to the edge
servers for real-time cross-camera analytics. Real-time video
stream analytics can be used to meet the growing demand
for public security, improve the quality of service in large
shopping malls, amusement parks, etc.

Typical cross-camera video analytic applications often in-
clude the following two modules: (1) Object detection/tracking
module: This module is responsible for implementing video
analytics within a single camera, such as extracting, classi-
fying, and tracking objects of interest in the video; (2) Re-
identification module: Re-identification is a computer vision
task that has been widely studied. Specifically, the goal of
re-identification is to discriminate whether the object was
captured by another camera at another location (time) for a
given object of interest (query) [38]. The cross-camera real-
time video analytic pipeline first applies the object detec-
tion/tracking module in each single camera to track objects,
and then uses the re-identification module to achieve cross-
camera tracking.

In the rest of this section, we first present the overview of
Scrava, then we introduce the four main modules in Scrava
one by one.

A. Overview

The poposed video analytics system, Scrava, is designed
to address the problem of degraded accuracy of cross-camera
real-time video analytic tasks due to network fluctuations
in edge environments. Figure 3 shows the architecture of
Scrava. Scrava provides a scheme that enhances the results
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of cross-camera real-time video analytics even in the presence
of constrained networks. Scrava contains not only the two
modules mentioned above, i.e., an object detection/tracking
module applied to a single camera and a re-identification
module for cross-camera object matching, but also a super
resolution module for the enhancement of low-resolution video
segments. Note that, the example application implemented in
Scrava is cross-camera object tracking, the results of which
can serve many subsequent high-level applications (fugitive
tracking, Amber Alert, etc.), Scrava can support many other
applications that leverage super resolution.

There are a large number of re-identification works based
on DNNs [31]. Typically, these works extract the features of
an object ¢ using a DNN for a given query individual, and all
images in a given image set G (i.e., gallery set) are ranked
according to their feature distances from ¢, with a smaller
distance representing more similar to g.

The modeling and overall workflow of Scrava is described
as follows: the set of N cameras connected to a centrally
managed edge server cluster is C' = {c1,¢a, - ,cn}. Each
camera transmits a constant stream of video segments of
corresponding resolution to the edge server based on the
bandwidth prediction module, and the duration of each video
segment is fixed. If there is no tracking task in the current
system, no processing of the video is performed; otherwise,
for a tracking object ¢ that is tagged in camera c4, the
edge server discerns whether the received video segment is
the original resolution video, and if so, the video segment
will be directly processed by the object detection/tracking
and re-identification module, otherwise the video segment is
enhanced using the super resolution module. Subsequently,
Scrava performs cross-camera tracking of ¢ with the goal
of returning frames that contain the target ¢ in all cameras
until g cannot be tracked. In the server, for each camera c;,
Vi e {1,2,---, N}, it performs

the object detection/tracking module, if i = gq,
¢; Tuns

the re-identification module, 0.W.

®)
Scrava performs continuous tracking on video streams from
multiple cameras until ¢ disappears from the view of all
cameras.
Each module of Scrava is described in details in the
following subsections.

B. Super Resolution Module

Generally speaking, since features of the video streams
captured by different cameras differ significantly from each
other, training a dedicated super resolution DNN for each
camera and then enhancing the video streams in that camera
would achieve significantly more accurate results on that
specific camera than using a pre-trained model on a uniform
dataset. Therefore, we train a specific super resolution DNN
for each camera in Scrava, which constitutes a set of super
resolution model parameters

SRpara = {paray, paras,--- ,paray}.

If Scrava detects that a video segment from camera c;
is downsampled, it uses the corresponding parameter para;
to super-resolve the video segment, reconstructs it to obtain
a high-resolution video segment, and uses the reconstructed
segment for subsequent cross-camera object tracking. Besides,
Scrava employs online training to fine tune the super resolu-
tion models to adapt to varying video contents.

1) Workflow: The SR module in Scrava works as follows.
In the initialization phase, when a new camera connects to
Scrava, it first sends a message to Scrava to indicate its
arrival, and Scrava then adds it into the camera list. After
that, the camera would send high-resolution video segments
to Scrava for initialize SR model parameters.

In the online training phase, Scrava tracks the F1 score
of computer vision tasks on high-resolution video frames
generated by SR models, then decides whether starts the online
training phase.

2) Initialization Phase: Videos from different cameras have
different characteristics, since they are deployed at different
locations and with various angles. Therefore, one super reso-
lution model for all cameras probably lead to a low accuracy in
re-identification or object detection. We need to train separate
SR model for each camera, so as to improve the quality of
super resolution, which finally translates into a high accuracy.

When a new camera connects to Scrava, it first sends a
message to Scrava to indicate its arrival, and Scrava then
adds it into the camera list. After that, the camera would send
high-resolution video segments to Scrava for initialize SR
model parameters. Here are a few design considerations.

Firstly, when transmitting high-resolution video segments,
Scrava chooses to transmit several video frames, instead of
just regions of interest (Rols) of several frames. Although it
saves bandwidth to transmit Rols, we find the backgrounds in
video frames are important for a SR model to achieve good
performance. The main reason is that, Rols represent only a
small part of a frame, lacking enough details for a SR model
to reconstruct high-resolution frames.

Secondly, a video segment is set to 2 seconds in Scrava.
Due to the similarity between consecutive video frames from a
camera, consecutive video frames can form a group of frames
that can be encoded with a smaller size. Thus, when the
length of a video segment increases, we can save bandwidth
by removing redundancies between frames; however, if the
segment length is set to a too large value, then it would
lead to an unacceptable latency in obtaining analytics results.
Scrava makes a trade-off between realtime and bandwidth
consumption, and sets the segment length to 2 seconds, which
is proven to be good in our extensive experiments.

3) Online Training Phase: Scrava should adapt to varying
video contents. To achieve this, Scrava tracks the F1 score
of computer vision tasks on high-resolution video frames
generated by SR models, then decides whether starts the online
training phase. There are several design considerations.

Firstly, how often does a camera transmit original high-
resolution video segments to Scrava? Scrava needs the accu-
racy of computer vision tasks on the original high-resolution
video segments as the ground-truth of comparison. When a
camera transmits original high-resolution video segments at
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a high frequency, Scrava can detect video content change
more quickly, however, these original high-resolution video
segments may occupy too much bandwidth. On the other
side, when a camera transmits original high-resolution video
segments at a low frequency, bandwidth is saved, but Scrava
may use a out-dated SR model for a long time since it cannot
detect content changes in time. In Scrava, a camera sends
an original high-resolution video segment every 120 video
segments, which only leads to 2.6-5.7% more traffic compared
with just transmitting low-quality video.

Secondly, when should Scrava start the online training
phase? Every 120 video segments, Scrava receives an orig-
inal high-resolution video segment from each camera. Then,
for each camera, Scrava can compare the analytics results
obtained from high-resolution video frames generated by SR
models and original high-resolution video frames, after which
Scrava computes the F1 score of the current SR model of
that camera. If the difference between current score and the
exponentially weighted moving average (EWMA) of previous
scores exceeds a threshold, Scrava considers that the video
content of this camera changes significantly and this camera
requires the online training phase to adapt to the content
change. Note that, historical frames probably help enhance
SR models. Instead of using historical frames, Scrava chooses
to utilize current and future frames to adapt to varying video
contents.

Thirdly, when should the online training phase terminate?
As we know, as online training phase proceeds, the marginal
gain of online training would decrease. Hence, Scrava can
monitor the marginal gain and terminates the training phase if
the gain is below a threshold. Besides, if the online training
phase takes a too long time, it may overfit over a stale video.
To avoid this, Scrava also sets a maximum training steps for
each online training phase, that is, Scrava would terminate an
online training phase if the marginal gain is below a threshold
or the training steps reaches the maximum steps.

C. Object Detection/Tracking Module

Object detection as well as object tracking, both of which
are popular tasks in computer vision. Among them, object
detection is to detect the position and category of one or more
objects from an image, and many deep learning models for
target detection exist, such as Faster R-CNN [28], YOLO [27],
and SSD [23], which can accurately locate object positions
and give the category they belong to. Object tracking refers
to tracking one or more objects in a video sequence and
continuously updating the position of the objects throughout
the video. Since object tracking usually requires detecting
objects in each frame in order to track them, object detection
is the basis of object tracking and is an important part of the
object tracking process. At the same time, the result of object
detection can also be used for initializing object tracking to
obtain more stable and accurate tracking results.

Scrava contains an integrated object detection/tracking
module. When a video segment arrives, the server extracts
frames from the video and applies object detection to them,
and performs object tracking based on the results of object

Algorithm 1: Re-identification Algorithm

Input: candidate object o € G,
feature representation of current target q: Fg,
all instances identified as ¢: Q)
Output: True or False: indicating whether object o is
identified as an instance of ¢
1 result < False;
2 f, + Obtain the feature representation of the
candidate object o with the feature extractor;
3 for f; € Fq do
4 distance «+ dist(f,, f;);
5 if distance < match_threshold then
6 result < True;
7 Q<+ Q U{fo}§
8 Fg4 < Uniformly sampled from Q;
9 break;

10 return result;

detection. It is worth noting that the input to the existing
object tracking algorithms is typically a complete video with
the same resolution of each frame in the video. However, in
real-time video stream analytic applications, the video stream
transmitted from a camera to the edge server is probably
composed of video segments of short duration (e.g., 2~4
seconds), and the resolution of video segments from the same
camera may change over time due to network fluctuations,
and the coordinates of an object may also change with the
resolution of the video segment. In order to adapt the existing
object tracking algorithm to the scenario of real-time video
stream analytics, Scrava modifies the existing object tracking
algorithm by adjusting all video segments from the same
camera to a uniform size, which is the highest resolution
from that camera. When a video is converted from a low
resolution to a high resolution, interpolation introduces a lot
of noise that may lead to a decrease in the accuracy of
the subsequent analytics, and the super resolution module
mentioned in Section IV-B can be optimized in this step to
improve the accuracy of subsequent video streaming analytic
tasks.

D. Re-Identification Module

Scrava aims to achieve real-time object tracking across
cameras, while the object detection/tracking module men-
tioned in Section IV-C is performed on the video stream of
a single camera. In order to achieve real-time tracking across
cameras, we need to correlate the video stream information
from multiple cameras. The function of this module is to
correlate the information between multiple cameras to achieve
cross-camera real-time object tracking.

In order to achieve fast and accurate re-identification, feature
extraction of the tracking object ¢ and its candidate match
objects in the search space is required. DNNs are capable
of automatically learning feature representations of images
from large amounts of data and extracting high-level semantic
features. CNN (Convolutional Neural Network), one of the
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most widely used deep learning models in image processing,
is capable of extracting feature information at different levels
layer by layer through a hierarchical structure of multiple
convolutional and pooling layers. Therefore, CNNs are used
for feature extraction in the proposed Scrava.

Recall that, typical re-identification approaches extract the
features of an object g using a DNN for a given query, and
all images in a given image set G (i.e., gallery set) are ranked
according to their feature distances from ¢, with a smaller
distance representing more similar to g.

In our module, by feature extraction, object g can be
represented as a vector fy consisting of floating point numbers.
We adopt the Euclidean distance to measure the variability
between features. For example, the distance between fy and
f; is:

dist(fq, fs) = (6)

in which f,; denotes the j-th dimension of vector fy. If
dist(fq, fi) is less than a threshold, then we can say ¢ is an
instance of 7.

However, as re-identification goes on, the number of in-
stances of object ¢ increases. For example, as one person walks
within the coverage of a camera, his or her poses may change
significantly, leading to varying features. If we only keep one
feature for an object, then the re-identification algorithm may
miss many true instances of it. Therefore, we should keep
more than one feature for an object. Specifically, we extend
the feature fy of object ¢ to Fq, which is

Fq = {fqlqu2>~-~7qu}7 (7)

in which L is a hyper-parameter controlling the cardinality
of Fq. When L increases, Fq becomes more likely to cover
all possible features of ¢; however, it also leads to more cost
when matching objects.

Alg. 1 shows the re-identification algorithm used in Scrava.
It maintains F'y for an object ¢. For a new instance o emerges,
if the distance between o and any feature in Fq is less than a
threshold, object o is then identified as an instance of ¢. That is,
for those candidate match objects whose distance from object
q is less than a threshold match_threshold, we consider it as
the same entity with object ¢ and add it to the returned results
of Scrava, and use it to update the feature representation of
object q.

E. Bandwidth Prediction Module

Since the bandwidth prediction module is deployed on each
camera, we choose a lightweight design considering the weak
computational capability of each camera. On a specific camera
¢, a video segment i of size S.; is transmitted; after this
video segment is transmitted, the delay L. ; could be obtained;
then, the available bandwidth, B, ;, between the camera ¢ and
the server at the time of transmitting the video segment ¢ is
estimated by

Bei= 7. ®

On a camera side, consecutive video segments are also close
in time, and we assume a certain continuity of bandwidth
when transmitting adjacent video segments. For a given slid-
ing window size NV, the available bandwidth, Béﬂ- 11> when
transmitting video segment ¢ + 1 on camera c is estimated by
the following equation:

1 i
Bein = > By 9)
j=i—N+1

V. EVALUATION

The goal of this section is to validate the proposed and
implemented system through extensive experiments. We want
to evaluate the effectiveness of super resolution in cross-
camera real-time video stream analytics, using cross-camera
pedestrian tracking as an example.

A. Implementation

We implemented the prototype of the cross-camera real-
time video analytic system, Scrava, mainly using Python
3.8 under Ubuntu 18.04. We used Pytorch [26] as the deep
learning framework supporting super resolution, object detec-
tion/tracking and re-identification.

Video transmission. To implement video transmission be-
tween multiple cameras and the server, Scrava uses Flask [10]
framework as the data transmission framework between the
cameras and the server, and WonderShaper [2] to simulate
different network bandwidth traces.

DNN model. We use the Pytorch framework to implement
DNNs for super resolution, object detection/tracking, and re-
identification. Super resolution DNNs for each camera are
trained from randomly initialized super resolution DNNs, and
the training and validation dataset are obtained from historical
video data of that camera. Note that, for the object detec-
tion/tracking and re-identification modules, we use models
pre-trained on a large training set, since our work focuses
on improving cross-camera real-time video streaming analytic
applications in the presence of network limitations, rather than
application-specific DNN performance.

Video encoding and decoding. We use the OpenCV li-
brary [3] to implement video compression, decompression, and
other image transformation operations.

B. Experimental Setup

Our prototype system consists of two parts: the server and
multiple clients (cameras). The cameras are responsible for
encoding the video to the corresponding resolution according
to the bandwidth prediction module and transmitting it to the
server; the server is responsible for most of the computational
work, including the training of super resolution DNNSs, super
resolution of images (videos), object detection/tracking, and
re-identification. We use Nvidia RTX 3090 to support deep
learning related computations. In our experiments, the offline
training contains 15,000 epochs and lasts roughly 30 minutes
on Nvidia RTX 3090. The training data is the selected frames
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Fig. 4: Samples from the VIPeR dataset [9]
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Fig. 5: CDF of the feature distance between in-
stances of the same entity within camera a

from the first 5 minutes of a video stream. The maximum step
is set to 15,000 to 25,000.

For each camera, the server assigns a dedicated tracker to
it. To achieve object tracking within a single camera, we
use YOLOvVS [4] for object detection, ByteTrack [36] for
object tracking and EDSR [22] for video super resolution,
just the same as in Section III-B. To extract the features of a
object (e.g., a pedestrian), we use ResNet50 [13] as a feature
extractor, which is able to convert the object image into a
vector of length 2,048.

We used the VIPeR [9] and EPFL datasets [8] mentioned in
Section III-B to verify the effectiveness of super resolution in
cross-camera pedestrian tracking. In the VIPeR dataset, each
image contains only one person, thus it does not need detection
and tracking. Each image is 128x48, and it needs 12 - 16 ms
and about 10 ms to perform EDSR X4 and re-identification,
respectively. Each image from the EPFL dataset may contain
more than one person. Performing detection, tracking, super
resolution, and re-identification on an image from EPFL needs
22-34ms, 10-12ms, 20ms, and 12ms, respectively.

In our experiments, the offline training contains 15,000
epochs and lasts roughly 30 minutes on Nvidia RTX 3090.
As we mentioned in previous sections, the training data is the
selected frames from the first 5 minutes of a video stream.
The maximum step is set to 15,000 to 25,000.

C. Results on Cross-Camera Pedestrian Re-Identification

Many datasets have been collected for pedestrian re-
identification, such as VIPeR [9], CUHKO3 [20], Market-
1501 [37]. To validate the effectiveness of super resolution

1.0 Original Video
e Downsampled by X2 (DS2)
0.8 | mmmm Downsampled by X4 (DS4)

L 0.6
[a]
Coa4

0.2

0.0

10 15 20 25 30 35
Feature Distance

Fig. 6: CDF of the feature distance between in-
stances of the same entity across cameras a and b

on cross-camera pedestrian re-identification, we performed
validation experiments on the VIPeR dataset. VIPeR consists
of 632 pairs of the same pedestrian, with two images in each
example pair from two different cameras (noted as cameras a
and b). Different images of the same pedestrian have relatively
large variations in viewpoint, pose, and illumination. Figure 4
gives an example of the images in VIPeR.

The image resolution reduction blurs the features of the
objects, resulting in larger feature distances between different
instances belonging to the same entity, making re-identification
more difficult. We selected 100 example pairs from VIPeR
and verified the effect of resolution reduction on the feature
distance between instances of the same entity in both single-
camera and cross-camera scenarios, respectively, and the re-
sults are shown in Figures 5 and 6.

Figure 5 shows the distance between the same instance
with different resolutions in the same camera, where DS2
and DS4 represent the case where the images in camera a
are downsampled by a factor of 2 and 4, respectively. We
calculate the distance of downsampled feature with the original
image features from camera a. It can be seen that the more
the resolution is reduced, the greater the distance between the
same instance. Figure 6, on the other hand, shows the effect of
resolution reduction on different instance features of the same
entity across cameras, in which ori represents the original
images from cameras a and b, and DS2 and DS4 represent
the cases that images from camera b are downsampled by a
factor of 2 and 4, respectively, which shares a similar trend
with Figure 5.

Figures 5 and 6 illustrate the loss of information due to res-
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Fig. 7: Enhancement of super resolution on pedes-
trian re-identification within camera a
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Fig. 8: Enhancement of super resolution on pedes-
trian re-identification across cameras a and b
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Fig. 9: Visualization samples of super resolution enhancement to low-resolution pedestrian images from the VIPeR dataset, in

which “DS X4” denotes downsampled by a factor of 4

olution reduction, which can make pedestrian re-identification
more difficult. Super resolution is a common method for low-
resolution image enhancement. Taking the scene in DS4 as
an example, we use EDSR to reconstruct the downsampled
images in camera a and b, and then compare their distances
with the original images in camera a. The obtained results are
displayed in Figures 7 and 8. We can see that in most cases,
super resolution can reduce the distance between different
instances of images belonging to the same entity, making their
features more similar and thus enhancing the pedestrian re-
identification application. On average, super resolution reduces
the feature distance in the single-camera and cross-camera
scenarios by 2.7767 and 1.1014, respectively, compared with
the low-resolution images.

Furthermore, Figure 9 gives four visualization samples of
super resolution enhancement to low-resolution pedestrian
image, in which “DS X4” denotes an image downsampled by
a factor of 4. Intuitively, compared with downsampled images,
upsampled images (by EDSR X4) have clearer contours and
richer details. These results explain the source of the improved
effectiveness of the super resolution for the pedestrian re-
identification module from another perspective.

D. Results on Cross-Camera Pedestrian Tracking

We have verified the potential gain of super resolution
on single-camera and cross-camera pedestrian re-identification
in the presence of reduced resolution. However, in order to
evaluate the effect of super resolution more comprehensively,
this subsection validates its enhancement effect on the cross-
camera pedestrian tracking, an end-to-end cross-camera appli-
cation.

The dataset used for validation is the EPFL dataset, lab-
oratory sequence mentioned above. In this subsection, it is
assumed that the tracking always starts from camera 1, and
the four cameras synchronize their video streams to the
server, which receives video segments and runs cross-camera
pedestrian tracking. Besides, we assume that there is ample
bandwidth between camera 1 and the server to transmit the raw
resolution video; the remaining three cameras are bandwidth-
constrained and thus transmit low-resolution video segments
(downsampled by a factor of 4), and the server applies super
resolution to these low-resolution videos for reconstruction.
Since the original dataset did not provide full annotation, we
manually selected and annotated several tracks to verify the
enhancement brought by super resolution.

Super resolution enhancement. The ultimate goal of the
application of cross-camera pedestrian tracking is to return the
frames and annotations containing the target pedestrians in all
cameras, so in this subsection we set accuracy, recall, and
the corresponding F1 scores as evaluation metrics. Table IV
demonstrates the improvement in video analytic accuracy after
super resolution compared to low-resolution videos. As shown
in Table IV, the use of super resolution is effective in im-
proving the score of cross-camera pedestrian tracking (13.59-
73.17%) in all trajectories and video streams, and the recall
improves in all cases, which is pivotal in some significant tasks
(e.g., Amber Alert).

It is worth mentioning that, the precision metric decreases
in some cases in Table IV. The main reason is that, a super
resolution model is actually predicting pixels for each input
image, thus super resolution may improve the details of an
object of interest as well as introduce additional noises. For
example, if the quality of an input image is too low for even
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TABLE IV: Super resolution enhancements to cross-camera
pedestrian tracking

Camera ID [ Precision | Recall | Fl score |

Camera 2 | 36.36%7 | 19.05%7 | 25.01%1
Trajectory 1 | Camera 3 | 57.14%] | 9.68%71 | 13.59%1
Camera 4 30%) | 20.69%1 | 29.22%7
Camera 2 | 100%7T |57.28%7 | 72.84%1
Trajectory 2 | Camera 3 2.9%) | 65.86%1 | 61.38%1
Camera 4 | 12.79% | 61.65%7 | 58.54%1
Camera 2 | 87.5%71 | 29.17%7 | 43.75%1
Trajectory 3 | Camera 3 0% 33.33%1 | 46.92%1
Camera 4 | 100%7T | 57.69%7 | 73.17%1

humans cannot identify an object in it, then super resolution
probably introduces more noises than details. In such case,
performing detection on the original image may be better than
on the image after super resolution.

Bandwidth consumption. Comparing the case where all
four cameras transmit the original resolution video stream,
the reduction of bandwidth consumption in our experiments
is shown in Figure 10, where the cz-yp besides x-axis rep-
resents video streams from the y people scenario in camera
z. The results show that transmitting low-resolution video
significantly reduces bandwidth consumption compared to
transmitting the original video stream, reducing bandwidth
overhead by 91.34% on average, which significantly facilitates
the scalability of the camera network. Overall, the experimen-
tal results show that super resolution can effectively reduce
the information loss caused by the resolution reduction.

VI. DISCUSSIONS

In this section, we discuss several potential limitations and
future research directions.

Inter-frame and inner-frame encoding. Varying and lim-
ited bandwidth between cameras and edge servers is usually
the bottleneck of performance. To decrease the transmission
latency of video streams, several studies proposed to eliminate
redundancy between frames (e.g., Reducto [21]) as well as
within a frame (e.g., DDS [6]). For the former, frame filtering
is often used to filter out frames that contribute little useful
information, while for the latter, regions of interest (Rols)
within a frame are cropped out to send to edge servers. Both
approaches are effective especially when the bandwidth is the
bottleneck while the computing resources are adequate, and
they are orthotropic to our work Scrava.

Cross-camera contents for enhancement. Scrava only
uses video frames within a camera to online train a SR model
for the camera itself, and does not make full use of the video
frames from other cameras. However, these are several chal-
lenges to achieve this. Firstly, how to select video frames from
other cameras for online training? Using all video frames from
other cameras is not practical or efficient, since most frames
from other cameras may contain no similar objects/views
and provide no benefit to online training. Secondly, how to
efficiently share selected video frames among SR modules in

I Original Video
HEl Downsampled by X4 (DS4)

H N W A U O N
©o ©o ©o o o o o

Bandwidth Consumption (MB)

o

c2-4p c3-4p c4-4p c2-6p c3-6p c4-6p

Fig. 10: Bandwidth consumption (the cz-yp besides x-axis
represents video streams from the y people scenario in camera
x from the EPFL dataset)

Scrava? Thirdly, if cameras can share video frames for online
training, then could them share SR models and fine-tune them?
Incorporating cross-camera contents for enhancement is left as
future work.

Instance-specific Scaling Factor. Adapting to varying
video contents is important and helpful to achieving better
video analytics performance, as we have seen in lots of prior
studies. For example, Palleon [7] investigated adaptive model
selection to cope with dynamic class skew; RECL [16] shared
across edge devices a model zoo that comprises expert models
previously trained for all edge devices, enabling history model
reuse across video sessions. Inspired by them, we are going
to incorporating instance-specific scaling factors into Scrava
in future work.

Scrava in practice. Most of the modules in Scrava run
on the server-side, except the bandwidth prediction module.
Note that, the bandwidth prediction module can be imple-
mented as an overlay on the default bandwidth interface. This
approach offers several advantages. Firstly, Scrava requires
little changes on the client side, making it readily deployable.
Secondly, Scrava allows client-defined bandwidth prediction
methods, in case that a client has prior knowledge of the
network conditions.

VII. CONCLUSION

In camera networks, the simultaneous transmission of video
streams from a large number of cameras to an edge server
imposes stringent bandwidth requirements. To mitigate the im-
pact of network fluctuations on camera video resolution and to
improve the accuracy of cross-camera video analytic applica-
tions, this paper proposes and implements a cross-camera real-
time video stream analytic system, Scrava. Scrava exploits
super resolution to optimize the cross-camera video analytic
pipeline and verifies the enhancement effect of super resolution
in cross-camera video analytic applications through simulation
experiments. This paper concludes that super resolution can
mitigate the negative impact of resolution degradation under
poor network conditions, thus enhancing the performance of
cross-camera video stream analytics.
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