A Framework for Anonymous Routing in Delay Tolerant Networks

Kazuya Sakai, Tokyo Metropolitan University
Min-Te Sun, National Central University
Wei-Shinn Ku, Auburn University
Jie Wu, Temple University

In ICNP 2017
Oct. 10-13, 2017
Outline

1. Introduction
2. Related Works
3. A Framework for Anonymous Routing (FAR)
4. Analyses
5. Simulations
6. Conclusions
1. Introduction

• Delay tolerant networks (DTNs)
 • Intermittently disconnected, opportunistic transmission, store-and-carry forwarding
 • The delay is **not** concern as long as a message is delivered within time constraint

• The network model of a DTN
 • A graph representation is **contact-based**
 • The link weight between two nodes is defined by contact frequency, $\lambda_{i,j}$

![Diagram of network models and contact graph](image-url)
Introduction (Cont.)

- Anonymous communications
 - Protect the privacy of end hosts
 - Prevent from traffic analyses
 - Intermediate nodes never know where a packet comes from and goes to
- Applications
 - Critical communications, e.g., battlefields

Fig. A battlefield communication
Attack Model

- The tracing attacks and node deanonymization
- Tracing attacks
 - Adversaries try to identify a path (or a set of links) along which packets traveled
 - \(P_{trace} = \frac{1}{\eta^2} \sum_{i=1}^{c_{seg}} \left(c_{seg,i}\right)^2 \), where \(\eta \) is the path length

Case 1: \(P_{trace} = \frac{2^2+1^2}{4^2} = \frac{5}{16} \)

Case 2: \(P_{trace} = \frac{3^2}{4^2} = \frac{9}{16} \)
The Attack Model (Cont.)

• The node deanonymization
 • Adversaries try to identify the source and destination nodes
• Anonymity
 • The state not being identifiable among an anonymous set
 • An entropy-based metric, $-\sum_{i \in \Phi} p_i \log(p_i)$
 • Application-dependent
 • Example: a bit string 01XX

\{01_00, 01_01, 01_10, 01_11\}
2. Related Works

- **Onion-based routing**, e.g., Tor
 - Layered encryptions are applied to a message
- **Flooding-based** [Mobihoc’05], **zone-based** [TDSC’07]
 - The node’s privacy is protected by flooding (or partial flooding)
 - They are designed for ad hoc networks
Anonymous Routing in DTNs

- Only a few protocols have been designed for DTNs
 - e.g., onion-based and threshold-based
- **Onion-group routing (OGR) [ICDCS’16]**
 - A set of nodes forms a group for faster delivery
 - Any of the nodes in a group can peel off the encrypted layer

The Issues of The Existing Solutions

- Onion-Based
 - Slow, less message overhead
 - All the members of the first/last onion groups knows the source/destination node
- Zone-based (has not been tailored to DTNs)
 - Relatively fast, more message overhead
 - The first/last proxy knows the source/destination node
The Contributions of This Paper

• Our goals
 • Improving the untraceability and anonymity
 • For given security requirements and cost constraint, we try to maximize the performance of anonymous routing

• The contributions of this paper
 • Designing Anonymous Epidemic (AE), Restricted Epidemic Routing (RER), and Zone-Based Anonymous Routing (ZBAR)
 • Designing a Framework of Anonymous Routing (FAR), which subsumes all the AE, RER, ZBAR, and OGR
 • Modeling the closed-form solutions for the traceable rate and node anonymity
3. Framework for Anonymous Routing

<table>
<thead>
<tr>
<th>Ad hoc networks</th>
<th>DTNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding-based [Mobihoc’03]</td>
<td>AE and RER</td>
</tr>
<tr>
<td>Zone-based [TDSC’07]</td>
<td>ZBAR</td>
</tr>
<tr>
<td>Onion-based [Tor]</td>
<td>OGR [ICDCS’16]</td>
</tr>
</tbody>
</table>

Anonymous Epidemic (AE)

- AE \((v_s, v_d, m, T)\)
 - Message \(m\) is encrypted using public key \(PK_d\)
 - The source node \(v_s\) sends \(\sigma \leftarrow E(PK_d, m)\) to the destination \(v_d\)
 - Only \(v_d\) can decrypt ciphertext \(\sigma\)
 - Routing terminates when the end-to-end deadline \(T\) expires

- No onion relays between \(v_s\) and \(v_d\)
- All the \(n\) nodes forwards \(\sigma\)
Restricted Epidemic Routing (RER)

- RER \((v_s, v_d, \sigma, T) \)

 - A epidemic zone is controlled by the deadline, \(t \leftarrow -\frac{\ln(1-\tau)}{\lambda} \).

 - \(\tau \) is the probability of the next node/destination receiving \(\sigma \).

 - \(\lambda \) is the average contact frequency.

 - The idea: \(v_d \) will receive \(\sigma \) within \(t \) with probability \(\tau \).

 - Routing terminates when either \(T \) or \(t \) expires.

 - The destination can be a group of nodes.

- Neither Euclidian distance nor TTL can be used for DTNs.

- \(\tau \) (0.95 \(\leq \tau \leq 0.99 \)) is set by the simulation.
Zone-Based Anonymous Routing (ZBAR)

- ZBAR \((v_s, v_d, m, T) \)
 - The source and destination proxies are randomly selected within their proximity
 - A set of \(K \) onion relays are randomly selected
 - An onion is created by the layered encryption
 - Forwarding modes
 - Restricted epidemic (RE) between \(v_s \) (or \(v_d \)) and its proxy
 - Spray-and-wait (SW) between onion relays
A Framework for Anonymous Routing (FAR)

- The idea
 - The use of a set of onion group relays
 - The use of epidemic-like forwarding
- FAR
 - A set of K onion groups are selected and an onion is created
 - An encrypted message is forwarded by RER
Security and Performance of FAR

• Security
 • Each previous/next is anonymous among the nodes in the zone
 • The first and last onion relays are indistinguishable from the intermediate onion relays

• Performance
 • More message overhead due to RER
 • Slow delivery due to a set of onion relays

• => For given security requirements and cost constraint, FAR tries to maximize the performance by tuning its parameters
Making A Framework

- FAR
 - An extreme case behaves as either AE, RER, ZBAR, and OGR

- Parameterizing
 - v_s, v_d: the source and destination nodes
 - m: the message
 - K: the number of onion relays
 - L: the number of message copies
 - G: the size of an onion group
 - F: a set of forwarding modes
 - A forwarding mode can be either RE or SW
 - T, τ: the end-to-end deadline and the zone deadline
FAR Subsumes AE, ZBAR, and OGR

• FAR with a particular configuration serves on either AR, ZBAR, or OGR

• AE
 • $K = 0$, $L = \text{null}$, $G = \text{null}$, $F = \{RE\}$

• ZBAR
 • K, G can be any integer, $L \leq G$, $F = \{RE, SW, SW, ..., SW, RE\}$

• OGR
 • K and G can be any integer, $L \leq G$, $F = \{SW, SW, ..., SW\}$
4. Analyses

- Analyses
 - The traceable rate
 - The node anonymity
- The attack scenario
 - The compromise attack: a node is physically compromised, and the transmission of a message is monitored
 - Compromised nodes are randomly chosen by the uniform distribution
The Traceable Rate

- The traceable rate, \(P_{trace} = \frac{1}{\eta^2} \sum_{i=1}^{c_{seg}} (c_{seg,i})^2 \), where \(\eta \) is the path len.

- The closed form solution
 - The traceable rate is computed for individual message, and thus \(G \) and \(L \) do not affect
 - A path can be traced by the reserve order from the destination

\[
P_{trace} = \frac{1}{\eta} \left\{ \frac{n(n + c)(\epsilon_1 + \epsilon_2)}{(n - c)^2} \right\}
\]

- where \(n \) is the number of nodes and \(c \) is the number of compromised nodes

 - \(\epsilon_1 = \sum_{i=1}^{\eta} \left(\frac{c}{n} \right)^{i-1} \cdot \left(1 - \frac{c}{n} \right) \) and \(\epsilon_2 = \eta \left(\frac{c}{n} \right)^{\eta} \)
The Node Anonymity

- The entropy of a system: \(-\sum_{i\in\phi} p_i \log(p_i)\)
 - Where \(\phi\) is a suspicious set of nodes
- The maximal entropy
 - If a node is not compromised, it is anonymous within \(n - c\) nodes
 \[H_{max} = \sum_{\forall\text{nodes} \in \phi} \frac{1}{n-c} \log \left(\frac{1}{n-c} \right) \]
- The entropy of a node
 - If a node is compromised, its entropy equals to 0
 - Otherwise, it is still anonymous within \(n - c\) nodes
 \[H_{\phi'} = \sum_{\forall\text{nodes} \in \phi'} \left(1 - \frac{c}{n} \right) \frac{1}{n-c} \log \left(\frac{1}{n-c} \right) \]
- The anonymity:
 \[D(\phi') = \frac{H_{\phi'}}{H_{max}} = 1 - \frac{c}{n} \]
The Message Cost

• Parameters
 • K : the number of onion relays
 • L : the number of message copies
 • G : the size of an onion group
 • n : the number of nodes

• The cost function

$$C(L, K, G, n) = \begin{cases}
 LG(K + 1) & \text{for OGR} \\
 n & \text{for AE} \\
 2nLG(K - 1) & \text{for ZBAR} \\
 nLG(K - 1) & \text{for FAR}
\end{cases}$$

• For given acceptable cost M, the delivery rate can be maximized by increasing G and L ($L \leq G$) with subject to $C(L, K, G, n) \leq M$
5. Simulations

- Protocols
 - FAR, AE, ZBAR, and OGR [ICDCS’16]
- Parameters
 - Group size G, Num of onion routers K, Num of copies L
- Metrics
 - The delivery rate, traceable rate, and node anonymity
- Two scenarios
 - Randomly generated graphs
 - Real traces with the CRAWDAD dataset
The Delivery Rate

Fig. the delivery rate
Cambridge traces (a small and dense network with 12 iMotes)

Fig. the delivery rate
Infocom’05 traces (a medium size network with 41 iMotes)
In addition, it is intuitive that a larger group size results in slightly longer delay than AE and FAR, since it forwards a message at each hop for the maximum allowed hop count of 70 time units. This indicates that Epidemic-based routing achieves the fastest delivery, and the CDF of FAR reaches 0.95 within 1000 time units. AE results in the delivery rate close to 1, but it reveals no information about the identity of source and destination nodes. OGR reveals almost all contact times, and the other protocols (ZBAR, FAR) reveal only a few contact times. AE and ZBAR results are similar, and the CDF of AE reaches 0.95 within 1000 time units, while the CDF of ZBAR reaches 0.95 within 2000 time units.

For each trace file, 500 different sets of source, destination nodes, and inter-meeting times are calculated. The other simulation parameters, i.e., the source anonymity, destination anonymity, and group size are set in the same way as the random graphs. Contact events are recorded in the order of second contact times, and the elapse time of the last time the two nodes meet, the time that they lose a connection, the number of messages they send, and the number of messages they receive. Each piece of contact information contains two node IDs, the time that the two nodes meet, and the duration of the contact.

The ZBAR protocol is compared with the other protocols, i.e., AE, OGR, and FAR. In ZBAR, the large group size results in low source anonymity, but high destination anonymity due to its design issue. On the contrary, the source and destination anonymity resulting from AE is independent of the group sizes, since each of the onion routers is second-hop anonymous. The onion group as the destination, as proposed in [8]; however, onion groups is compromised. Therefore, ZBAR results in slightly smaller node anonymity than FAR and AE. For OGR, the large group size results in low source anonymity. Hence, unless the source and destination anonymity of OGR is indistinguishable if they are the first/last onion routers, the onion routers are processed after the first/last hop. This indicates that the onion routers are processed after the first/last hop, and thus, the traceable rate is much lower than that of ZBAR.

Figure 4 illustrates the traceable rate with respect to the consecutive compromised segments from the destination. From the figure, the traceable rate results are similar. The AE protocol reveals the least information about the identity of source and destination nodes. OGR reveals almost all contact times, and the other protocols (ZBAR, FAR) reveal only a few contact times. AE and ZBAR results are similar, and the CDF of AE reaches 0.95 within 1000 time units, while the CDF of ZBAR reaches 0.95 within 2000 time units.

Figure 5 illustrates the destination anonymity with respect to the consecutive compromised segments from the destination. From the figure, the destination anonymity results are similar. The AE protocol reveals the least information about the identity of source and destination nodes. OGR reveals almost all contact times, and the other protocols (ZBAR, FAR) reveal only a few contact times. AE and ZBAR results are similar, and the CDF of AE reaches 0.95 within 1000 time units, while the CDF of ZBAR reaches 0.95 within 2000 time units.

Figure 6 illustrates the number of messages. From the figure, the number of messages results are similar. The AE protocol reveals the least information about the identity of source and destination nodes. OGR reveals almost all contact times, and the other protocols (ZBAR, FAR) reveal only a few contact times. AE and ZBAR results are similar, and the CDF of AE reaches 0.95 within 1000 time units, while the CDF of ZBAR reaches 0.95 within 2000 time units.

Fig. Traceable rate.

- Infocom’05 traces (a medium size network with 41 iMotes)
- Note: the traceable rate is independent from the value of L
Traceable Rate and Anonymity

Fig. The source anonymity

Fig. The destination anonymity
6. Conclusions

• In this paper, we address anonymous routing in DTNs

• Protocols
 • AE, RER, ZBAR, and FAR

• Analyses
 • The traceable rate and node anonymity
 • The message cost

• Simulation
 • Random graphs and the CRAWDAD dataset
Thank you