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Adaptive Fault-Tolerant Routing in
Cube-Based Multicomputers

Using Safety Vectors
Jie Wu, Senior Member, IEEE

Abstract—Reliable communication in cube-based multicomputers using the safety vector concept is studied in this paper. In our
approach, each node in a cube-based multicomputer of dimension n is associated with a safety vector of n bits, which is an
approximated measure of the number and distribution of faults in the neighborhood. The safety vector of each node can be easily
calculated through n - 1 rounds of information exchange among neighboring nodes. Optimal unicasting between two nodes is
guaranteed if the kth bit of the safety vector of the source node is one, where k is the Hamming distance between the source and
destination nodes. The concept of dynamic adaptivity is introduced, representing the ability of a routing algorithm to dynamically
adjust its routing adaptivity based on fault distribution in the neighborhood. The feasibility of the proposed unicasting can be easily
determined at the source node by comparing its safety vector with the Hamming distance between the source and destination
nodes. The proposed unicasting can also be used in disconnected hypercubes, where nodes in a hypercube are disjointed (into two
or more parts). We then extend the safety vector concept to general cube-based multicomputers.

Index Terms—Disconnected networks, fault tolerance, generalized hypercubes, multicomputers, reliable communication, unicast.

——————————   ✦   ——————————

1 INTRODUCTION

ITH its numerous attractive features, the binary hyper-
cube has been one of the popular topological struc-

tures for distributed-memory systems. An n-dimensional hy-
percube (n-cube) system consists of exactly 2n processors
which can be addressed distinctively by n-bit binary num-
bers. Two nodes are directly connected by a link if and only if
their binary addresses differ in exactly one bit position. The
hypercube structure has been used in several experimental
and commercial machines including NCUBE-2 [7] and Intel
iPSC [17]. Many variations of the hypercube topology have
been proposed to improve certain parameters, such as di-
ameter, node degree, etc. A cube-based multicomputer refers to
a multicomputer system where communication is based on
message passing and processors are connected using the hy-
percube topology, or one of its variations. Two well-known
variations of the hypercube topology are generalized hyper-
cubes [2] and cube-connected-cycles [15].

1.1 Problem Definition
Efficient interprocessor communication is a key to the per-
formance of a cube-based multicomputer. Unicasting is a
one-to-one communication between two nodes; one is
called the source node and the other the destination node.
Unicasting in fault-free hypercubes and its variations have
been extensively studied ([8], [14], [18], [19]). As the num-
ber of processors in a cube-based multicomputer increases,
the probability of processor failure also increases. There

have been a number of fault-tolerant unicasting schemes
proposed ([4], [5], [9], [10], [11], [16]). Most of them assume
that each node knows either only the status of its neighbors
(such a model is called local-information-based) or the status
of all the nodes (global-information-based). The main chal-
lenge is to devise a simple and effective way of repre-
senting fault information such that an optimal (or subop-
timal) unicast algorithm can be designed based on such
information. An optimal unicast algorithm (also called mini-
mal unicast algorithm) forwards a message to the destina-
tion node through a minimal path (also called a Hamming
distance path). A routing is adaptive if it can use alterna-
tive paths between the source and destination nodes,
making more efficient use of network bandwidth and
providing resilience to failure.

1.2 Related Results
Normally, global-information-based routing can obtain an
optimal or suboptimal result. However, a separate process
is needed to collect global information. In some cases,
global information is captured in a more concise form, as in
[16], where the concept of fault-free dimension was used. A
dimension is fault-free if there is no pair of faulty nodes
across this dimension. It has been shown that fault-free di-
mensions can be found in O(n) steps in an n-cube. A non-
minimal unicasting algorithm based on fault-free dimen-
sion has also been proposed.

Local-information-based routing uses a weaker but more
reasonable assumption; however, such an approach can
achieve only local optimization and is heuristic in nature.
Therefore, the length of a routing path is unpredictable (most
likely bounded) in general, and global optimization, such as
time and traffic, is difficult. For example, in [9], a sidetracking
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approach was used to route messages in a faulty hypercube
with node faults. A message is rerouted to a randomly cho-
sen fault-free neighboring node when there is no fault-free
neighbor along a minimal path to the destination node. In
[5], Chen and Shin proposed a scheme based on depth-first
search in which backtracking is required when all forward
links are blocked by faulty components (links and/or nodes).
However, a history of visited nodes has to be kept as part of
the routing message. A simplified version of this approach,
which tolerates fewer faults, was presented in [10], where
routing is progressive without backtracking. Still, it is a
nonminimal routing. Moreover, most of the existing fault-
tolerant unicasting algorithms do not address the routing
issue in disconnected hypercubes, where nonfaulty nodes in a
faulty hypercube are partitioned into several disconnected
subcubes. The challenge is to distinguish an infeasible rout-
ing, where the source and destination nodes are in discon-
nected subcubes, from a feasible routing, where the source
and destination nodes are in the same subcube.

Limited-global-information-based routing is a compromise
between local-information-based and global-information-
based approaches. A routing algorithm of this type normally
obtains an optimal or suboptimal solution and requires a
relatively simple process to collect and maintain fault infor-
mation in the neighborhood (such information is called lim-
ited global information). Therefore, such an approach can be
more cost effective than the ones based on global or local
information. One simple but ineffective approach is to use
k-Hamming-distance information in which each node knows
the status of all components within k distance. However, opti-
mality cannot be guaranteed, as a routing process could possi-
bly go to either a state where all minimal paths are blocked by
faulty components or a dead end where backtracking is re-
quired. In addition, each node has to maintain a relatively
large table containing k-Hamming-distance information.

Lee and Hayes [11] proposed the safe node concept to
capture limited global information, where nonfaulty nodes
are classified into safe and unsafe. A nonfaulty node is un-
safe if and only if there are at least two unsafe or faulty
neighbors. The safe node set can be decided in O(n2) rounds
of information exchange among neighboring nodes in an
n-cube. A routing algorithm was proposed based on the
status of each node and can route a message via a path with
a length of no more than two plus the Hamming distance
between the source and destination nodes as long as the n-
cube under consideration is not fully unsafe. An n-cube will
not be fully unsafe if the number of faults is no more than

n
2 . A similar safety node concept has been used to repre-

sent convex-type fault blocks in a two-dimensional mesh [3].
Wu and Fernandez [23] extended the Lee and Hayes’

safe node concept by relaxing certain conditions and, hence,
increased the size of safe node set and the degree of fault
tolerance. A nonfaulty node is unsafe if and only if there are
two faulty neighbors or there are at least three unsafe or
faulty neighbors. The process which identifies node status
needs fewer rounds than the one in [11]. However, it still
requires O(n2) rounds in the worst case. A unicast algorithm
based on this extended safe node concept was proposed by
Chiu and Wu [6]. They showed that a path with a length of

no more than the Hamming distance between the source
and destination nodes plus four can always be established
as long as the hypercube is not fully unsafe.

The safety level concept [22] is one further step to extend
the safe node concept in an n-cube. In this model, each node
is assigned a safety level k, 0 £ k £ n. A node with a safety
level k = n is called safe and a faulty node is assigned the
lowest level 0. If a node has a safety level k, there is at least
one Hamming distance path from this node to any node
within k-Hamming-distance. The safety level concept cov-
ers a larger set of safe nodes than the ones based on Lee-
Hayes’ and Wu-Fernandez’ definitions, and it can be used
for unicasting in various faulty hypercubes (including dis-
connected hypercubes) more effectively. When a faulty n-
cube has fewer than n faulty nodes, the unicasting algo-
rithm based on safety level ensures an optimal unicast or
suboptimal unicast (generating a path with a length of the
Hamming distance between the source and destination
nodes plus two). Wu [22] also proved that, under both Lee-
Hayes’ and Wu-Fernandez’ safe node definitions, the safe
node set is empty for any disconnected hypercube. That is,
both unicast algorithms proposed by Lee-Hayes [11] and
Chiu-Wu [6] are not applicable to disconnected hypercubes.
However, the safety level concept has the following two
pitfalls:

1) Suppose the safety level of a node is k; its safety level
only tells that there exists a Hamming distance path
to any node within k-Hamming-distance. There is no
information about the existence of a Hamming dis-
tance path to nodes that are more than k-Hamming-
distance away.

2) The safety level concept applies to hypercubes with
faulty nodes, but it is ineffective to cover link faults.

1.3 Proposed Approach
The safety vector concept proposed in this paper can effec-
tively include faulty link information and provide more
accurate information about the number and distribution of
faults in an n-cube. Basically, each node in an n-cube is as-
sociated with a bit vector, called a safety vector, calculated
through n - 1 rounds of information exchange among
neighboring nodes. An optimal unicast between two nodes
is guaranteed if the kth bit of the safety vector of the source
node is one (this bit is set), where k is the Hamming dis-
tance between the source and destination nodes. Again,
unicasting based on safety vectors can also be used in dis-
connected hypercubes by distinguishing infeasible routings
from feasible ones. We also show that the safety vector con-
cept can be extended to other cube-based multicomputers,
such as generalized hypercubes.

A novel concept of dynamic adaptivity is introduced to repre-
sent the ability of a routing algorithm to dynamically adjust its
adaptivity based on fault distribution in the neighborhood.
More specifically, a routing algorithm is k-adaptive at an in-
termediate node if it can use k neighbors that are along mini-
mal paths between this intermediate node and the destination
node. In fault-free hypercubes, the maximum k value of an
intermediate node is the Hamming distance between this node
and the destination node. In the presence of faults, this k value
is normally smaller than the Hamming distance depending on
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fault distribution. In our approach, safety vectors are used to
achieve maximum possible adaptivity at each intermediate
node and the routing algorithm dynamically adjusts its adap-
tivity among fully adaptive, partially adaptive, and determi-
nistic (one-adaptivity) algorithms depending on the safety
degree of the intermediate node. zero-adaptivity corresponds
to an infeasible unicasting, which can be easily determined at
the source node by comparing its safety vector with the
Hamming distance between the source and destination nodes.

We make the following assumptions in this paper:

1) All faults are fail-stop, i.e., there are no malicious
faults.

2) Fault detection and diagnosis algorithms exist, but we
do not require such algorithms to be perfect.

We do assume that each node knows the safety status of all
its neighbors and can distinguish an adjacent faulty link
from an adjacent faulty node. Throughout the paper, the
terms unicasting and routing are used interchangeably.

2 NOTATION AND PRELIMINARIES

2.1 Hypercubes
An n-cube (Qn) is a graph having 2n nodes labeled from 0 to
2n - 1. Two nodes are joined by an edge if their addresses,
as binary numbers, differ in exactly one bit position. More
specifically, every node u has an address u(n)u(n - 1) L u(1)
with u(i) Œ {0, 1}, 1 £ i £ n, and u(i) is called the ith bit (di-
mension) of the address. We denote node u(i) the neighbor
of u along dimension i. u(i) is calculated by setting or reset-
ting the ith bit of u. For example, 1101(3) = 1001. Note that
this notation can be used to set or reset the ith bit of any
binary string. A faulty n-cube includes faulty nodes and/or
links. A faulty n-cube may or may not be disconnected de-
pending on the number and location of faults. A path con-
necting two nodes s and d is termed a minimal path (also
called a Hamming distance path) if its length is equal to the
Hamming distance between these two nodes. An optimal
(or minimal) routing is one which always generates a
minimal path. In general, optimal routing has a broader
meaning which always generates a shortest path, not neces-
sarily a minimal one, among the available ones. It is possi-
ble that all minimal paths are blocked by faults. In this case,
a shortest (available) path is not a minimal one. In this pa-
per, this situation will never occur and we use the terms
shortest and minimal interchangeably.

The distance between two nodes s and d is equal to the
Hamming distance between their binary addresses, de-
noted by H(s, d). Symbol ≈ denotes the bitwise exclusive
OR operation on binary addresses of two nodes. Clearly,
s ≈ d has value 1 at H(s, d) bit positions corresponding to
H(s, d) distinct dimensions. These H(s, d) dimensions are
called preferred dimensions and the corresponding nodes are
termed preferred neighbors. The remaining n - H(s, d) dimen-
sions are called spare dimensions and the corresponding
nodes are spare neighbors. A minimal path can be obtained
by using links at each of these H(s, d) preferred dimensions
in some order. For example, suppose s = 0101 and d = 1011,
then s ≈ d = 0101 ≈ 1011 = 1110. Therefore, dimensions 4, 3, 2
are preferred dimensions and dimension 1 is a spare

dimension. Among neighbors of s = 0101, nodes 1101, 0001,
and 0111 are preferred neighbors and node 0100 is a spare
neighbor. Any path from s = 0101 to d = 1011 that uses links
at dimensions 4, 3, and 2 in some order is a minimal path,
e.g., 0101 Æ 0001 Æ 1001 Æ 1011 is a minimal path from
0101 to 1011.

2.2 Dynamic Adaptivity
We introduce the concept of dynamic adaptivity representing
the ability of a routing algorithm to dynamically adjust its
adaptivity based on fault distribution in the neighborhood.
To simplify our discussion, we define dynamic adaptivity
only in the context of minimal routing.

DEFINITION 1. A minimal routing algorithm is k-adaptive at in-
termediate node u with respect to destination node d if it
can select the next forwarding node among k neighbors of
node u which are along minimal paths from node u to node d.

A routing algorithm is fully adaptive if it can use all pos-
sible minimal paths between source and destination nodes.
Obviously, a hypercube routing algorithm is fully adaptive
at node u with respect to destination node d if it is k-adaptive
at u, where H(u, d) = k. Partially adaptive routing algo-
rithms use only a subset of available minimal paths be-
tween the source and destination nodes. A routing algo-
rithm is deterministic if it is one-adaptive at each intermediate
node. The traditional e-cube routing is a deterministic routing.

In a hypercube with faulty nodes and links, it is possible
that all minimal paths from intermediate node u are
blocked by faults. For example, assume that intermediate
node u = 0111 and destination node d = 0010 in the four-cube
shown in Fig. 1, where faulty nodes are represented by black
nodes. Two minimal paths from 0111 to 0010 are blocked by
faulty nodes 0110 and 0011, respectively. Therefore, any
routing algorithm is zero-adaptive at 0111 (with respect to
destination 0010). A routing algorithm is infeasible if it is
zero-adaptive at an intermediate node. Clearly, any routing
algorithm that forwards a message with destination node
0010 to node 0111 becomes infeasible.

The challenge is to find a feasible routing algorithm without
sacrificing adaptivity. In the example of Fig. 1, suppose that
1111 is the source node and 0010 is the destination node; if
the cube was fault-free, the maximum adaptivity at source
1111 would be k = H(1111, 0010) = 3. However, in the faulty
four-cube shown in Fig. 1, node 0111 cannot be used as an in-
termediate node since it will cause zero-adaptivity. Therefore,
the maximum adaptivity at source 1111 with respect to desti-
nation 0010 is two. That is, the message can be forwarded to
either 1110 or 1011, but not 0111. To find maximum adaptivity,
we need a simple but effective way of representing fault dis-
tribution in the neighborhood. The safety vector concept dis-
cussed in the next section provides such a mechanism.

3 THE SAFETY VECTOR AND ITS PROPERTIES

3.1 Safety Vectors
In the proposed approach, fault information is captured in a

safety vector of n bit numbers, (u1, u2, ..., un), associated

with each node u in an n-cube. Specifically, uk represents the
routing capability of node u to a k-Hamming-distance node.
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Based on the topological property of a binary hypercube, the
kth bit of a safety vector can be determined from the (k - 1)th
bit of its neighbors’ safety vectors, except for the first bit,

which can be decided locally. Let u u ui i
n
i

1 2
( ) ( ) ( ), , ,Ke j  be the

safety vector of node u’s neighbor along dimension i. We
have the following inductive definition of safety vector.

DEFINITION 2.

• The safety vector of a faulty node is (0, 0, ..., 0). If node u is
an end node of a faulty link, the other end node will be reg-
istered with a safety vector of (0, 0, ..., 0) at node u.

• Base for the first bit:

 u
if node u is an end node of a faulty link
otherwise1

0
1= RST .

• Inductive definition for the kth bit:

u
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The safety vector defined in Definition 2 ensures the
following property: If the kth bit of the safety vector of node
u is one, then for any k neighbors, there exists at least one
neighbor that has 1 in the (k - 1)th bit of its safety vector.
That is, at least one preferred neighbor has its (k - 1)th bit
set. Note that this neighbor is one step closer to the desti-
nation. Using this property inductively, we can construct a
minimal path to any destination which is k-Hamming-
distance away from node u. This property will be discussed
in detail later and it will be used as a basis of the proposed
routing scheme.

The safety degree of node u is strictly higher than the
safety degree of node v if and only if uk ≥ vk for all 1 £ k £ n
and there exists at least one l such that ul > vl. Note that the
safety degree is a partial order, not all pairs of safety vec-
tors can be ordered, such as vectors (1, 0) and (0, 1) in a
two-cube. A faulty node is associated with (0, 0, ..., 0) which
corresponds to the lowest order of safety degree, while a
node with (1, 1, ..., 1) as its safety vector has the highest
order of safety degree and the corresponding node is called
a safe node; otherwise, it is called an unsafe node.

Note that there are different views of safety status be-
tween two end nodes of a faulty link. Because these two
nodes cannot reach each other and, hence, cannot determine
the actual safety vector of the other. Therefore, each is as-
sumed to have a safety vector (0, 0, ..., 0) by another. How-
ever, other neighbors treat these two nodes as regular nodes
by obtaining their actual safety vectors. The safety vector of a
nonfaulty node is inductively defined in terms of its neigh-
bors’ safety vectors. The following theorem shows that, for
any faulty hypercube, there is one and only one safety vector
for each node that satisfies the condition in Definition 2.

THEOREM 1. The safety vector concept is well-defined; that is, the
safety vector associated with each node in a given n-cube is
unique.

Proof. Note that the first bit of each safety vector is prede-
termined. That is, it is 0 if the corresponding node is
faulty or it is an end node of a faulty link; otherwise,
it is 1. Based on the definition of a safety vector, the
kth bit depends on all the (k - 1)th bits of neighbors’
safety vectors. Clearly, all the kth bits can be deter-
mined once all the (k - 1)th bits are fixed. Because all
the first bits are fixed, there is only one possible as-
signment of all the other bits. o

Algorithm GLOBAL_STATUS (GS)

begin /* determine safety vector (u1, u2,..., un) of
node u in n-cube Qn */

forall u Œ Qn /* determine the first bit u1 */
if u is an end node of a faulty link
then u1 = 0 else u1 = 1;

for k = 2 step 1 to n /* determine the kth bit uk,
where 2 £ k £ n */

forall u Œ Qn

          collects all the (k - 1)th bits, uk
i
-1

( ) , of
neighbors’ safety vectors;

         if u n kk
i

i n -£ £
£ -Â 11

( )  then uk = 0 else uk = 1

end

Fig. 1. A four-cube with four faulty nodes.
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3.2 Calculation of Safety Vectors
The proof of Theorem 1 also suggests a simple way to de-
termine the safety vector of each node in a given faulty hy-
percube. The GLOBAL_STATUS (GS) algorithm calculates
the safety vector of each node in an n-cube. Instead of up-
dating all the bits in a safety vector at each round of infor-
mation exchange, we only need to update the kth bit at the

kth round. As shown in Fig. 2, the kth bit, uk, of node u’s

safety vector depends on the (k - 1)th bit, uk
i
-1

( ) , of neigh-

boring node u(i)’s safety vector, where 1 £ i £ n. We assume
that all nonfaulty nodes have (1, 1, 1, ..., 1) as their initial
safety vectors. By doing so, there is no need to execute GS
in a fault-free hypercube. That is, our approach does not
introduce additional overhead in a fault-free hypercube. As
we will see later, the routing scheme based on safety vectors
is a regular, fully adaptive minimal routing in a fault-free
hypercube. All faulty nodes have (0, 0, 0, ..., 0) as their
safety vectors. Note that each of two end nodes of a faulty
link treats the other end node as a faulty node.

Table 1 shows the safety vectors obtained by applying
GS to the four-cube of Fig. 1. In this case, three rounds are
used. The safety vector (1, 1, 0, 1) associated with node 0000
indicates the existence of a minimal path to any other node,
except for nodes that are three-Hamming-distance away.
Bits (in safety vectors) that change at each round are under-
lined in the table.

3.3 Properties of Safety Vectors
We consider here properties of safety vectors that are useful
for unicasting in a faulty hypercube.

THEOREM 2. Given an n-cube (including disconnected one), the
safety vector of each node can be determined through n - 1
rounds of information exchange between neighboring nodes.

Theorem 2 can be easily derived from Theorem 1 and the
GS algorithm. The following theorem serves as a basis of the
proposed routing algorithm to be discussed in the next section.

THEOREM 3. Assume that (u1, u2,..., un) is the safety vector asso-
ciated with node u in a faulty n-cube. If uk = 1, then there
exists at least one Hamming distance path from node u to
any node which is exactly k-Hamming-distance away.

Proof. We prove this theorem by induction on k. If u1 = 1
(where k = 1), there is no adjacent faulty link. Clearly,
node u can reach all the neighboring nodes, faulty
and nonfaulty. Assume that this theorem holds for

k = l, i.e., if ul = 1, there exists at least one Hamming
distance path from node u to any node which is ex-

actly l-Hamming-distance away. When k = l + 1, if uk = 1,

then u n ll
i

i n

( ) ( )> - +
£ £Â 1

1
, which means that there

are at most l neighbors which have 0 at the kth bit of
their safety vectors. Therefore, among l + 1 preferred
neighbors, there is at least one neighbor, say node v
that has its kth safety bit set. Based on the induction
assumption, there is at least one Hamming distance
path from node v to any destination node, say w,
which is l-Hamming-distance away. Connecting the
link from node u to node v to the path originated from
node v to destination node w, we construct a Ham-
ming distance path from node u to destination node w
which is (l + 1)-Hamming-distance away. o

Fig. 2. Calculating safety vectors.
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To relate the safety vector concept to the safety level con-
cept proposed in [22], we first give the safety level defini-
tion and review its relevant properties.

DEFINITION 3 [22]. The safety level of a faulty node is zero. For a

nonfaulty node u, let (S0, S1, S2, ..., Sn-1), 0 £ Si £ n, be the
nondecreasing safety level sequence of node u’s n neighboring

nodes in an n-cube, such that Si £ Si+1, 0 £ i < n - 1. The

safety level of node u, S(u), is defined as: If (S0, S1, S2, ...,

Sn-1) ≥ (0, 1, 2, ..., n - 1)1, then S(u) = n, else if (S0, S1, S2,

..., Sk-1) ≥ (0, 1, 2, ..., k - 1) Ÿ (Sk = k - 1) then S(u) = k.

The safety level of a nonfaulty node is recursively defined in
terms of its neighbors’ safety levels. In a hypercube with faulty
links, two end nodes of each faulty link are treated as faulty
nodes. An n-safe node is called a safe node and all the other
nodes (faulty and nonfaulty) are unsafe. A faulty node has a
safety level of zero (zero-safe). An iterative algorithm similar to
GS can be used to calculate the safety level of each node in an n-
cube by assuming that all nonfaulty nodes are n-safe initially. It
has been proven [22] that, for any faulty n-cube, n - 1 rounds of
information exchange are sufficient. Fig. 1 shows the safety level
of each node (an integer inside each cycle) in a faulty four-cube
as well as the corresponding safety vector. Based on the safety
level definition, safety levels of nodes that have two (or more)
faulty neighbors are changed to one after the first round, as in
the case for nodes 0001, 0010, 0111, 1011. That is, the effect of

1. seq1 ≥ seq2 if and only if each element in seq1 is larger than or equal to
the corresponding element in seq2.

zero-safe status of faulty nodes propagates first to their neigh-
bors, then to the neighbors’ neighbors, and so on. After the sec-
ond round, for instance, the safety levels of nodes 0000 and 0101
are changed to two (as shown in Fig. 2), because each node has
two one-safe neighbors and one faulty neighbor. The safety level
of each node remains stable after two rounds and it represents
the final safety level of the corresponding node. Note that
throughout the calculation process, the safety level of each node
is updated at most once. More specifically, a k-safe node’s status
is updated at the kth round.

There are several relevant properties [22] of safety level
summarized as follows:

PROPERTY 1. In an n-cube with no more than n - 1 faulty nodes
and no faulty link, each nonfaulty but unsafe node has a
safe neighbor.

PROPERTY 2. If the safety level of a node is k (0 < k £ n), then
there is at least one Hamming distance path from this node
to any node within k-Hamming-distance.

Obviously, the safety vector model provides more in-
formation than the safety level model does. In Fig. 1, the
safety vector associated with 0000 is (1, 1, 0, 1). However,
node 0000 has a safety level two, which means that node
0000 can reach any node within two-Hamming-distance
through a minimal path and it is not guaranteed that there
exists a minimal path to any node which is three-Hamming-
distance away (otherwise the safety level would be at least
three). The safety level two (of node 0000) does not tell
whether there exists a minimal path from node 0000 to any
node which is four-Hamming-distance away.

TABLE 1
THE CALCULATION OF THE SAFETY VECTOR OF EACH NODE IN THE FOUR-CUBE OF FIG. 1

(A) INITIAL SAFETY VECTOR ASSIGNMENTS

node address 0000 0001 0010 0011 0100 0101 0110 0111
safety vector (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (0, 0, 0, 0) (0, 0, 0, 0) (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 1, 1)

node address 1000 1001 1010 1011 1100 1101 1110 1111

safety vector (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)

(B) SAFETY VECTORS AFTER THE FIRST ROUND

node address 0000 0001 0010 0011 0100 0101 0110 0111
safety vector (1, 1, 1, 1) (1, 0 , 1, 1) (1, 0 , 1, 1) (0, 0, 0, 0) (0, 0, 0, 0) (1, 1, 1, 1) (0, 0, 0, 0) (1, 0 , 1, 1)

node address 1000 1001 1010 1011 1100 1101 1110 1111

safety vector (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 1, 1) (1, 0 , 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)

(C) SAFETY VECTORS AFTER THE SECOND ROUND

node address 0000 0001 0010 0011 0100 0101 0110 0111
safety vector (1, 1, 0 , 1) (1, 0, 1, 1) (1, 0, 1, 1) (0, 0, 0, 0) (0, 0, 0, 0) (1, 1, 0 , 1) (0, 0, 0, 0) (1, 0, 1, 1)

node address 1000 1001 1010 1011 1100 1101 1110 1111

safety vector (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 1, 1) (1, 0, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)

(D) SAFETY VECTORS AFTER THE THIRD (FINAL) ROUND

node address 0000 0001 0010 0011 0100 0101 0110 0111
safety vector (1, 1, 0, 1) (1, 0, 1, 0 ) (1, 0, 1, 1) (0, 0, 0, 0) (0, 0, 0, 0) (1, 1, 0, 1) (0, 0, 0, 0) (1, 0, 1, 1)

node address 1000 1001 1010 1011 1100 1101 1110 1111

safety vector (1, 1, 1, 1) (0, 0, 0, 0) (1, 1, 1, 1) (1, 0, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)
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The following theorem reveals the relationship between the
safety vector and the safety level of a node in a given n-cube.
For a given safety vector (u1, u2, ..., un), we attach an extra
bit un+1 = 0.

THEOREM 4. Assume that k is the safety level of node u in an n-cube
and (u1, u2, ..., un, un+1) is the safety vector of node u, then

k £ min{i|ui+1 = 0}

PROOF. We prove this theorem by induction on k, the safety

level of node u. If k = 0, k £ min {i|ui+1 = 0} always
holds true. When k = 1, there are at least two faulty
neighbors, i.e., the first bit of both vectors associated
with two faulty nodes is 0. Based on the definition of
safety vector, the second bit of u’s safety vector must
be 0, i.e., u2 = 0. Since node u is nonfaulty, u1 = 1 based
on the definition of safety vector. Assume that this
theorem holds true for k < l; that is, if S(u) = k < l, k £
min{i|ui+1 = 0}. The safety vector can be represented
as ( , , , , , )1 1 10K

1 24 34
K

≥

** *
k

, where * is a don’t-care bit

which can be either 0 or 1. When S(u) = k = l and based
on the safety level definition, the nondecreasing neigh-

bor sequence (S0, S1, S2, ..., Sn) satisfies: (S0, S1, S2, ..., Sl-1)

≥ (0, 1, 2, ..., l - 1) and Sl = l - 1. Using the induction
assumption, we have the following safety vectors of
node u’s neighbors:

S0

0

0 1 1 10≥ ´ ** *
≥

( , , , , , )K
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K
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K

By performing a bitwise addition of safety vectors of
node u’s neighbors, we have

(b1(≥ n - 1), b2(≥ n - 2), ..., bl-1(≥ n - (l - 1)),

  bl(≥ n - (l - 1)), ..., bn(≥ n - (l - 1)).

Based on the safety vector definition, the safety vector
of u is:

u u un

l

1 2 1 1 10, , , , , , , , )K K
1 24 34

Kc h = ** *
≥

That is, min{i|ui+1 = 0} ≥ l. o

Clearly, if node u is n-safe under the safety level model,
then the corresponding safety vector (u1, u2, ..., un) = (1, 1, ...,
1). To show that the safety vector model is more powerful
than the safety level model, we need to show at least one
case such that k < min{i|ui+1 = 0}. Let’s consider a five-cube
with seven faulty nodes: 01101, 01110, 10001, 10100, 10101,
11000, 11001. Based on the safety level definition, we have 3
as node 00000’s safety level (five neighbors’ safety levels are
2, 5, 2, 2, 1 along dimensions 1, 2, 3, 4, 5, respectively). Ap-
plying the GS algorithm, we have (1, 1, 1, 1, 1) as node
00000’s safety vector, i.e., node 00000 is safe. Therefore, the
safety vector model covers a larger set of safe nodes than
the safety level model does.

THEOREM 5. In an n-cube, assume that W is the number of faulty
nodes and V is the number of faulty links. If W + 2V < n,
then every nonfaulty node that does not have an adjacent
faulty link has a safe neighbor.

PROOF. Based on the definition of safety vector, each non-
faulty node that has a faulty adjacent link is assigned a
vector (0, 1, 1, ..., 1). If we strengthen the condition by
treating such a node as faulty, i.e., it has (0, 0, 0, ..., 0) as
its safety vector, then the system is converted to the one
with faulty nodes only. Because each faulty link has
only two end nodes and W + 2V < n, the converted hy-
percube has fewer than n faulty nodes. Based on Prop-
erty 2 of safety level, each nonfaulty node has at least
one safe neighbor. Since k £ min{i|ui+1 = 0} based on
Theorem 4, where (u1, u2, ..., un) is the safety vector in
the converted hypercube and the extra bit un+1 = 0,
when k = n (u1, u2, ..., un) is clearly (1, 1, ..., 1), i.e., safe.
Again, because the safety vector (0, 1, 1, ..., 1) is strictly
higher (in terms of degree of safety) than the safety
vector (0, 0, 0, ..., 0), any safe node in the converted hy-
percube must be safe in the original hypercube. o

COROLLARY. In an n-cube without link fault, assume that W is
the number of faulty nodes. If W < n, then each nonfaulty
node has a safe neighbor.

Theorem 5 and its corollary will be used to access the appli-
cability of the routing algorithm discussed in the next section.

4 RELIABLE ROUTING USING SAFETY VECTORS

In this section, we propose an optimal routing algorithm and
a suboptimal routing algorithm in faulty hypercubes based
on the safety vector associated with each node. This scheme
is an adaptive one in which each intermediate node (includ-
ing the source node) routes a message adaptively based on
its safety vector, its neighbors’ safety vectors, and the relative
distance to the destination node. Optimality is ensured when
either the source node or one of its neighbors meets certain
safety conditions decided by the Hamming distance between
the source and destination nodes. Optimality can be decided
at the source node. At each intermediate node (including the
source node), the selection of a successor, among preferred
neighbors, is based on the safety vectors of these neighbors.

4.1 Basic Idea

Suppose that source node s, with safety vector (s1, s2, ..., sn),
intends to forward a message to a node which is k-Hamming-



328 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  9,  NO.  4,  APRIL  1998

distance away. The optimality is guaranteed if the kth bit of

its safety vector is 1 (sk = 1) or one of its preferred neighbors’

(along dimension i) (k - 1)th bit is 1, i.e., sk
i
- =1 1( ) , i Œ {1, 2, ...,

n}. Routing starts by forwarding the message to a preferred
neighbor where the (k - 1)th bit of its safety vector is one,
and this node, in turn, forwards the message to one of its
preferred neighbors which has 1 in the (k - 2)th bit of its
safety vector, and so on. If the optimality condition fails but
there exists a spare neighbor which has 1 in the (k + 1)th bit
of its safety vector, the message is first forwarded to this
neighbor and, then, the optimal routing algorithm is applied.
In this case, the length of the resultant path is the Hamming
distance plus two. We call this result suboptimal.

The selection between the optimal and the suboptimal
algorithms can be decided at the source node using the
following information:

1) The Hamming distance of source (s) and destination
(d) nodes. This can be done by computing H(s, d) =
|s ≈ d|. The preferred neighbor set and the spare
neighbor set are obtained based on s ≈ d.

2) The safety vector of source nodes: (s1, s2, ..., sn).
3) The safety vector of the neighboring node along the

ith dimension: s s s si i i
n
i

0 1 2
( ) ( ) ( ) ( ), , , ,Ke j. s i

0
( )  is an extra bit

introduced to simplify the routing algorithm. s i
0 1( ) =

except for the case when s and s(i) are two end nodes
of a faulty link.

In addition, a navigation vector, N = s ≈ d, is the relative ad-
dress between the source and destination nodes. This vector is
determined at the source node and it is passed to a selected
neighbor after resetting or setting the corresponding bit of N.
Upon receiving a routing message, each intermediate node
first calculates its preferred and spare neighbors based on the
navigation vector associated with the message. If this interme-
diate node is (k + 1)-Hamming-distance away from the desti-
nation node (this distance can be determined based on the
number of 1s in the navigation vector), a preferred neighbor
which has 1 in the kth bit of its safety vector is selected. When
a node receives a message with an empty navigation vector, it
identifies itself as the destination node by terminating the
routing process and keeping a copy of this message.

Note that, at the source node, if both conditions for op-
timal and suboptimal routing fail, the proposed algorithm
cannot be applied. This failure state can be easily detected
at source node. The cause of failure could be either too
many faults in the neighborhood or a network partition.
However, based on Theorem 5, when W + 2V < n and the
source node is nonfaulty with no adjacent faulty link, the
proposed routing process never fails.

4.2 Routing Algorithms
The routing process consists of two parts: UNICASTING_
AT_SOURCE_NODE is applied at the source node to decide
the type of routing process and perform the first routing step.
UNICASTING_AT_INTERMEDIATE_NODE is used at an
intermediate node. After the first routing step, since both
optimal and suboptimal routing algorithms select a Ham-
ming distance path to route the message to the destination

node, there is no need to distinguish the type of routing pro-
cess in UNICASTING_AT_INTERMEDIATE_NODE.

Algorithm UNICASTING_AT_SOURCE_NODE
begin

N= s ≈ d; H = |s ≈ d|;
/* calculate navigation vector N and
   Hamming distance H */
if  sH = 1 ⁄ $i(sH

i
-1

( )  = 1 Ÿ N(i) = 1)
    / * the Hth bit of the safety vector is one
             or the (H - 1)th bit of the safety

    vector of a preferred neighbor is one */
then � OPTIMAL_UNICASTING:

send (m, N(i)) to s(i), where sH
i

-1
( )  = 1 and N(i) = 1

/* send message m to preferred neighbor
     s

(i)
, where the (H - 1)th bit of its

     safety vector is one, together with N
     after resetting bit i */

else   if � $i(sH
i

+1
( )  = 1 Ÿ N(i) = 0)

     /* the (H + 1)th bit of a spare
           neighbor's safety vector is one */
then � SUBOPTIMAL_UNICASTING:
           send (m, N(i)) to s(i), where sH

i
+1

( )  = 1
         /* send message m to spare neighbor

s
(i)
 where the (H + 1)th bit of the

safety vector is one, together

with N after setting bit i */
else failure

end.

Algorithm UNICASTING_AT_INTERMEDIATE_NODE
begin

{at any intermediate node u with message m and
    navigation vector N}
if N = 0 /* the navigation vector is empty */
then � stop /* the currect node is the

 destination node */
else   send (m, N(i)) to u(i), where uH

i
-1

( )  =1 and N(i) = 1
/* send message m to preferred neighbor
     u(i)

, where the (H - 1)th bit is one,
     together with N after resetting bit i */

end.

The following theorem relates the length of a routing
path, neighbors’ safety vectors, and the Hamming distance
between the source and destination nodes.

THEOREM 6. Suppose that the Hamming distance between the
source and destination nodes is k for a given unicasting.
When the kth bit of the safety vector of the source node is 1
or there is a preferred neighbor of the source node which has
1 at the (k - 1)th bit of its safety vector, optimality is guar-
anteed using the proposed routing process. When there is a
spare neighbor of the source node which has 1 at the (k + 1)th
bit of its safety vector, then suboptimality is guaranteed.

The proof of this theorem is straightforward based on
Theorem 3 and the proposed routing process.

COROLLARY. In the worst case, the length of any path generated
from the proposed routing process is no more than n + 1 in
an n-cube.
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Based on the above discussion, if the routing process is fea-
sible, it is either optimal or suboptimal and it is independent
of the number of faults in the n-cube. Note that the subop-
timal routing generates a path of length k + 2 between two
nodes that are k-Hamming-distance apart. For two nodes
that are n-Hamming-distance apart, all the neighbors of the
source node are preferred neighbors. Therefore, only opti-
mal routing is used. The worst case occurs when the sub-
optimal routing algorithm is applied to two nodes that are
(n - 1)-Hamming-distance apart. The length of the resultant
routing path is (n - 1) + 2 = n + 1.

4.3 Examples
Consider the example of Fig. 1 with safety vectors, as
shown in Table 1d. Suppose that the source node is 0001
with safety vector (1, 0, 1, 0), which means that a Hamming
distance path is guaranteed for any destination node which
is one- or three-Hamming-distance away. A Hamming dis-
tance path may or may not exist for a destination node
which is two- or four-Hamming-distance away, depending
on neighbors’ safety vectors. For example, if the destination
node is 1100, then H = |1100 ≈ 0001| = |1101| = 3. There-
fore, a Hamming distance path exists. The source node
adaptively selects a preferred neighbor which has 1 at the
second bit of its safety vector. In this case, nodes 0101 and
0000 are both eligible. Assume that node 0000 is selected to
which the routing message, together with N = 1101 ≈ 0001
= 1100, is forwarded. Node 0000 forwards the message to
one of its preferred neighbors which has 1 at the first bit of
its safety vector. Clearly, only node 1000 (the neighbor
along dimension four) is eligible. Once node 1000 receives
the message, together with N = 0100, it sends the message,
together with N = 0000, to the destination node (the neigh-
bor along three as indicated in N = 0100). The selected path
from s1 = 0001 to d1 = 1100 is shown in Fig. 1.

To forward a message to a destination which is two-
Hamming-distance away from source node 0001, node 0001
has to check if one of preferred neighbors has its first safety
bit set to guarantee an optimal routing. For example, if the
destination node is 1101, then it has two preferred neigh-
bors: 0101 and 1001. Because the first bit of 0101’s safety
vector is 1, the message can be forwarded to 1001 via 0101.
Note that each node has a copy of all its neighbors’ safety

vectors (a by-product of the GS algorithm), the optimality is
decided at the source node without further information
exchange between neighbors. If the destination node is
1011, optimal routing does not exist, since both preferred
neighbors 1001 and 0011 (of source node 0001) are faulty.
Fig. 1 also shows a possible path from source s2 = 1110 to
destination d2 = 0001.

Fig. 3 shows the assignment of safety vectors and safety
levels in a faulty four-cube with two faulty links (1100,
1101) and (0000, 0010) and one faulty node 1011. Node
1100’s safety level is two, although it is considered faulty
(zero-safe) by node 1101, which is the other end node of
faulty link (1100, 1101). Note that the safety level of node
1110 is only two in Fig. 3, which means that optimality is
not guaranteed to forward a message from 1110 to a node
which is more than two-Hamming-distance away. Actu-
ally, to forward a message from 1110 to 1001, a suboptimal
path (with a length of Hamming distance plus two) has to
be used, because all of its preferred nodes’ safety levels
are lower than two. Using the safety vector model, node
1110 has a safety vector (1, 1, 1, 1), so there exists a Hamming
distance path to any destination in the cube. For example, if
1001 is the destination node, source node 1110 sends the mes-
sage to one of two preferred neighbors, 1100 or 1010, that has
one at the second bit of its safety vector. Assume that node
1010 is selected which in turn forwards the message to one of
its preferred neighbors which has one at the first bit of its
safety vector. The path constructed is 1110 Æ 1010 Æ 1000
Æ 1001, as shown in Fig. 3.

The proposed algorithm can also be used in disconnected
hypercubes. If the source node tries to send a message to a k-
Hamming-distance destination node, which is in another
(disconnected) subcube, it can detect such an infeasible
routing based on its safety vector and neighbors’. More spe-
cifically, a k-Hamming-distance routing is infeasible if the
kth bit of its safety vector is 0, the (k - 1)th bit of the safety
vectors of all its preferred neighbors is 0, and the (k + 1)th
bit of the safety vectors of all its spare neighbors is 0. Routing
between two connected nodes in a disconnected hypercube
will be treated the same as in a connected hypercube. Note
that most existing routing algorithms do not address the
routing issue in disconnected networks. Some existing algo-
rithms may livelock or simply fail because the source may

Fig. 3. A faulty four-cube with one faulty node and two faulty links.
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initiate a routing process without knowing the destination is
unreachable.

5 DISCUSSION

5.1 Updating Safety Vectors
There are several ways to keep safety vector information
up-to-date.

1) Demand-driven. The GS algorithm is applied only when
a node detects an inaccurate safety vector (caused by
occurrence or recovery of faults in the neighborhood)
during a routing process. When a node recovers from a
failure and becomes healthy, it will not cause disrup-
tion. However, when a new fault occurs, an on-going
routing process might either continue without any ef-
fect or be blocked temporarily and rerouted from the
current node after the update of safety vectors.

2) Periodic. Each node exchanges safety information pe-
riodically with its neighbors. Note that this approach
does not adapt its activity to the failure rate of nodes
and links. For example, all (or most) exchanges are
wasted when all (or most) of nodes and links’ status
remain stable.

3) State-change-driven. A node initiates the GS algorithm
whenever it detects a status change of a neighboring
node or link. In this case, the GS algorithm can be im-
plemented asynchronously as in the demand-driven
approach.

The selection among different models depends on the
application and the frequency of fault occurrence. Both
demand-driven and state-change-driven approachs are pas-
sive in nature; that is, no update occurs when there is no
status change. The periodic approach is active in nature in
the sense that the safety status of each node is updated pe-
riodically even in the absence of new faults.

Let’s use the demand-driven approach as an example.
This approach is the most optimistic and, therefore, the
least expensive to implement. To simply our discussion, we
consider only node faults and use the four-cube in Fig. 1 as
an example. When one or more new faults occur, an on-
going routing process will not be affected unless one of the
new faults is along the selected path. Even when one of the
new faults blocks the selected path at an intermediate node,
say node u, it may still use other available preferred neigh-
bors. In this case, all preferred neighbors are blocked by
faults, but there exists a safe spare neighbor (such a neigh-
bor always exists provided the number of fault nodes is less
than n in an n-cube). In either case, we have two possible
ways to update safety vectors:

1) update after the completion of the on-going routing
process, or

2) update immediately by blocking the on-going routing
process at node u.

Because each routing process carries only the relative ad-
dress (of the current and destination nodes), the routing
process can resume immediately after the update of safety
vectors (an application of the GS algorithm).

Consider a routing process (s2, d2) = (1110, 0001) with
message m2 in the four-cube of Fig. 1. Assume that a new

fault 0101 occurs and node 1001 recovers (and becomes
healthy) when m2 is at intermediate node 1101. Suppose
that node 0001 detects a new fault at neighbor 0000; it
immediately starts the GS algorithm and blocks the routing
process (approach 2 is used). After GS is completed, the
safety vectors associated with nodes 1001 and 0101 become
(1, 1, 1, 1) and (1, 1, 0, 1), the routing process resumes at
nodes 1101, and m2 is forwarded to destination node 0001
via node 1001 (instead of node 0101).

The above approach still works when new faults occur in
an update interval. If a new fault occurs during the ith
round of GS, GS completes the update of the ith bit and will
then update the (i + 1)th bit of each safety vector. If i = 0,
this fault occurs before the update. If i = n, this fault occurs
after the update. Both cases have been discussed earlier. If
1 £ i £ n - 1, this fault occurs during the update process of
GS. Clearly, all the bits before the ith bit have been updated
before the occurrence of this new fault and, hence, they may
or may not be accurate in representing fault distribution. The
ones after the ith bit are more accurate, because the informa-
tion about this new fault has been included in the calculation.
(Note that such bits may still be inaccurate because they de-
pend on other bits that may not be accurate.) To study the
effect of a new fault on safety vectors of other nodes in the
neighborhood, we have the following result:

THEOREM 7. A new fault will not affect (by resetting) the first k
bits in the safety vector of a node that is k-Hamming-
distance away from this fault.

The proof of this theorem is straightforward based on
the following fact: A new fault will not affect a routing pro-
cess if it is not along any minimal path between the source
and destination nodes. That is, if the Hamming distance
between the source and destination nodes is k, this new fault
will not have any effect if it is at least k-Hamming-distance
away from the source node. Clearly, a fault will have no effect
on the node which is n-Hamming-distance away.

5.2 Adaptivity Analysis
To study the degree of adaptivity, let’s define a safety matrix
associated with each node u. An n ¥ n safety matrix, Au, is
defined as a collection of neighbors’ safety vectors in an n-
cube, where the ith row of the safety matrix corresponds to
the neighbor’s safety vector along dimension i. For exam-
ple, the safety matrix of node u = 0001 in the four-cube of
Fig. 1 is the following:

Au =
F

H
G
G

I

K
J
J

1 1 0 1
0 0 0 0
1 1 0 1
0 0 0 0

To determine the adaptivity of intermediate node u (in-
cluding the source node) with respect to destination node d,
the safety matrix of u, Au, is first derived. Because neigh-
bors’ safety vectors are all available after an application of
GS, there is no need for a separate process to calculate Au.
We mask out rows that correspond to spare neighbors. The
degree of adaptivity is defined as the summation of 1s in
the (H(u, d) - 1)th column in the masked Au. For example,
suppose u = 0001 and d = 1100, u ≈ d = 1101 and H(u, d) = 3,
i.e., the second row of Au will be masked out (by setting all



WU:  ADAPTIVE FAULT-TOLERANT ROUTING IN CUBE-BASED MULTICOMPUTERS USING SAFETY VECTORS 331

bit values zero) and the number of 1s in the second column
will be the degree of adaptivity. Intuitively, at intermediate
node u = 0001, there are two choices of next node to for-
ward a message to destination 1100. Note that at an inter-
mediate node, any neighbor that satisfies the safety re-
quirement (for optimal or suboptimal routing) is an eligible
next forwarding node. However, we can select one with the
highest safety degree. By doing so, we maximize the adap-
tivity and the probability of successful routing should more
faults occur in the remaining routing process.

To determine the application range of the proposed
scheme in terms of degree of fault tolerance, we consider
the following three cases for a given number of faults and
the dimension size:

1) Fully applicable. The proposed method can be applied
to any combination of the source and destination
nodes under any fault distribution.

2) Partially applicable. The proposed method can be ap-
plied to certain combinations of the source and desti-
nation nodes under certain fault distributions.

3) Inapplicable. The proposed method cannot be used in
any combination of the source and destination nodes
under any fault distribution.

Theorem 5 and its corollary show the upper bound of faults
to ensure fully applicability under any distribution of faults,
source, and destination nodes. For example, when the number
of faulty nodes is less than n in an n-cube with no link fault,
the proposed algorithm is fully applicable under any fault
distribution. This is a very conservative approach, because
certain fault distributions (which make the proposed method
inapplicable) rarely occur. In other words, the proposed
method is still fully applicable for certain cases (of fault distri-
butions) even when the number of faults exceeds the upper
bound. This situation can be modeled by the probability of
fully applicable cases under certain fault distributions and this
probability is a function of the number of faults. For example,

when the number of faulty nodes reaches 2n-1 in an n-cube, the
probability of fully applicable cases under certain fault distri-

butions is not zero. Actually, it is no less than n
n

n
2

2 1-
F
HG

I
KJ . Be-

cause any faulty n-cube is still fully applicable if all 2n-1

faulty nodes reside in an (n - 1)-cube. Clearly, there are n
such assignments by selecting different dimensions to split an
n-cube into two (n - 1)-subcubes. Note that inapplicable cases
are virtually nonexistent unless all the nodes in the n-cube are
disconnected by faults, because any two connected nodes can
still transfer messages between them. The full applicability of
the routing process based on the safety vector model is cap-
tured in the following definition.

DEFINITION 4. An n-cube is fully applicable if and only if, for
every nonfaulty and unsafe node u, there exists at least one
neighbor that is safe.

In other words, if an n-cube is fully applicable, our
scheme can be applied to any unicasting and obtain either
an optimal or suboptimal result. A simulation has been
conducted to obtain the average percentage of fully appli-
cable seven-cubes for different numbers of faults under
different distributions of faults, source, and destination
nodes. Results are shown in Fig. 4. We can see that when
the number of faults in seven-cubes reaches nine, the per-
centage is still close to one hundred. Note that when an n-
cube is not fully applicable, it is still partially applicable,
i.e., the proposed scheme is still applicable for certain uni-
casting. The applicability of the proposed routing scheme
can be easily determined at each source node through a
feasibility check.

5.3 Feasibility Check
Feasibility check determines the applicability of the proposed
routing scheme. Actually, based on UNICASTING_AT_
SOURCE_NODE, the checking process for a k-Hamming-
distance routing can be simply expressed as:

Algorithm FEASIBILITY_CHECK
{at the source node}
if  the (k - 1)th bit of a preferred neighbor’s safety vector is
     1 or the (k + 1)th bit of a spare neighbor’s safety vector is 1
then it is feasible to use the proposed routing process
else it is infeasible.

6 EXTENSIONS

There are many variations of the hypercube topology pro-
posed in the literature to improve selected, desirable prop-
erties. In general, the safety vector concept can be extended
to other cube-based multicomputers provided certain prop-
erties of the hypercube topology are still maintained. Here,
we illustrate our approach using generalized hypercubes.
Extension to other cube-based architecture, such as cube-
connected-cycles, is discussed in [21].

The generalized hypercube interconnection [2] is based
on a mixed radix number system (as opposed to the binary
system used in regular binary hypercubes) and this tech-
nique results in a variety of hypercube structures for a
given number of processors, depending on the desired di-
ameter of the network.

Fig. 4. Average percentage of fully applicable 7-cubes for different
numbers of faults under different distributions of faults, source, and
destination nodes.
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Let N be the total number of processors and be repre-
sented as a product of mis, mi > 1 for 1 £ i £ n; that is, N = mn ¥
mn-1 ¥ ... ¥ m1 . Each node corresponds to an n-vector address
(un, un-1, ..., u1), where 0 £ ui £ mi - 1. The generalized n-
dimensional hypercube (GHn) is defined as follows: Two nodes
are linked by an edge if they differ in exactly one coordinate.

The safety vector of neighbors along a dimension, say i,
of node u (analogous to the safety vector of the neighbors
along this dimension in a regular hypercube) is a bitwise
logical AND of all the neighbors’ safety vectors (mi - 1 in
total) along this dimension, i.e., the bitwise minimum of
safety vectors of all the nodes that have the same address as
node u except at dimension i.

DEFINITION 4.

• The safety vector of a faulty node is (0, 0, ..., 0). For a non-
faulty node u, if node u is an end node of a faulty link, then
node u’s safety vector is (0, 0, ..., 0) from the view of the
other end node adjacent to the same faulty node.

• u u ui i
n
i

1 2
( ) ( ) ( ), , ,Ke j  is the bitwise minimum of safety vectors

among all the nodes that have the same coordinates as node
u except at dimension i.

• Base:

 u
if u is an end node of a faulty link
otherwise1

0
1= RST .

• Inductive steps:

u
if u n k

otherwise
k

k
i

i n=
£ -R

S|
T|

-
£ £
Â0

1

1
1

( )

.

The GLOBAL_STATUS (GS) algorithm can be easily ex-
tended for the generalized hypercube. The only change is
the calculation of each bit in the safety vector. The bitwise
minimum of safety vectors of all the nodes in the same di-
mension can be obtained in one step because all these nodes
are completely connected. Therefore, the EXTENDED_
GLOBAL_STATUS (EGS) algorithm requires a total of 2(n - 1)
rounds to obtain the safety status of each node in GHn. This is
because in the all-port model, where each node can send
messages to and receive messages from all its neighbors in
one step, bitwise minimization can be done in one step with
all the relevant nodes directly connected. (Note that a round
of message exchange followed by a local update is consid-
ered as one step.)

Algorithm EXTENDED_GLOBAL_STATUS (EGS)
begin

forall u Œ GHn
          if u � is an end node of a faulty link then u1 = 0 else u1 = 1;

for k = 2 step 1 to n
    begin

uk
i
- =1

( ) min { ¢ -ak 1 |nodes ¢u  and u differ only in the
     ith coordinate and ( , , , )¢ ¢ ¢u u un1 2 K  is the safety
     vector of u¢};
forall u Œ GHn

         if u n kk
i

i n -£ £
£ -Â 11

( )  then uk = 0 else uk = 1

    end
end.

Fig. 5 shows a 2 ¥ 2 ¥ 3 GH3 with three faulty nodes 121,
101, and 010 and one faulty link (100, 110). Applying the
EGS algorithm to this GH3, we obtain the safety vector for
each node, as shown in Fig. 5.

The proposed routing process can be easily extended for
the generalized hypercube. Dimensions are still classified as
preferred and spare. Among neighbors (mk - 1 in total) along
a preferred dimension k, only one node has the same ith co-
ordinate as the one in the destination node and this node is
called a preferred neighbor. All the other neighbors along this
preferred dimension are called semi-preferred neighbors. Any
neighbors along a spare dimension are still called spare neigh-
bors. For example, assume that the source node is 300 and the
destination node is 321 in the 4 ¥ 3 ¥ 2 GH3 shown in Fig. 5.
With respect to source node 300, dimension three is a spare
one and dimensions two and one are preferred dimensions.
Among neighbors along dimension two, node 310 is a semi-
preferred neighbor and node 320 is a preferred one.

In the extended routing scheme, the selection of a neigh-
bor is based on the following priority: preferred, semi-
preferred, and spare. For example, if the source node is 120
and the destination node is 021, their distance is two. The
safety vector of node 120 is (1, 0, 1) and its second bit is 0.
Therefore, the optimal algorithm cannot be directly applied.
However, node 020, one of the preferred neighbors, is safe. A
minimal path can still be constructed, as shown in Fig. 5.
Consider another routing example between source node 000
and destination node 110 separated by two-Hamming-
distance. If the first bit of both preferred nodes 100 and 010 is
zero, the optimal algorithm cannot be applied. The other two
neighbors 020 (semi-preferred) and 001 (spare) are both safe

Fig. 5. A 2 ¥ 2 ¥ 3 GH3 with three faulty nodes and one faulty link.
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and node 020 has a higher priority. Once the routing message
is forwarded to node 020, the optimal routing is followed.
The length of the resultant path is the Hamming distance
plus one (see Fig. 5). If a spare neighbor is selected, the length
of the resultant path is the Hamming distance between the
source and destination nodes plus two.

Theorem 3 in Section 3 still holds for generalized hyper-
cubes. Note that in GHn, two nodes are directed connected
if and only if there addresses differ in exactly one coordi-
nate. Therefore, the distance between two nodes are still
measured by the number of different coordinates.

THEOREM ¢3 . Assume that (u1, u2, ..., un) is the safety vector asso-
ciated with node u in any given GHn. If uk = 1, then there
exists at least one minimal path from node u to any node
which is exactly k-Hamming-distance away from node u.

The proof of this theorem follows directly from the defi-
nition of GHn and the proof of Theorem 3.

7 CONCLUSIONS

We have proposed an adaptive fault-tolerant routing
scheme for cube-based multicomputers. This scheme uses
limited global information captured by an n-bit safety
vector associated with each node in an n-cube. Safety
vectors can be calculated through a simple (n - 1)-round
of information exchange among neighboring nodes. The
source node can easily decide to perform either an optimal
or suboptimal routing algorithm, based on its safety vec-
tor, its neighbors’ safety vectors, and the Hamming dis-
tance between the source and destination nodes. It can
also identify cases when minimal paths are blocked by
faults and when a routing process tries to forward a mes-
sage to a disconnected subcube. Possible extensions of the
safety vector concept to other cube-based multicomputers
have also been discussed.

The proposed routing scheme could be used together
with other heuristic and/or greedy routing algorithms [12],
[20], such as randomized routing and depth-first routing. Such
a combination is especially efficient and useful in a system
with many faults that result in a relatively small percentage
of safe nodes. When safety degrees of the source node and
its neighbors are too low to use the proposed routing
scheme, a heuristic or greedy routing approach can be ap-
plied until an intermediate node with a sufficiently high
safety status is reached. Then, the proposed routing scheme
is used to guide the message to the destination node
through a minimal path.

The safety vector concept can be potentially used to
implement reliable collective communication. Collective
communication operations, as defined by the Message
Passing Interface standard [1], are fundamental in many
applications and have been implemented in many par-
allel languages. They are used to distribute, gather, and
exchange data, to perform global computation operation,
and to perform processes synchronization. Examples of
collective communication operations are multicasting,
broadcasting, scatter, gather, all-to-all, complete ex-
change, reduction, and prefix sum [13].

The application of safety vectors in multicasting is
straightforward. The key issue is how each intermediate
node u forwards a set of destination nodes to its appropri-
ate neighboring nodes. To solve this issue, the address
summation, a bit-wise summation of all the destination
nodes, is first calculated which represents the distribution
of destination nodes along different dimensions. If a desti-
nation node can be forwarded to more than one preferred
node, a priority among preferred neighbors is defined
based on either safety degrees of preferred neighbors or
values of address summation along these preferred dimen-
sions. Safety-level-based multicasting and address-sum-
based multicasting developed in [24] can be easily extended
to safety-vector-based multicasting and address-sum-based
multicasting, respectively. Because a safety vector normally
offers more precise information than a safety level does, the
corresponding multicast algorithm is expected to perform
better. Note that in such an extension, the two end nodes of
a faulty links should be treated as special faulty nodes
(called marked faulty nodes) by all the other nodes. During a
multicast process, no marked faulty node should be used as
an intermediate node and, hence, no faulty links will be
used in a resultant multicast tree. That is, all the marked
faulty nodes will appear as leaves in the tree. Therefore, in
the last step, the multicast message can still be forwarded
to all these nodes. The use of safety vectors to implement
other types of collective communication operations in a
faulty cube-based multicomputer will be our future work.
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