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Abstract
bile nodes. The crowdsensing platform chooses to assign several sensing tasks each day, whose utility is based on the quali-

Mobile crowdsensing is a popular platform that takes advantage of the onboard sensors and resources on mo-

ty of harvested sensing data, the payment of transmitting data, and the recruitment of mobile nodes. The Internet Service
Provider (ISP) selects a portion of access points (APs) to power on for uploading data, whose utility depends on three
parts: the traffic income of transmitting sensing data, the energy cost of operating APs, and the energy cost of data trans-
missions by APs. The interaction between the crowdsensing platform and ISP is formulated as an iterated game, with so-
cial welfare defined as the sum of their expected utilities. In this paper, our objective is to unilaterally control social wel-
fare without considering the opponent’s strategy, with the aim of achieving a stable and maximized social welfare. To
achieve this goal, we leverage the concept of a zero-determinant strategy in the game theory. We introduce a zero-determi-
nant strategy for the vehicular crowdsensing platform (ZD-VCS) and analyze it in discrete and continuous models within
the vehicular crowdsensing scenario. Furthermore, we analyze an extortion strategy between the platform and ISP. Experi-
mental results demonstrate that the ZD-VCS strategy enables unilateral control of social welfare, leading to a high and
stable value.

Keywords iterated game, social welfare control, vehicular crowdsensing, zero-determinant strategy

sensing (VCS)B: 6l. Tt takes advantage of the mobility
of vehicles to provide location-based services in a

1 Introduction

With the rapid growth in various types of large-scale area, and plays a crucial role in creating a

equipped sensors, including cameras, microphones,
and GPS devices, mobile crowdsensing can now pro-
vide a wide range of services, such as urban monitor-
inglll, road and traffic condition monitoringf!, pollu-
tion level measurements, wildlife habitat monitor-
ingBl, and cross-space public information sharingl4l. As
one of the most promising Internet of Things (IoT)
applications, this is referred to as vehicular crowd-

comfortable and convenient environment for the ur-
ban city.

In the crowdsensing application, the interactions
between the crowdsensing platform and the Internet
service provider (ISP) are treated as a gamel” 8. We
take vehicular crowdsensing in Fig.1 as a special case
to study the game. The vehicular crowdsensing plat-
form (simply called platform) is responsible for pub-
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Fig.1. Iterated game between the platform and ISP in vehicular crowdsensing.

lishing the crowdsensing tasks. This income is deter-
mined by the quality of sensing data, which is calcu-
lated based on the quantity of sensing data and the
diversity of tasks. The platform pays the traffic cost
of transmitting sensing data via Road-Side Units
(RSUs) to the ISP. To reduce energy costs, the
switch-mode of cell activation is widely employed.
Thus, the ISP schedules to partially activate RSUs
for uploading the sensing data generated by the mov-
ing vehicles!0: 111, The income of ISP is generated
from the traffic income obtained through transmit-
ting the sensing data. When the platform publishes
more tasks to cooperate, it hopes to receive a greater
volume of sensing data. While ISP turns on fewer
RSUs to defect, the quality of sensing data is reduced,
and the platform’s income is also reduced. When the
ISP turns on more RSUs to cooperate, it hopes to
earn more traffic income from data transmissions.
However, if the platform publishes fewer tasks to de-
fect, the income of ISP will be reduced. Fig.1 shows
an iterated game in vehicular crowdsensing where the
platform and ISP interact by playing a game repeat-
edly (infinitely many times). On each day, the crowd-
sensing platform publishes the selected tasks and the
ISP powers on a portion of RSUs for uploading data,
independently. According to their utilities and ac-
tions of the previous day, both of them will adjust
their actions on the next day by their strategies.

In the iterated game, the social welfare is defined
as the sum of expected utilities of the platform and
ISP. Unilateral control the social welfare in the iterat-
ed games has been discussed in many previous works.
These discussions include topics like controlling social
(total quality of data) mobile
crowdsensing(!2l, addressing the crowdsourcing dilem-

welfare in

ma through social welfare control(!3-151 ensuring total
Quality of Services (QoS) control for all participants
in wireless communicationl!], unilateral control over
expected payoffs for both opponents and oneself in
block withholding attacksl!6l, and administrator-led
unilateral control over the total utilities of all players
in wireless network resource management!!”, among
others. Crowdsensing games[!320 are ubiquitous and
worth studying since crowdsensing is a widely adopt-
ed method for data sensing in various daily applica-
tionsl® 21, Social welfare is an important metric in
crowdsensing games, therefore we study the social
welfare control problem with different strategies to
help operators in their decision-making process.

In this paper, we aim to investigate the unilateral
control for social welfare of the iterated game in ve-
hicular crowdsensing. The word “unilateral” repre-
sents a player can control the social welfare regard-
less of the opponent’s strategy. We consider the
crowdsensing platform belongs to the government[22],
who concerns about the social welfare of the whole
crowdsensing system, and thus the platform has the
responsibility to control the social welfare regardless
of ISP’s actionsV®,

We discuss such unilateral control for maximizing
the social welfare of the iterated game with a stable
value. We prove that the game between the platform
and ISP exists an equilibrium in each iteration, but
finding the equilibrium point would not achieve our
goal of social welfare control.

Inspired by [15, 23|, we propose a Zero-Determi-
nant strategy for the Vehicular CrowdSensing plat-
form (ZD-VCS) to control the social welfare of the
crowdsensing system. The idea is that the strategy
can derive a linear relationship between the expected

Ohttps://archive.flossmanuals.net/bypassing-censorship/ch007 chapter-2-censorship.html, Nov. 2024.
@https://www.law.cornell.edu/wex/internet_service provider (isp), Nov. 2024.
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payoff of the platform and that of the ISP, then we
can set proper parameters for the to-be-adopted ZD-
VCS to obtain the strategy, the details are presented
in Section 5. More specifically, we analyze the prob-
lem of unilateral control for social welfare in the dis-
crete model. We calculate the strategy ZD-VCS that
the platform to-be-adopted, regardless of ISP’s cho-
sen strategies (such as TFT, Pavlov, random and
evolved strategy). In the discrete case, ZD-VCS takes
the form of a probability vector. In the continuous
case, where the payoff function is continuous, ZD-
VCS becomes a piece-wise function used to calculate
the probability of cooperation. Each element of the
strategy is a probability for cooperation in the cur-
rent round under the actions of the previous round,
and the probability is calculated by the payoff func-
tions of the platform and ISP. The action of the plat-
form or the ISP in each iteration is calculated by its
strategy. Furthermore, we propose an extortion strat-
egy to control the ratio of the expected utilities be-
tween the platform and the ISP. Our main contribu-
tions are summarized as follows.

1) We formulate the interactions between the
platform and ISP as an iterated game and verify that
the game exists an equilibrium in each iteration.

2) To help the platform establish unilaterally con-
trol, we propose a ZD-VCS strategy and analyze it in
both discrete and continuous models. Furthermore,
we study extortion strategy, which enforces an extor-
tion relationship between the platform’s and ISP’s ex-
pected utility.

3) We implement the ZD-VCS strategy with real
trace driven simulations. By setting proper parame-
ters for the to-be-adopted ZD-VCS, experimental re-
sults show that the platform can control social wel-
fare to achieve a high and stable value, and a ratio
between the platform’s and ISP’s expected utilities.

This paper is organized as follows. In Section 2,
we survey the related work. Section 3 presents the
preliminary of the Zero-determinant strategy. Section
4 discusses the game between crowdsensing platform
and ISP, and analyzes the game by Markov Decision
Model. Section 5 discusses the ZD-VCS strategy in
the discrete and continuous model. Section 6 evalu-
ates the performance of the ZD-VCS strategy. The
last section draws conclusions and presents our fu-
ture work.

2 Related Work

We briefly review related work on vehicular
crowdsensing, mobile crowdsensing game, and zero-
determinant strategy.

Vehicular Crowdsensing. There are many applica-
tions under vehicular crowdsensing. Pu et al.24 pro-
posed Chimera, which is an energy-efficient and dead-
line-aware hybrid edge computing framework for ve-
hicular crowdsensing applications. Morselli et al.[2%]
developed a framework for analyzing multidimension-
al stochastic sampling in vehicular crowdsensing,
where samples are gathered from sensors on vehicles.
This work is important for different kinds of applica-
tions based on environmental monitoring via IoT and
vehicular communications. Campioni et all® investi-
gated the recruitment problems for vehicular crowd-
sensing and proposed several heuristics that outper-
form existing algorithms and obtain near optimal so-
lutions.

Mobile Crowdsensing Game. Mobile crowdsensing
(MCS) game include repeated (iterated) and static
game. Some problems in mobile crowdsensing can be
formulated as games, which inspires researchers an ef-
ficient way to solve them by using game theory. The
work(2% introduced the repeated interactions between
the MCS server and independent vehicles in a dynam-
ic network as a dynamic vehicular crowdsensing
game. A Q-learning-based MCS payment strategy and
sensing strategy is proposed for the dynamic vehicu-
lar crowdsensing game. Di Stefano et all%) modeled
and quantified the evolutionary dynamics of human
sensing behaviors through the rounds of iterated so-
cial dilemmas, and they validated the methodology in
a vehicular crowdsensing scenario. The work[8l pre-
sented an incentive mechanism for vehicular crowd-
sensing in the context of autonomous vehicles, so as
to address the problem of sensing coverage of regions
located out of the AVs planned trajectories. However,
these studies focus on the interactions between task
requestor and workers (users, vehicles), neglecting the
role and action of ISP, and they applied the strategy
obtained from reinforcement learning20l or a greedy
method!8] to maximize their utility, which may fall
into local optimum.

Zero-Determinant — Strategy.  Zero-determinant
strategy can achieve different goals with different pa-
rameter settings. With zero-determinant strategy, the
player can control the total expected utilities of play-
ers as a stable value, unilaterally set the expected
utility of an opponent or set a ratio between his and
his opponent’s expected payoff, regardless of the op-



strategy also
evolves to extortion and generosity strategies26l. Press
et al.l3] proposed a zero-determinant strategy in 2 x 2
Iterated Prisoner’s Dilemma game, and then the zero-
determinant strategy is extended into the general
2 X 2 iterated game by other researchers and has
many applications?” 28], The work2% investigated the
power control problem in resource sharing among

ponent’s strategy. Zero-determinant

wireless users and network operators, and the net-
work operator applied zero-determinant strategies to
control social welfare. Previous work[!2l formulated
the interaction between a requestor and any workers
in mobile crowdsensing as an iterated game, intend-
ing to improve data quality in mobile crowdsensing
quality control. Hu et all'3] proposed a zero-determi-
nant strategy to address the malicious attack prob-
lem in crowdsourcing. A sequential zero-determinant
strategies!!® is applied for quality control in crowd-
sourcing. Zero-determinant strategy is also extended
for multi-player multi-action iterated games30. The
workB! introduced a more comprehensive class of au-
tocratic strategies, by extending the concept of zero-
determinant strategies to iterated games with more
diverse and generalized action spaces. In order to ad-
dress the challenge of dimensionality that arises when
the complexity of games escalates, the work[32l pre-
sented a novel mathematical framework for analyzing
strategic choices in repeated games with a varying
number of actions or players, as well as arbitrary con-
tinuation probabilities. Our goal in this paper is to
study unilaterally social welfare control in the iterat-
ed vehicular crowdsensing game.

3  Preliminary: Zero-Determinate Strategy

Zero-determinant strategy23 comprises a set of
strategies in general memory-one iterated game. With
different parameter settings, the zero-determinant
strategy can generate different strategies with differ-
ent goals such as controlling the total expected utili-
ties of players as a stable value, unilaterally control-
ling the other player’s payoff, or setting a ratio be-
tween its and the other player’s payoff.

We utilize a Markov chain to illustrate the zero-
determinant strategy. The iterated game starts with
an initial action, the actions of players in each itera-
tion are obtained from the strategy, and each player
performs an action and obtains a utility (reward) in
each round. The strategies of players decide a
stochastic process. The state of each player are repre-
sented by their union action of the previous round. It
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is proven that long-memory player in the iterated
game has no advantage over the short-memory
player23], since players in each iteration determine
their actions based on the outcome of the previous
round. This means the corresponding stochastic pro-
cess can be represented by a Markov chain, where the
state transitions are joint probabilities calculated
from the probabilistic strategies of players.

In the discrete case, the zero-determinant strate-
gy is a probability vector. In contrast, in the continu-
ous case (payoff function is continuous), the zero-de-
terminant strategy is a piece-wise function to calcu-
late the probability of cooperation. In the two cases,
each probability element is the probability of coopera-
tion in the current round under the actions of the pre-
vious round, and the probability is calculated by the
payoff functions in the game. A discrete case is taken
as an example, and both players have two actions:
{cooperation, defection} ( {c, d} for short). Their ac-
tion pairs are {cc, cd, dc, dd}. Each player has a
mixed strategy at each round, which denotes the
probabilities for the next cooperation under the ac-
tions in the previous round. Accordingly, we define
the mixed strategy of player X as p = (py, ps, D3, D4)
and  that of  his/her
q=(q1, G2, g3, qs). p; represents that X chooses co-
operation in the current round conditioned on the i-
th action pair of the previous round, and ¢, has a sim-

opponent Y as

ilar meaning. We assume the corresponding payoff
matrices of X and Y are P = (P, P,, Ps, P,) and
Q = (Qy, Qs, Qs, Qy), respectively. P, (or Q) is the
utility of X (or Y') corresponding to the i-th actions
pair. Let p be a zero-determinant strategy. If a play-
er adopts zero-determinant strategy p with different
settings, the player can unilaterally set the expected
utility of an opponent, control the total expected util-
ities of players as a stable value, or control a ratio be-
tween the player’s and his/her opponent’s expected
payoff, etc., regardless of the strategy of his/her oppo-
nent. That is, there is a linear relationship between
the expected payoff of two players. When player X
adopts zero-determinant strategy p in the iterated
game, p satisfies the following equation:

V_{¢(aﬂ+/3@i+v>+17
" olaP + BQ; + ),

where a, (3, v, ¢ are parameters, ¢ # 0, and p; could
be calculated by the parameters and payoff matrices.
No matter which strategy Y adopts, the expected
payoff of X and Y (U* and UY) satisfies:

i=1,2,
i=3, 4,
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alU* + BUY + = 0. (1)

For example, when o = 0, UY is controlled by X.
With different settings of parameters, equation (1)
generates various strategies. Such strategies, which
are referred to as zero-determinant strategies, are re-
alized if the process of the game can be formulated as
a one-step Markov process. The frequently-used nota-
tions are listed in Table 1.

Table 1. Description of Frequently-Used Notations
Notation Description
E ={ey, ..., en}Set of M candidate sensing tasks
R={ry, ..., N} Set of N candidate RSUs
Te/Tr Number of selected sensing tasks/RSUs
1%% Task-RSU weighted traffic matrix
X./ X, Vector of selected sensing tasks/RSUs
fel 1t Payoff function of platform/ISP
uy Jug, C Energy cost/traffic cost, operating cost
Me¢, M* Payoff matrix of platform and ISP
mg, m; Elements in M° and M"
D, q Mixed strategy of platform and ISP
v/ f Stationary vector/any vector
U®/U* /U Utility of platform/ISP/both
H Markov state transition matrix
a, B, Parameters to determine the ZD-VCS

strategy

X Extortion factor
r/ie Lowest number of RSU /sensing tasks
h*/h® Highest of RSU/sensing tasks

4  System Model

In this section, we introduce the mobile crowd-
sensing model and game formulation between the
platform and ISP.

4.1 Mobile Crowdsensing Model

Considering the general scenario of the mobile
crowdsensing shown in Fig.2, there are three partici-
pants: crowdsensing platform, mobile nodes, and wire-
less access point (AP). The platform is responsible for
publishing the crowdsensing tasks (such as monitor-
ing the temperatures in some areas’® 33) and assign-
ing the tasks to mobile nodes (e.g., vehicles, mobile
users). We denote the set of M sensing tasks as
E ={e,, ..., ex}. The crowdsensing platform could

/\ Wireless AP

Sensing Data O Mobile Node

Transmission [ Crowdsensing
Taskt
Mobile
Sensing

Fig.2. Mobile crowdsensing model.

belong to the governmentl? or a service platform
company (such as Uberl¥). The recruited mobile
nodes are responsible for sensing the data from sens-
ing tasks. The platform pays a constant operating
cost (denoted as C') to the recruited mobile nodes ev-
ery day. The mobile nodes sense data passively when
they are in the sensing areas, instead of actively go-
ing to the sensing areas. The incentive mechanism for
mobile nodes has been proposed in [14, 35, 36], but it
is out of the scope of our paper.

The wireless APs, such as Wi-Fi, femtocell®,
Smart Pole®, and other RSUs, are installed by the
ISP and provide communication for the mobile nodes,
which are denoted by R={r,, ..., rv}. These N
APs are responsible for uploading the sensing data
generated by the mobile nodes. Generally, compared
with a cell-tower in cellular systems, the coverage of
each AP is relatively small37l, such as the coverage of
RSU is about 100 — 500 meters. As a result, it is hard
to provide seamless roaming for vehiclesi38], therefore
the sensing data’s offloading can be delayed during its
lifetime through an access point that acts as a gate-
way. If there are no available APs, some sensing data
can be delayed instead of being immediately sent or
received over the AP. This kind of technology has
been extensively investigated% 40l. The distributions
of sensing tasks, mobile modes, and the available APs
have an influence on the quality of sensing data. Da-
ta quality can only be measured when the quantity of
sensing data is large enough. The quantity of sensing
data is closely related to sensing tasks, mobile modes,
and the available APs. When the mobile nodes sense
the data in the area of a sensing task, the sensing da-
ta are transmitted through an AP, and then the sens-
ing data can be uploaded successfully. When the wire-
less APs and crowdsensing tasks belong to different
operators, the interactions between the published
tasks and the available APs form a game. We formu-

©http://www.cisco.com/c/en/us/solutions/collateral /service-provider /visual-networking-index-vni/white_paper c11-

520862.html, Nov. 2024.
©@https://www.omniflow.io/smartpole, Nov. 2024
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Fig.3. Data analysis of the Roma temperature data in vehicular crowdsensing. (a) Sensing temperature. (b) Data quality.

late this game in Subsection 4.2.

Fig.3(a) is an example of a temperature monitor-
ing scenario in Rome, Italy by the real data trace®.
The points in Fig.3(a) are the temperature data
sensed by the vehicles, which is also called sensing da-
ta. The color of a point close to red refers to the place
with a higher temperature, and that close to blue
refers to the place with a lower temperature. On each
day, the platform publishes several tasks for sensing
the temperatures of some areas in Fig.1, and the ISP
powers on a portion of RSUs for uploading the sens-
ing data to save energy costs. When a vehicle passes
by an area that needs to be sensed, it will generate a
sensing data packet with temperature records. When
a vehicle leaves the current sensing area with sensing
data and moves into the communication range of a
working RSU, the sensing data packet is uploaded to
a remote cloud server via the RSU.

The traffic distribution of vehicles is different each
day, therefore different RSUs have different contribu-
tions to the data quality in crowdsensing. In order to
measure the importance of each RSU, when giving the
sensing tasks with priorities, we apply a matching al-
gorithm to obtain the selected important RSUs. Thus,
the number of RSUs can be used as the ISP’s action
in the game, which is formulated in the following Sub-
section 4.2. Fig.3(b) shows the trends of data quality
in different numbers of sensing tasks and RSUs.

4.2 Game Formulation

We denote the action of assigning tasks by the
platform as a vector X, with dimension M, where the

element is 0 or 1, indicating whether a candidate task
is selected or not. Let z, denote the number of select-
ed tasks, ie., z,= ||Xi||1 The action of operating
RSUs by ISP is denoted by a vector X, with dimen-
sion N, where the element is 0 or 1, indicating
whether the RSU is powered on or not. Let x, denote
the number of selected RSUs, z, = ||)Zr||1 We denote
W € RM*YN as a task-RSU weighted traffic matrix,
which element W;; is the number of sensing data up-
loaded by the RSU j for task i. Wo® = ()Z: . Xi)o
W | which refers to the traffic distribution of x, sens-
ing tasks under x, RSUs. The symbol o refers to the
Hadamard product, and the element W;;* also rep-
resents the traffic count of the ¢-th sensing task un-
der the j-th RSU.

We take an example to illustrate how to obtain
the matrix W= In the case of X, = (1,0, 1, 1)
and X, = (1,0, 1), that is, M =4, N =3, z, =3,
and z, = 2. Then,

1 01
ST 000
X, - X, = 101
1 01
When W is set as:

15 20 31

40 20 26

W=12 2 18]
18 30 16

W32 is calculated as:

©http://crawdad.org/roma/taxi/, Nov. 2024.
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15 0 31 datal®¥, which reflects the task and transmission di-

W2 — (X’eT Xi) oW = 0 00 versity. The term P; = W™ /> W™
fg 8 12 The utility of the vehicular crowdsensing plat-

W32 refers to the traffic distribution of three sensing
tasks under two RSUs.

We investigate the actions with different numbers
of tasks and RSUs in the iterated game, and simplify
each action with z, tasks or x, RSUs to only one
case. Thus, we use z, or x, to represent the unique
action, respectively. That is, z. and x, denote the
number of selected tasks and RSUs,
Generally, the sensing tasks and RSUs of different ar-
eas have different priorities, and top z. tasks and and
2, RSUs with higher priorities are selected. Bellow we
illustrate how to calculate the priorities.

In this paper, we use vehicular crowdsensing as a

respectively.

case study. We use the Taxi-Roma dataset® to ex-
plain how to determine the priority of crowdsensing
tasks. The dataset includes the GPS coordinates of
320 taxi drivers that working in the center of Rome.
These GPS coordinates are collected over 30 days.
The dataset is preprocessed by filtering out some out-
liers. The traces cover an area with a range of 66 km x
59 km, and we divide the area into 10 x 10 grids. We
assume that each RSU in the grid serves as a gate-
way and each grid is viewed as an area with a sens-
ing task. The priority of each sensing task and RSU
are calculated by the number of GPS coordinates in
each grid. The more GPS coordinates in a grid, the
higher priority of the each sensing task and RSU in
this grid.
4.2.1  Payoff of Platform

In our vehicular crowdsensing scenario, the plat-
form earns values from the quality of harvested sens-
ing data and the diversity of tasks, paying for the da-
ta transmission and recruitment of vehicles. We as-
sume the size of each sensing data packet is the
samelll. The data quality is defined as

Qalze, ) :Z (log(Wrs™ +1) — P,log Py),

i J

where <M, 1<j<N, the term of
Z log(Wz o + 1) reflects the growth rate of plat-
form s data quality decreases (diminishing return) as
the increment of sensing datal*Z
tion also reflects that the redundant sensing data can-
not contribute much to the data quality. We utilize

P,; to model the diversity of sensing

, and the log func-

entropy —PF;; log

form depends on the data quality of the sensing data,
payment of transmitting them and recruiting vehicles.
We formulate the payoff function of the platform as
the value of sensing data minus the costs of data
transmission, and the payoff function is represented
as

utxz W —C, (2)

where wu, is the benefit that per data quality could

fg(xm xr) =Uq X Qd(xm CU

bring, u, is the transmission price per data traffic and
the constant C' refers to the cost of recruiting vehi-
cles. Note that the platform hopes to publish more
tasks, so as to cover more areas with more sensing da-
ta and obtain more utility.

4.2.2  Payoff of ISP

Fig.3(b) shows the trend of the data quality with
the selected z. sensing tasks and z, RSUs by the real
data trace®. We notice that the data quality is in-
creased with more sensing tasks and RSUs, which de-
termines the platform’s income. To transmit more
sensing data, the ISP is required to power on more
RSUs, which causes more energy costs. The ISP earns
the traffic income of transmitting the sensing data,
and pays the energy costs of operations of RSUs and
data transmissions by RSUs. Thus, we formulate the
payoff function of ISP as the traffic income of sensing
data minus the energy costs on RSUs as follows

filze, z) = (u, X Zij Wi —zu,  (3)

where x, represents the number of RSUs powered on,
u, refers to the per cost of operating an RSU, and wu,
refers to the average energy cost™ to transmit per
sensing data.

From (2) and (3), we see that the platform’s cost
of uploading sensing data is wu, x Z W™, which is
also the income of the ISP. In (3), when the number
of sensing tasks reaches a certain level, the utility of
the traffic from the sensing data is greater than the
energy costs of RSUs, and thus the ISP is willing to
power on more RSUs.

4.2.3 Discussion

Fig.4 is an example of two actions in the game.
Like prisoner’s dilemma, cooperation denotes the
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ISP (RSU) Cooperation Defection
Platform (Task) {Tlv T2, T3, T4} {rh T4}
Cooperation {ej, ey, €3, €4} (30, 21) (20, 28) | Pi(1—q1) (30, 21) (20, 28)
Defection {ey, es} (18, 10) (16, 22) (18, 10) | (16, 22)

Previous Round

Current Round

Fig.4. Probability transfer process of previous round to current round.

highest number of sensing tasks or RSUs, and defec-
tion refers to the lowest. ., z, € {cooperation,
defection}. This example sets z, =z, =4 when the
platform and ISP cooperate and xz, =2, =2 when
they defect. The value pair in Fig.4 is the utilities of
the platform and ISP. In each iteration, they move on
to the next round based on the actions generated by
their probabilistic strategies.

4.3 Nash Equilibrium

We analyze the equilibrium of the game between
the platform and ISP in each iteration. Proofs of all
theorems are presented in the supplementary file©.

Theorem 1. The game between the crowdsensing
platform and ISP exists equilibrium.

Theorem 2. The equilibrium point is unique in the
game between the crowdsensing platform and ISP.

Next, we take Fig.4 as an example to illustrate
the equilibrium point. We can obtain equilibrium
points from a solver®. In Fig.4, from the platform’s
view, no matter what the ISP’s action is, its best ac-
tion is cooperation (z,=4), and similarly, the ISP’s
best action is defection (z, = 2). Thus, this game has
an equilibrium of (20, 28), where the social welfare is
20 4 28, which is certainly less than the case when
both cooperate. Generally, an ISP does not know how
many sensing tasks the platform will publish, there-
fore a selfish ISP tends to power on fewer RSUs in
each game round, resulting in lower social welfare.
Thus, an equilibrium point is not the optimal solu-
tion to maximize social welfare.

4.4 MDP in the Iterated Game

The iterated game is viewed as a Markov decision
process (MDP)45]. For each player, an MDP is mod-
eled as follows.

1) Action Space. The action space of the platform

and ISP are denoted as A, = {I°, h°}, (z.,€A,) and
A, = {lI', '}, (z.€A,) respectively. The platform
chooses the action of assigning the highest or the low-
est number of tasks, denoted as h® and [° respectively.
The ISP determines the action on providing the high-
est or the lowest number of RSUs, and denoted as h*
and [ respectively.

2) State Space. The state space is the action pairs
in the previous round, and denoted as S = {(z., z,)} =
{(h°h7), (hI"), (I°h7), (I°1)}, s, € S.

3) Reward. R, or R, is the immediate reward re-
ceived after transitioning from state s to state s’ for
platform and ISP, due to action a. We define the
payoff matrices of the platform and ISP in each round
as M° and M", respectively. Me=(f,(he, h"), f.(h,
), f.(l5, b)), fo(l, )", and Mr=(f.(h, h"), fi(h,
1), flle, ), FlE, )T

4)  State Transition Probabilities. P,(s, s')=
Pr(s;;y =8| s =s, a, =a) is the probability that
action «a in state s at the round ¢ will lead to state s’
at the ¢t + 1 round.

A policy function 7 is a (potentially probabilistic)
mapping from state space S to action space A. Once
an MDP is combined with a policy, a Markov Chain
forms. Since the action chosen in state s is complete-
ly determined by 7(s), the state transition probabili-
ty Pr(sy,=8"|s=s, a,=a) can reduce to
Pr(s,.1=5"| s,=s) (a Markov transition matrix).

Briefly speaking, in the Markov Decision Process,
a player will repeatedly observe the current state s, of
the environment and take action from all available ac-
tions in this state. Then, the state will transfer to
Si41, and the agent will get a reward R, from the en-
vironment for its action.

In the iterated game, due to RSU’s actions are
variable, the social welfare could change sometimes
high and sometimes low, which is unstable. Thus, we
alm to control social welfare at a stable possible maxi-
mal value, and we model the problem of social wel-

©https://github.com/gujiqing/supplementary-file/blob/main/JCST-Template-%20submit %20supplementary%20file. pdf, Nov.

2024.
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fare control as follows.

Problem 1 (Social Welfare Control). The social
welfare is required to be controlled at a stable and
mazimal possible value, which indicates the social wel-
fare is showing little changes and maintains around a
mazimal possible value with increase of the game iter-
ation.

mazr Uy = aU® + BU* 4
s.t. U+ U = —, (4)

where a and (8 refer to the weights of expected utili-
ties U and U, respectively, and v is a variable in a
range.

The constraint in (4) refers to the social welfare is
a constant. The objective function and the constraint
determine that the goal is to maintain social welfare
at a table and possible maximal value.

5 Social Welfare Control with ZD-VCS

In this section, we analyze the iterated game with
the aim of social welfare control by zero-determinant
strategy, and then we discuss the discrete and contin-
uous strategies.

5.1 Game Analysis: Zero-Determinant
Strategy

We aim to maximize the social welfare of the iter-
ated game with a stable value, and the social welfare
is the sum of the expected payoff of the platform and
ISP. To achieve this goal, we take advantage of the
zero-determinant strategy in game theory and pro-
pose a scheme named Zero-Determinant strategy for
Vehicular CrowdSensing platform (ZD-VCS) to con-
trol social welfare. This strategy is a vector of condi-
tional probabilities. Each element in the vector is a
probability for cooperation in the current round un-
der the actions of the previous round, and the proba-
bility is calculated by the payoff functions of the plat-
form and ISP. Fig.4 shows the transfer process of the
previous round to the current round, p,(1 — ¢,) is the
probability from one state to another state. To sim-
plify this game, we consider the discrete strategy,
where the platform and ISP adopt either an extreme-
ly amicable or vicious action. While a continuous one
refers to any integer action as long as it is in the cor-
responding continuous strategy space. It is essential
to explore the integer actions because a larger action
space may lead to higher social welfare.

5.2 ZD-VCS Strategy in the Discrete Model

In the discrete model, the player’s action is pri-
vate at each round; thus, there are four outcomes for
each game iteration. We label the four outcomes of
each iteration as 1, 2, 3 and 4, respectively, corre-
sponding to the four states. We assume that the two
players (platform and ISP) only have the state memo-
ry of the previous round. In the game, both players
have mixed strategies at each round, denoting the co-
operation probabilities under the four possible states
of outcomes in the previous round. Accordingly, we
define the mixed strategy of the platform as
P = (p1, P2, Ps, Pa), which is the zero-determinant
strategy of the platform. The mixed strategy of the
ISP is g = (a1, ¢, 4, ¢u)- Here, py, ps, ps, py and
q1, (2, q3,qs are the probabilities of choosing h® or h'
in the current round when the outcome of the previ-
ous round is x.x, = (h*h*, hel", I°h7, I°I"). Fig.4 shows
the probability transfer process of the previous round’
s action to the current round’s action. In the current
round, we denote the possibilities of the four poten-
tial states of outcomes as v = (vy, vy, v3, v,)T, where
Z; v; = 1. Thus, the expected payoffs of the plat-
form and ISP are U°=v"M° and U =v"M", re-
spectively. Note that a character in bold in this pa-
per refers to a vector or a matrix.

Based on the definitions of p and q, we denote
the Markov state transition matrix as H, and the

stationary vector as v,. v?H = v, where

pa pi(l—q) (I—=p)a (1—=p)(1—q)
H— Pt P21 =) (1—=p)g (1—p)(1—q)

psas ps(1—qs) (1—ps)gs (1—ps)(1—gqs) )’

pits (1 —q) (T—pia (1 —p)(1—q)

each element in H represents the transition probabili-
ty from one state to another state. For example, the
state p,(1 — ¢,) refers to the transition probability of
the game from the state h°h" to the state h°l".

Inspired by [23], we suppose H' = H — I, then
vTH’ = 0. According to Cramer’s rule, we can obtain
Adj(H')H' = det(H')I =0, where Adj(H') denotes
the adjugate matrix of H'. Then, we obtain that ev-
ery row of Adj(H') is proportional to v'. Thus, the
dot product of any vector f with the stationary vec-
tor v, is calculated as follows,
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pa—1 p—1 ¢—1 f
P2gs Pa—1 q2 2
P3q3 b3 G—1 fs
Paqy P4 q4 Jfa

(5)

It is clear that the second column of (5) consists

v - f=D(p, q, f)=det

of the elements of p, and can be determined by the
platform alone, which is denoted as p = (p, — 1, p, — 1,
ps, ps)T. Hence, when f =aM®+ M+ 1, where
a and [ are weight factors, we have oI f =
vl (aM°+ SM"+~1) = aU® + U™ + v, where v is
a scalar, U® and U" are the expected utility in the fi-
Based on (5), we also have
aU®+ U+~ = D(p,q,aM* + SM" + ~+1). Namely,
when p=¢(aM*+ M +~1)(¢ #0), the
sponding matrix’s second column is proportional to

nal stable state.

corre-

the fourth column. According to the properties of the
matrix determinant, we have

aU®+ BU" +~ = 0. (6)

Equation (6) indicates the expected payoffs have a
liner relationship, which is brought by the
p = dp(aM®+ BM* + ~1)(¢ # 0). Note that p is de-
termined by p, and p=(p,—1, p,—1, ps, ps)".
Therefore, the strategy p adopted by the platform is
known as a ZD-VCS strategy. We define the weight-
ed social welfare of this game as follows:

Uqu = OéUe + BUr = —7. (7)

The above analysis implies that when the plat-
form adopts ZD-VCS strategy, the platform has uni-
lateral control over the social welfare at a desired val-
ue (Uy = —7v) no matter what strategy the ISP
adopts. This provides the platform a powerful tool to
maintain the stability of total utility. The maximal
and stable social welfare that the platform maintains
regardless of the ISP’s strategy can be achieved by
solving the following problem:

max Ua‘ll == Oer(pa q) + ﬁUr(p7 q)7 vq7
; osps<l,
S aU®+ pU" +~=0.

The terms U¢(p,q) and U*(p,q) refer to the ex-
pected payoffs of the platform and ISP, which are de-
termined by p and q. Accordingly, it is equivalent to
solving the following problem:

J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

min vy
osp<l,

s.t. p = dlaM + M + 1), ®)
¢ #0.

Next, we discuss how to calculate each element of
p. Specifically, we divide the discussion by ¢ > 0 and
¢ < 0, respectively. ¢ is a scaling coefficient that con-
trols the convergence rate to the stable state.

When ¢ is positive, we put the constraint p > 0
into the second constraint of (8), and get

Yoin = max(r;) Vi€ {1, 2, 3, 4},
{ —ozm;? - Bmi - 1/¢7 i = ]-7 27 (9)
T, —

—am$ — fm}, 1=3, 4.

Correspondingly, we put the constraint p <1 in-
to the second constraint of (8) and obtain

Vmax = min(T]‘) VJ € {5, 6, 7, 8},
—am{ — fm}, i=1, 2,
Ti = Tita = o r
—am; — fm;+1/¢

where¢ is a positive value that normalizes p in the
range [0, 1]. Note that + is feasible only when it satis-
fies Vi < Vi

Similarly, when ¢ is negative and normalizes p in
the range [0, 1]. Considering the constraint p > 0, we
have

IYmin - max(Ti)? vj S {57 67 7? 8} (10)

While when considering p <1, we have .. =
min(7;), Vi € {1, 2, 3, 4}. Therefore, ~ is feasible
when Y, < Y, that is max(7;) < min(r), Vi €
{1, 2, 3, 4}, Vj € {5, 6, 7, 8}.

According to (9) and (10), when + reaches ~yu,
each element of p is represented as follows:

_ (b(am(z\—i_/gmz—’—’}/mm)"‘rl, 1= 1, 2, (11)
b= d)(()ém? + 5m£ + ’Ymin), 1= 3, 4.

Thus, the ZD-VCS strategy p of platform meets
P =o(aM + SM" +~1)(¢ #0).

We take the payoff matrices in Fig.4 as an exam-
ple, here M°= (m$, ms, ms, mg) = (30, 20, 18, 16)
and M™ = (m}, mj, ms, my) = (21, 28, 10, 22). If we
set ¢ = —0.05 and o = =1, then ~,;, = (=51, —48,
—928 — 20, —38—20) = —48, and . = (=51 + 20,
—48 4+ 20, —28, —38) = —28, therefore 7, < Yy 1S
feasible when ¢ = —0.05. Note that ¢ is set to guar-
antee each element in p is in the range of [0, 1]. Ac-
cording to (11), p, = —0.05(51 — 48) + 1 = 0.85, p, =
—0.05(48 —48) +1 =10, p; = —0.05(28 — 48) = 1, and
ps = —0.05(38 — 48) = 0.5. Thus, the ZD-VCS strate-
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gy is represented as p = (0.85, 0, 1, 0.5). When p is
adopted by the platform in the iterated game, the so-
cial welfare can achieve to a stable and maximal sta-
ble value —~,;, = 48.

Continuous

5.3 ZD-VCS Strategy in the

Model

In this subsection, we further analyze the social
welfare control problem in the continuous case. Then,
we discuss how to obtain the ZD-VCS strategy in the
continuous case when we aim to maintain the maxi-
mal stable total expected payoff.

To further analyze the social welfare control prob-
lem, we consider the ZD-VCS strategy in the continu-
ous case. Based on the number of sensing tasks z,
and the candidate available RSUs z,, we fit the con-
tinuous payoff functions F,(z., z,) and Fi(x., z,) for
the platform and ISP, respectively, where the fixed z,
and z, correspond to the fixed actions. We assume
that both the platform and ISP choose their actions
according to the outcome of the previous round. Simi-
larly, we define the mixed strategy of the platform
p(x., x!, z,) as the conditional probability to choose
the action z, at the current round when the state at
the previous round is z/x/, where 2/, z, € [I°, h°] and
al, z, € [I', h']. Since z, can be any value in the con-
tinuous domain in mathematical analysis, we have
flh p(a!, ¢, z.)dz, = 1. In addition, the ISP’s mixed
strategy ¢(a, x!, x,) also refers to the conditional
probability that the ISP adopts action x, when the
state at the previous round is z/z/. The mixed strate-
gy q(x!, !, x,) satisfies flh q(zl, =, x)dz, = 1.

Next, we denote the joint probability for the plat-
form and ISP to choose z, and z, in each round by
v(z,, z,). Considering the payoff functions F,(z,, z,)
and F(x., x,), we obtain the expected utility of the
platform and the ISP at the current round as: U=
flh flh 0(Ze, ) Fy(20, x,)dzdz,, and Ur:fl[h‘ flfbvv(xw
x,)F,(z,, x,)dz.dz, respectively. Furthermore, similar
to the state transition matrix H in the discrete mod-
el, we denote a transition function H(x., x!, z., z.),
indicating the state transition probability from the
state z/2/ of the previous round to the state z.x, of
thecurrentround,whichisexpressedas H (z/, z!, x,, x,) =
p(al, ©, x.)q(z., =/, x,). Then, the relationship of the
state probabilities at two sequential rounds is denot-
ed as v(a), o)H (!, ©, x., x,) = v(x,, ).

We denote the stationary state as v*(z,, z,). The
iterated game reaches a stable state when v(a/, z/) =

T

v(x,, x,) = v*(x., z,). Thus, we have the following
theorem.

Theorem 3. When the platform’s strategy p(z., x,
%) satisfiesp(zl, ., h) = d(aF,(xe, x;) + BF(xe, @)+
v)(¢ #0), the platform’s expected utility U and the
ISP’s expected utility U satisfy the following relation-
ship: aU® + U + v = 0, where the function p(z., z!,
he) is defined as

if al < h,
if a/ =h°.

I plag, @, ),
Pl o W) = { plal, al, b))~ 1,

Next, we discuss how to obtain the function
p(x), x!, h°), which is the continuous ZD-VCS.

The weighted social welfare is defined as
Uy = aU® + U = —~. According to Theorem 3, the
platform’s strategy p(z/, z/, h°) is the only factor af-
fecting U,,, which is viewed as the ZD-VCS strategy
in the continuous case. Specifically, the platform can
solve the following optimization problem to achieve
unilateral control of social welfare:

max Uall = aUe(p7 q) + BUl(p> q)7 Vq7
. 0<p<1, (12)
i alU* + BU" +~ = 0.

To simply illustrate the following discussion, we
denote T'(z,, x,) = aF,(z., z.)+ F(x., z,). Then (12)
is converted into

min 7y
0 <p(a, a, b)) <1,

s.t. ﬁ($;7 z;, he) = o(T'(z., xr) + '7)7
¢ #0.

In order to obtain the function p(z, z!, h°), we
divide the discussion by ¢ > 0 and ¢ < 0, respectively.

When ¢ is positive and the constraint p > 0, we
obtain

Ymin = max(r(x), xl)) Val €[l b, Vol € [I', h'],

( / /) _ _T(‘Téa .ZL’L), if I; < b,
o B = (@, o) = 1/¢, i o = k.

While considering the constraint condition p < 1,
we obtain

Ve = min(r(x, 7)), VIl €[, b, V! € [I', b,

( " //) _ 1/¢ - T(x:;/7 I’i/)7 if I';/ < hn,
T\ Xy Ty ) = *T(T” .’L'N), if ZCg:he.

e T

v is feasible when 7, < Y. That is max(7(z,
x!)) < min(r(2?, ), V., z € [I°, h¥],Val, z! € [I', h'].

Since ¢ is a positive value that normalizes p in the
range [0, 1], we get the minimum value of v:
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Yo =max(=T(a}, o), Vol €[l’, ), val e[l b,
(13)

When ¢ is negative, considering the constraint
p>0, we obtain . =min(7(z), z)), Vo' €[lc, h°],
Vol e[l', h']. When considering p<1, we have 7,,=
max(7(x!, ), Ya! €[l°, h°],Va’ e[l", i']. Then, v is

feasible only when =i, <7mw, i-€., max(r(z!, z/))<
min(7(x), z!)), that is max(—7'(z/, z/)) < min(—T'(x/,
xl)), Val z’ell, h°],Val, o’ e[l", h]. Thus, we have
the following result:

Vi = max(7(z?, z)) = max(=T (a7, z!)),

Va! = heVal € [, B,

Therefore, according to (13) and (14), the plat-
form’s continuous ZD-VCS strategy is computed as

(14)

follows:

(b(T(l’;, xi)+7min)a
(b(T(I:, J";)_F’Ymin) + 1,

if ol <h,
if /=h.
(15)

mammp{

We illustrate how to obtain the wise-function by a
simple example. We set ¢ <0, a =3 =1, z, € [1, 10],
(he=10) and =, € [1, 10], then F,(x,, z.) = 6z, — z,,
and Fi(z., z,) = 3z, — 6z,. According to the previous
discussion, we obtain T(z., z,) = F(z., =.) + Fi(.,

x,) = 2z,. In the case of ¢ < 0, v, = max(r(z/, z/)) =
max(—=T(z!, 2”)) = max(—2z"), where z! = h° =10,
therefore 7, = max(—2 x 10) = —20. And .. =
min(7(z), z!)) = max(—2z)), where 1z, € [1, 10],

therefore . = —2 x 1 = —2. Thus, Yun < Ymax- AC-
cording to (15), the ZD-VCS strategy p(x/, x/, h°) in
the continuous case is represented as follows:

é(22.—20), if 2! € [1,10),

p@m%J”:{¢@%—%H1—L if =10,

Note that we need to choose proper ¢ < 0 to sat-
isfy 0<p(zl, 2/, h*) < 1. From the equation 0 <
#(2z! — 20) < 1,wecanobtain(2z! — 20)~! < ¢ < 0, 1(<
x! < 10). Therefore, the parameter ¢ is chosen as
(22, —20)"' < ¢ <0 to guarantee 0 < p(zl, x/, h°)
< 1. In the iterated game, when the platform adopts
the pre-calculated p(z/, 2/, h°) in the continuous case,
the social welfare can be unilaterally controlled at a
maximal and stable value —~,;, =20 in the long
term.

In sum, in the continuous case, the ZD-VCS strat-
egy adopted by the platform is a piece-wise function,
as shown in (15). No matter what the strategy of ISP
is, the social welfare can be unilaterally maintained at
the value —v,,.
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5.4 Extension: Extortion Strategy

Based on the equation (6), a special kind of zero-
determinant strategy, extortion strategy, is derived.
Below we discuss how the extortion strategy is de-
rived, and how it is used in the iterated vehicular
crowdsensing game.

When the platform is in a dominant role and
wants to control its and its opponent’s payoffs at a
predefined ratio in some scenarios, for the purpose of
unilateral control, we can help the platform to extor-
tionately control the payoff of the opponent at a low
value. Thus, we propose an extortion strategy in a
discrete model for the platform, which is a kind of ze-
ro-determinant strategy with special parameter set-
tings, and the details are as follows.

In the case that the platform attempts to enforce
an extortionate share of payoffs larger than the mutu-
al noncooperation value. Based on (6), when p =
¢((‘Z\4e - mil) - X(Mr - mzl))v a=¢, and = —px
(¢ #0), that is y = _é, v = ¢(xm, —mS). Then the
linear relationship betv&%en the expected payoff of the
platform and that of the ISP is obtained, and
(U° —mg) = x(U" —m}), where x > 1 is called the ex-
tortion ratio and ¢ is employed to guarantee that
each element in p is at the range of [0, 1]. The specif-
ic extortion strategy of the platform can be obtained
by solving the following equations:

pr =14 ¢((m§ —mj) — x(my —mj)),
p2 =1+ ¢((m5 —mg) — x(mj —m})),
ps = o((ms — mg) — x(m —my)),

ps = 0.

Obviously, the feasible solution exists and is de-
termined by any y and a sufficiently small ¢. Specifi-
cally, to ensure that each element of p belongs to
[0, 1], ¢ should satisfy: ¢ € (0, (51] when ¢ > 0, and
¢ € [ps, 0) when ¢ <0, where ¢, = min{m,, T, ™5},
By = max{m,, m, m3}. For convenience, we set

—1
T s — ) — x(my — )
B —1
27 s — ms) — x(my — )
1
T3 =

(m5 —ms) — x(mj —mj)

When ISP always takes the action of defection,
that is ¢ = (0, 0, 0, 0), the minimum utility of ISP is
my. While when ISP unconditionally cooperates, that
is ¢g=(1, 1, 1, 1). According to (5), the maximum
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utility of ISP can be calculated as

D(p, q, M")
D(p, q, 1)

Furthermore, when y = 1, that means there is no
extortion of the platform to ISP, and thus the maxi-
mum utility of the platform can be obtained by (5),
and be calculated as follows:

min U'g=,1,1,1) =

D(p, q, M")
D(p, q, 1)

max U'lg=i, 1,1, 1), 21 =

6 Performance Evaluation

In this section, we first introduce the experimen-
tal setup. Then, we present the experimental results.

6.1 Experimental Setup

We perform experiments on the Taxi-Roma
dataset®. The dataset includes the GPS coordinates
of 320 taxi drivers that work in the center of Rome.
These GPS coordinates are collected over 30 days.
The dataset is preprocessed by filtering out some out-
liers. We implement the proposed strategy with real
trace-driven simulations. The communication in the
physical layer is assumed to be stable and reliablel24.
The traces cover an area with a range of 66 km x 59 km,
and we divide the area into 10 x 10 grids. We as-
sume each RSU in the grid serves as a gateway and
each grid is viewed as an area with a sensing task. We
calculate the priority of the sensing tasks and RSUs
by the number of GPS coordinates in the grid, and
both top z, sensing tasks and top x, RSUs are select-
ed by their priorities. From the analysis of traces, we
obtain the average task-RSU weighted traffic matrix.
Each element in the matrix is the number of sensing
data uploaded to an RSU for a task. In the discrete
model, we set the lowest and the highest numbers of
sensing tasks and RSUs are 2 and 8, respectively.
That is [°=1["= 2, and h® = h" = 8. The parameters
are set as wuq =30, u, =1, u, =0.01, v, = 50, and
C = 500. We discuss how to implement the ZD-VCS
strategy in Subsection 6.5 when task-RSU weighted
traffic matrix varies on each day. We implement the
ZD-VCS strategy based schemes in Python 3.8. All
experiments were conducted on a computer with In-

tel Core i7-6700 CPU and 8G RAM.

6.2 Comparison Methods

We describe the following baselines for comparison.

1) ALLC!2 1429 Tt is an all cooperation strategy
p=(1, 1, 1, 1), which means whatever the opponent
player has done in the previous round, and it always
chooses cooperation.

2) ALLDI2 29 Tt is an all defection strategy
p=(0, 0, 0, 0), which means whatever the opponent
player has done in the previous round, and it always
chooses defection.

3) Randoml'2 4 29 Tt is an all-random strategy,
that is p = (0.5, 0.5, 0.5, 0.5), which means whatev-
er the opponent player has done in the previous
round, it randomly chooses cooperation.

4) TFT (tit-for-tat)l46: 47 A TFT player cooper-
ates in the first round and then does whatever the op-
ponent player has done in the previous round.

5) Evolved': 23, Tt is an evolved strategy that an
evolutionary  player  starts  his/her  strategy
q=1(0,0, 0, 0), and his/her opponent adopts ZD-
VCS strategy in the iterated games. g is updated in
each iteration and will be stable at the end of the it-
erations. The process of calculating evolved strategy
is shown in Algorithm 2.

6) Pavlov (win-stay-lose-shift strategy)47- 4. If a
Pavlov player receives a higher payoff, it will repeat
the same action in the next round, which is “win-
stay”. If a Pavlov player receives a lower payoff, it
will switch to the opposite action, which is “lose-
shift”.

6.3 Performance Evaluation on Social
Welfare Control

In this subsection, we evaluate the performance of
the proposed ZD-VCS on social welfare control in the
discrete and continuous model.

6.3.1 Experiments in the Discrete Model

Algorithms 1 and 2 together are the processes of
calculating the utilities of the platform and ISP in the
experiment. Considering the general definition of so-
cial welfare in (7), we set a« = 8 =1 in social welfare
control. In order to evaluate the effectiveness of our
proposed scheme, we compare the ZD-VCS strategy
with five other classical strategies that might be
adopted by the platform. We display the results when
the platform adopts the proposed ZD-VCS strategy,
all cooperation (p= (1, 1, 1, 1), denoted as ALLC),
all defection (p = (0, 0, 0, 0), denoted as ALLD),
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and random (p = (0.5, 0.5, 0.5, 0.5), denoted as Ran-
dom) strategies while the ISP adopts three strategies,
i.e.,, ALLC, ALLD, and Random. Furthermore, we al-
so adopt an evolved strategy with ISP. We view ISP
as an evolutionary player that adopts an evolved
strategy. As shown in Fig.5, when the platform
adopts the proposed ZD-VCS strategy, whatever the
ISP adopts, the social welfare can maintain stable and
achieve its possible maximal value. However, when
the platform takes the other strategies, the social wel-
fare is determined by the strategies of both the plat-
form and the ISP, which indicates that the platform
does not dominate the control over the social welfare.
In Fig.5(b), when the platform adopts ALLC strate-
gy, and the ISP adopts ALLC or Random strategy,
the social welfare keeps stable in the long term. But,
the platform adopted ALLC cannot control social wel-
fare when ISP adopts different strategies.
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Input: p, q, x,, previous state g/ z/, M*, number of iter-
ations n

Output: U°, 2/
for i =1;i < n;i+ + do
if random() < p(h°|x.2!) : 2. = h%
else: ¢, = [°;
T, = T
Uy = M*(z., x,);
return (Z?:l Us)/n, 95;;

S Ot W N =

Fig.6 shows the comparison results between the ZD-
VCS strategy and two other classical strategies, i.e.,
TFTH6 and Pavlovi48l. The experiment starts from a
random state of the game. It is obvious that the plat-
form adopts the ZD-VCS strategy and ISP takes ei-
ther TFT or Pavlov, and the social welfare is approxi-
mately the same and is stable. However, when the
platform changes its strategy to any other strategies,
the social welfare is not dominated by the platform
and is affected by the strategies of both players.

Algorithm 1. ZD-VCS Strategy in Discrete Model
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Algorithm 2. Evolved Strategy by ISP
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Fig.5. Social welfare with different strategy pairs (Platform vs ISP) in the discrete model. (a) ZD-VCS vs ALLC/ALLD /Evolved/
Random. (b) ALLC vs ALLC/ALLD/Random. (c¢) ALLD vs ALLC/ALLD/Random. (d) Random vs ALLC/ALLD/ Random.
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Fig.6. Social welfare with different strategy pairs (Platform vs
ISP) in the discrete model. (a) ZD-VCS vs TFT /Pavlov. (b) TFT
vs TFT/Pavlov. (c) Pavlov vs TFT/Pavlov.
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Fig.7. Utility of Platform and ISP when platform adopts the
ZD-VCS strategy, and ISP adopts ALLC/ALLD/Evolved/Ran-
dom strategy in the discrete model. (a) Utility of platform. (b)
Utility of ISP.

5 U= D(p,q,M*)/D(p,q,1)5
6 Ur = M(z,, 7,);
7 for cach element g €q do
oU'(q)
¢=q+0
8 9q;
9 return (O_i— U;)/”, q; '73./;

Input: p, q; Te previous state 2/, 2/, M, learning rate 6,
number of iterations n

Output: U°, q, z/

for i =1;i <n;i++ do
if random() < q(h*|@lal) : @, = '
else: z, =[';

W N =

=2

Fig.7 and Fig.8 show the respective utilities of the
platform and ISP. The results are shown in Fig.7
when the platform adopts the ZD-VCS strategy, and
the ISP takes Evolved, ALLC, ALLD, and Random
strategies. Fig.7(a) and Fig.7(b) show the average
utility for the platform and ISP of all current itera-
tions, respectively. From the results, we can see that
the utilities of the platform and ISP are becoming sta-
ble as the number of iterations increases. The corre-
sponding total utility (i.e., social welfare) is shown in
Fig.5(a). Similarly, Fig.8 shows the results when the
platform adopts ZD-VCS strategy and ISP takes
TFT, and Pavlov strategies. Fig.8(a) and Fig.8(b)
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Fig.8. Utility of Platform and ISP when platform adopts the ZD-VCS strategy, and ISP adopts TFT/Pavlov strategy in the dis-
crete model. (a) Utility of platform. (b) Utility of ISP.

Fig.6(a). From Fig.7 and Fig.8, we can find the utili-
ty of the platform in a stable state is larger than that
of the ISP in all strategy pairs.

show the mean utility for the platform and ISP of all
current iterations, respectively. From the results, we
can find that the utilities of the platform and ISP
gradually become stable as the number of iterations 6.3.2 Experiments in the Continuous Model
increases. Its corresponding total utility is shown in
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Fig.9. Social welfare with different strategy pairs (platform vs ISP) in the continuous model. (a) ZD-VCS vs ALLC/ALLD/Ran-
dom. (b) ALLC vs ALLC/ALLD/Random. (¢) ALLD vs ALLC/ALLD/Random. (d) Random vs ALLC/ALLD/Random.
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Fig.10. Social welfare with different strategy pairs (Platform vs
ISP) in the continuous model. (a) ZD-VCS vs TFT/Pavlov. (b)
TFT vs TFT/Pavlov. (c) Pavlov vs TFT/ Pavlov.

o+

In the continuous model, we adopt continuous
strategies for the platform and ISP. We assume that
both the number of sensing tasks and available RSUs
are selected from [2, 8]. We first compare the social
welfare when the platform adopt the ZD-VCS strate-

gy and the normal strategies, such as the ALLC strat-
egy p(x), z., h°) =1, the ALLD strategy p(z., =/, h*) =
0, and the Random strategy p(z., «!, h*) = 1/(h* —[°).
As shown in Fig.9(a), when the platform adopts ZD-
VCS strategy, the social welfare becomes stable re-
gardless of the ISP’s strategy (the ALLC strategy
q(z., ', h*) =1, the ALLD strategy ¢(/, z!, h*) =0,
or the Random strategy q(z!, x/, h*) =1/(h" —1")).
However, in Fig.9(b), Fig.9(c), and Fig.9(d), when the
platform adopts ALLC, ALLD, and Random strate-
gies, it cannot control the social welfare.

Fig.10(a) shows that social welfare stays stable
when the platform adopts ZD-VCS strategy and ISP
adopts TFT and Pavlov strategies. When the plat-
form adopts TFT and Pavlov strategies, it cannot
control social welfare in Fig.10(b) and Fig.10(c). In
Fig.9(a) and Fig.10(a), the stable social welfare is
slightly higher than that in the discrete model.
Fig.11(a) and Fig.11(b) show the utility of the plat-
form. When it adopts ZD-VCS strategy and ISP
adopts ALLC, ALLD, and Random strategy, respec-
tively, and the platform’s utility is higher than that of
the ISP on the whole. Fig.12(a) and Fig.12(b) show
the utility of the platform adopts ZD-VCS strategy
and ISP adopts TFT and Pavlov strategies, respec-
tively. Similarly, the platform’s utility is higher than

that of the ISP.
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Fig.12. Utility of Platform and ISP when platform adopts the ZD-VCS strategy, and ISP adopts TFT/Pavlov strategy in the con-
tinuous model. (a) Utility of platform. (b) Utility of ISP.
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Fig.13. Utility and social welfare when the platform adopts an extortion strategy in the discrete model. (a) Utility of platform and
ISP in different numbers of iterations when extortion factor x = 2. (b) Social welfare under different extortion factors.
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Fig.11. Utility of platform and ISP when the platform adopts
the ZD-VCS strategy, and ISP adopts the ALLC/ALLD/Ran-
dom strategy in the continuous model. (a) Utility of platform.
(b) Utility of ISP.

6.4 Performance of the Extortion Strategy

To evaluate the influence of social welfare when
the platform adopts an extortion strategy, we do ex-
periments in the iterated game with the platform
adopting an extortion strategy and the ISP adopting
an evolution strategy. Specifically, we set the extor-
tion factor x =2, and the results are shown in
Fig.13(a). The red dot line refers to the utility of ISP
adopting an evolution strategy, and the blue line
refers to the utility of the platform adopting an extor-
tion strategy. The platform’s utility is approximately
two times more than the ISP’s utility when both are
minus a constant value. The solid green line repre-
sents the total utility (i.e., social welfare) of the plat-
form and ISP, which is becoming stable as the num-
ber of iteration increases. However, the stable value is
less than that of when the platform adopts ZD-VCS
strategy. Furthermore, we discuss the influence of dif-

ferent extortion factors on social welfare. Fig.13(b)
shows that social welfare first decreases sharply and
then slowly as the extortion factor increases. When
the extortion factor y =1, we set o = =1, which
means the platform has no extortion to ISP. There-
fore the extortion strategy turns to a ZD-VCS strate-
gy used in Subsection 5.2, and the social welfare is
the same as the stable value in Fig.5(a) and Fig.6(a).

6.5 Discussion

In some scenarios, each day’s traffic varies differ-
ently, therefore the payoff matrices vary each day.
Therefore, how to use ZD-VCS strategy in practice is
an issue. Usually, the traffic in a city or an area obeys
a regular distribution in the periods, therefore we can
predict each day’s traffic according to the traffic his-
tories (such as fitting a periodic function for predic-
tion). Then, the predicted payoff matrix of each day
could be calculated. Therefore, we can pre-calculate
the ZD-VCS strategy adopted by the platform each
day when the action space is discrete. Thus, the plat-
form controls the social welfare with a high and sta-
ble value in the long term, which is shown in Fig.5(a)
and Fig.6(a).
the ISP’s utilities are represented by continuous func-

Furthermore, when the platform and

tions, the parameters of tasks and RSUs are continu-
ous (parameters only make sense if they are integers),
and then the ZD-VCS strategy is represented by a
piece-wise function. The platform also controls the so-
cial welfare with a high and stable value, which is
shown in Fig.9(a) and Fig.10(a).

In short, the utility function is appropriately rep-
resented by the utility matrix or the utility function.
When an action space is discrete or continuous, the
ZD-VCS strategy can be pre-calculated directly or
represented by a piece-wise function. Then, the plat-
form can adopt ZD-VCS strategy and control the so-
cial welfare without considering the ISP’s strategy.

7 Conclusion

In this paper, we formulated the interaction be-
tween the platform and ISP under vehicular crowd-
sensing as an iterated game, and addressed the prob-
lem of social welfare control in this game. We pro-
posed a zero-determinant strategy for the vehicular
crowdsensing platform strategy to control the social
welfare without considering ISP’s strategy. We theo-
retically analyzed that the platform can achieve sta-
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ble and possible maximal social welfare regardless of
the ISP’s strategy. Additionally, we investigated the
influence of the extortion strategy on social welfare.
Experimental results verify that the platform using
the ZD-VCS strategy unilaterally controls the social
welfare. In the future, we will study the different vari-
ants of the zero-determinant strategy and apply them

in other scenarios.
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