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Abstract    Mobile crowdsensing is a popular platform that takes advantage of the onboard sensors and resources on mo-

bile nodes. The crowdsensing platform chooses to assign several sensing tasks each day, whose utility is based on the quali-

ty of harvested sensing data, the payment of transmitting data, and the recruitment of mobile nodes. The Internet Service

Provider (ISP) selects a portion of access points (APs) to power on for uploading data, whose utility depends on three

parts: the traffic income of transmitting sensing data, the energy cost of operating APs, and the energy cost of data trans-

missions by APs. The interaction between the crowdsensing platform and ISP is formulated as an iterated game, with so-

cial welfare defined as the sum of their expected utilities. In this paper, our objective is to unilaterally control social wel-

fare  without  considering  the  opponent’s  strategy,  with  the  aim of  achieving  a  stable  and maximized social  welfare.  To

achieve this goal, we leverage the concept of a zero-determinant strategy in the game theory. We introduce a zero-determi-

nant strategy for the vehicular crowdsensing platform (ZD-VCS) and analyze it in discrete and continuous models within

the vehicular crowdsensing scenario. Furthermore, we analyze an extortion strategy between the platform and ISP. Experi-

mental results demonstrate that the ZD-VCS strategy enables unilateral control of social welfare, leading to a high and

stable value.
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1    Introduction

With  the  rapid  growth  in  various  types  of

equipped  sensors,  including  cameras,  microphones,

and GPS devices,  mobile  crowdsensing  can  now pro-

vide a wide range of services, such as urban monitor-

ing[1],  road  and  traffic  condition  monitoring[2],  pollu-

tion  level  measurements,  wildlife  habitat  monitor-

ing[3], and cross-space public information sharing[4]. As

one  of  the  most  promising  Internet  of  Things  (IoT)

applications,  this  is  referred  to  as  vehicular  crowd-

sensing (VCS)[5, 6]. It takes advantage of the mobility

of  vehicles  to  provide  location-based  services  in  a

large-scale area, and plays a crucial role in creating a

comfortable  and  convenient  environment  for  the  ur-

ban city.

In  the  crowdsensing  application,  the  interactions

between  the  crowdsensing  platform  and  the  Internet

service provider (ISP) are treated as a game[7, 8].  We

take vehicular crowdsensing in Fig.1 as a special case

to study the game.  The vehicular  crowdsensing plat-

form (simply  called  platform)  is  responsible  for  pub-
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lishing  the  crowdsensing  tasks.  This  income is  deter-

mined by the quality of sensing data, which is calcu-

lated  based  on  the  quantity  of  sensing  data  and  the

diversity  of  tasks.  The platform pays  the  traffic  cost

of  transmitting  sensing  data  via  Road-Side  Units

(RSUs)  to  the  ISP.  To  reduce  energy  costs,  the

switch-mode  of  cell  activation  is  widely  employed[9].

Thus,  the  ISP  schedules  to  partially  activate  RSUs

for uploading the sensing data generated by the mov-

ing  vehicles[10, 11].  The  income  of  ISP  is  generated

from  the  traffic  income  obtained  through  transmit-

ting  the  sensing  data.  When  the  platform  publishes

more tasks to cooperate, it hopes to receive a greater

volume  of  sensing  data.  While  ISP  turns  on  fewer

RSUs to defect, the quality of sensing data is reduced,

and the platform’s income is also reduced. When the

ISP  turns  on  more  RSUs  to  cooperate,  it  hopes  to

earn  more  traffic  income  from  data  transmissions.

However, if the platform publishes fewer tasks to de-

fect,  the  income  of  ISP will  be  reduced. Fig.1 shows

an iterated game in vehicular crowdsensing where the

platform and ISP interact by playing a game repeat-

edly (infinitely many times). On each day, the crowd-

sensing platform publishes the selected tasks and the

ISP powers on a portion of RSUs for uploading data,

independently.  According  to  their  utilities  and  ac-

tions  of  the  previous  day,  both  of  them  will  adjust

their actions on the next day by their strategies.

In the iterated game, the social welfare is defined

as  the  sum  of  expected  utilities  of  the  platform  and

ISP. Unilateral control the social welfare in the iterat-

ed games has been discussed in many previous works.

These discussions include topics like controlling social

welfare  (total  quality  of  data)  in  mobile

crowdsensing[12],  addressing  the  crowdsourcing  dilem-

ma through social welfare control[13–15], ensuring total

Quality  of  Services  (QoS) control  for  all  participants

in  wireless  communication[16],  unilateral  control  over

expected  payoffs  for  both  opponents  and  oneself  in

block  withholding  attacks[16],  and  administrator-led

unilateral control over the total utilities of all players

in  wireless  network  resource  management[17],  among

others.  Crowdsensing  games[18–20] are  ubiquitous  and

worth studying since crowdsensing is a widely adopt-

ed  method  for  data  sensing  in  various  daily  applica-

tions[6, 21].  Social  welfare  is  an  important  metric  in

crowdsensing  games,  therefore  we  study  the  social

welfare  control  problem  with  different  strategies  to

help operators in their decision-making process.

In this paper, we aim to investigate the unilateral

control  for  social  welfare  of  the  iterated  game in  ve-

hicular  crowdsensing.  The  word “unilateral” repre-

sents  a  player  can  control  the  social  welfare  regard-

less  of  the  opponent’s  strategy.  We  consider  the

crowdsensing  platform  belongs  to  the  government[22],

who  concerns  about  the  social  welfare  of  the  whole

crowdsensing  system,  and  thus  the  platform  has  the

responsibility  to  control  the  social  welfare  regardless

of ISP’s actions①②.

We discuss such unilateral control for maximizing

the  social  welfare  of  the  iterated  game with  a  stable

value. We prove that the game between the platform

and  ISP  exists  an  equilibrium  in  each  iteration,  but

finding  the  equilibrium  point  would  not  achieve  our

goal of social welfare control.

Inspired  by  [15, 23],  we  propose  a  Zero-Determi-

nant  strategy  for  the  Vehicular  CrowdSensing  plat-

form  (ZD-VCS)  to  control  the  social  welfare  of  the

crowdsensing  system.  The  idea  is  that  the  strategy

can derive a linear relationship between the expected
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Fig.1.  Iterated game between the platform and ISP in vehicular crowdsensing.
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①https://archive.flossmanuals.net/bypassing-censorship/ch007_chapter-2-censorship.html, Nov. 2024.
 

②https://www.law.cornell.edu/wex/internet_service_provider_(isp), Nov. 2024.
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payoff  of  the  platform and that  of  the  ISP,  then  we

can set  proper parameters  for  the to-be-adopted ZD-

VCS to obtain the strategy, the details are presented

in Section 5.  More  specifically,  we  analyze  the  prob-

lem of unilateral control for social welfare in the dis-

crete model.  We calculate the strategy ZD-VCS that

the  platform  to-be-adopted,  regardless  of  ISP’s  cho-

sen  strategies  (such  as  TFT,  Pavlov,  random  and

evolved strategy). In the discrete case, ZD-VCS takes

the  form  of  a  probability  vector.  In  the  continuous

case,  where  the  payoff  function  is  continuous,  ZD-

VCS becomes a  piece-wise  function used to  calculate

the  probability  of  cooperation.  Each  element  of  the

strategy  is  a  probability  for  cooperation  in  the  cur-

rent  round  under  the  actions  of  the  previous  round,

and the  probability  is  calculated  by  the  payoff  func-

tions of the platform and ISP. The action of the plat-

form or the ISP in each iteration is calculated by its

strategy. Furthermore, we propose an extortion strat-

egy  to  control  the  ratio  of  the  expected  utilities  be-

tween the platform and the ISP. Our main contribu-

tions are summarized as follows.

1)  We  formulate  the  interactions  between  the

platform and ISP as an iterated game and verify that

the game exists an equilibrium in each iteration.

2) To help the platform establish unilaterally con-

trol, we propose a ZD-VCS strategy and analyze it in

both  discrete  and  continuous  models.  Furthermore,

we study extortion strategy, which enforces an extor-

tion relationship between the platform’s and ISP’s ex-

pected utility.

3) We implement the ZD-VCS strategy with real

trace  driven  simulations.  By  setting  proper  parame-

ters  for  the  to-be-adopted  ZD-VCS,  experimental  re-

sults  show  that  the  platform  can  control  social  wel-

fare  to  achieve  a  high  and  stable  value,  and  a  ratio

between the platform’s and ISP’s expected utilities.

This  paper  is  organized  as  follows.  In Section 2,

we  survey  the  related  work. Section 3 presents  the

preliminary of the Zero-determinant strategy. Section

4 discusses  the  game  between  crowdsensing  platform

and ISP, and analyzes the game by Markov Decision

Model. Section 5 discusses  the  ZD-VCS  strategy  in

the  discrete  and  continuous  model. Section 6 evalu-

ates  the  performance  of  the  ZD-VCS  strategy.  The

last  section  draws  conclusions  and  presents  our  fu-

ture work. 

2    Related Work

We  briefly  review  related  work  on  vehicular

crowdsensing,  mobile  crowdsensing  game,  and  zero-

determinant strategy.

Vehicular Crowdsensing. There are many applica-

tions  under  vehicular  crowdsensing.  Pu et  al.[24] pro-

posed Chimera, which is an energy-efficient and dead-

line-aware  hybrid  edge  computing  framework  for  ve-

hicular  crowdsensing  applications.  Morselli et  al.[25]

developed a framework for analyzing multidimension-

al  stochastic  sampling  in  vehicular  crowdsensing,

where samples are gathered from sensors on vehicles.

This work is important for different kinds of applica-

tions based on environmental monitoring via IoT and

vehicular  communications.  Campioni et  al.[5] investi-

gated  the  recruitment  problems  for  vehicular  crowd-

sensing  and  proposed  several  heuristics  that  outper-

form existing algorithms and obtain near optimal so-

lutions.

Mobile  Crowdsensing  Game.  Mobile  crowdsensing

(MCS)  game  include  repeated  (iterated)  and  static

game. Some problems in mobile  crowdsensing can be

formulated as games, which inspires researchers an ef-

ficient way to solve them by using game theory. The

work[20] introduced the repeated interactions between

the MCS server and independent vehicles in a dynam-

ic  network  as  a  dynamic  vehicular  crowdsensing

game. A Q-learning-based MCS payment strategy and

sensing  strategy  is  proposed  for  the  dynamic  vehicu-

lar  crowdsensing  game.  Di  Stefano et  al.[19] modeled

and  quantified  the  evolutionary  dynamics  of  human

sensing  behaviors  through  the  rounds  of  iterated  so-

cial dilemmas, and they validated the methodology in

a  vehicular  crowdsensing  scenario.  The  work[18] pre-

sented  an  incentive  mechanism  for  vehicular  crowd-

sensing  in  the  context  of  autonomous  vehicles,  so  as

to address the problem of sensing coverage of regions

located out of the AVs planned trajectories. However,

these  studies  focus  on  the  interactions  between  task

requestor and workers (users, vehicles), neglecting the

role and action of ISP, and they applied the strategy

obtained  from  reinforcement  learning[20] or  a  greedy

method[18] to  maximize  their  utility,  which  may  fall

into local optimum.

Zero-Determinant  Strategy.  Zero-determinant

strategy can achieve different goals with different pa-

rameter settings. With zero-determinant strategy, the

player can control the total expected utilities of play-

ers  as  a  stable  value,  unilaterally  set  the  expected

utility of an opponent or set a ratio between his and

his  opponent’s  expected  payoff,  regardless  of  the  op-
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ponent’s  strategy.  Zero-determinant  strategy  also

evolves to extortion and generosity strategies[26]. Press

et al.[23] proposed a zero-determinant strategy in 

Iterated Prisoner’s Dilemma game, and then the zero-

determinant  strategy  is  extended  into  the  general

 iterated  game  by  other  researchers  and  has

many applications[27, 28]. The work[29] investigated the

power  control  problem  in  resource  sharing  among

wireless  users  and  network  operators,  and  the  net-

work  operator  applied  zero-determinant  strategies  to

control  social  welfare.  Previous  work[12] formulated

the interaction between a requestor  and any workers

in  mobile  crowdsensing  as  an  iterated  game,  intend-

ing  to  improve  data  quality  in  mobile  crowdsensing

quality control.  Hu et  al.[13] proposed a zero-determi-

nant  strategy  to  address  the  malicious  attack  prob-

lem  in  crowdsourcing.  A  sequential  zero-determinant

strategies[15] is  applied  for  quality  control  in  crowd-

sourcing.  Zero-determinant  strategy  is  also  extended

for  multi-player  multi-action  iterated  games[30].  The

work[31] introduced a more comprehensive class of au-

tocratic  strategies,  by  extending the  concept  of  zero-

determinant  strategies  to  iterated  games  with  more

diverse and generalized action spaces. In order to ad-

dress the challenge of dimensionality that arises when

the  complexity  of  games  escalates,  the  work[32] pre-

sented a novel mathematical framework for analyzing

strategic  choices  in  repeated  games  with  a  varying

number of actions or players, as well as arbitrary con-

tinuation  probabilities.  Our  goal  in  this  paper  is  to

study unilaterally social welfare control in the iterat-

ed vehicular crowdsensing game. 

3    Preliminary: Zero-Determinate Strategy

Zero-determinant  strategy[23] comprises  a  set  of

strategies in general memory-one iterated game. With

different  parameter  settings,  the  zero-determinant

strategy  can  generate  different  strategies  with  differ-

ent goals such as controlling the total expected utili-

ties  of  players  as  a  stable  value,  unilaterally  control-

ling  the  other  player’s  payoff,  or  setting  a  ratio  be-

tween its and the other player’s payoff.

We utilize  a  Markov chain  to  illustrate  the  zero-

determinant  strategy.  The  iterated  game  starts  with

an initial action, the actions of players in each itera-

tion are obtained from the strategy,  and each player

performs  an  action  and  obtains  a  utility  (reward)  in

each  round.  The  strategies  of  players  decide  a

stochastic process. The state of each player are repre-

sented by their union action of the previous round. It

is  proven  that  long-memory  player  in  the  iterated

game  has  no  advantage  over  the  short-memory

player[23],  since  players  in  each  iteration  determine

their  actions  based  on  the  outcome  of  the  previous

round.  This  means  the  corresponding  stochastic  pro-

cess can be represented by a Markov chain, where the

state  transitions  are  joint  probabilities  calculated

from the probabilistic strategies of players.

{c, d}
{cc, cd, dc, dd}

X p = (p1, p2, p3, p4)

Y

q = (q1, q2, q3, q4) pi X

i

qi

X Y P = (P1, P2, P3, P4)

Q = (Q1, Q2, Q3, Q4) Pi Qi

X Y i

p

p

X

p

p

In  the  discrete  case,  the  zero-determinant  strate-

gy is a probability vector. In contrast, in the continu-

ous case (payoff  function is  continuous),  the zero-de-

terminant  strategy  is  a  piece-wise  function  to  calcu-

late  the probability of  cooperation.  In the two cases,

each probability element is the probability of coopera-

tion in the current round under the actions of the pre-

vious round, and the probability is calculated by the

payoff functions in the game. A discrete case is taken

as  an  example,  and  both  players  have  two  actions:

{cooperation, defection} (  for short). Their ac-

tion  pairs  are .  Each  player  has  a

mixed  strategy  at  each  round,  which  denotes  the

probabilities  for  the  next  cooperation  under  the  ac-

tions  in  the  previous  round.  Accordingly,  we  define

the mixed strategy of player  as 

and  that  of  his/her  opponent  as

.  represents  that  chooses  co-

operation in the current round conditioned on the -

th action pair of the previous round, and  has a sim-

ilar  meaning.  We  assume  the  corresponding  payoff

matrices  of  and  are  and

, respectively.  (or ) is the

utility of  (or ) corresponding to the -th actions

pair. Let  be a zero-determinant strategy. If a play-

er  adopts  zero-determinant  strategy  with  different

settings,  the  player  can  unilaterally  set  the  expected

utility of an opponent, control the total expected util-

ities of players as a stable value, or control a ratio be-

tween  the  player’s  and  his/her  opponent’s  expected

payoff, etc., regardless of the strategy of his/her oppo-

nent.  That  is,  there  is  a  linear  relationship  between

the  expected  payoff  of  two  players.  When  player 

adopts  zero-determinant  strategy  in  the  iterated

game,  satisfies the following equation:
 

pi =

{
ϕ(αPi + βQi + γ) + 1, i = 1, 2,

ϕ(αPi + βQi + γ), i = 3, 4,

α, β, γ, ϕ ϕ ̸= 0 pi

Y

X Y U x U y

where  are parameters, , and  could

be calculated by the parameters and payoff matrices.

No  matter  which  strategy  adopts,  the  expected

payoff of  and  (  and ) satisfies:
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αU x + βU y + γ = 0. (1)

α = 0 U y XFor example, when ,  is controlled by .

With  different  settings  of  parameters,  equation  (1)

generates  various  strategies.  Such  strategies,  which

are referred to as zero-determinant strategies,  are re-

alized if the process of the game can be formulated as

a one-step Markov process. The frequently-used nota-

tions are listed in Table 1.
  

Table  1.    Description of Frequently-Used Notations

Notation Description

E = {e1, . . . , eM} MSet of  candidate sensing tasks

R = {r1, . . . , rN} NSet of  candidate RSUs

xe/xr Number of selected sensing tasks/RSUs

W Task-RSU weighted traffic matrix

X⃗e/X⃗r Vector of selected sensing tasks/RSUs

fg/ft Payoff function of platform/ISP

ur/ut, C Energy cost/traffic cost, operating cost

M e, M r Payoff matrix of platform and ISP

me
i, mr

i M e M rElements in  and 

p, q Mixed strategy of platform and ISP

vs/f Stationary vector/any vector

U e/U r/Uall Utility of platform/ISP/both

H Markov state transition matrix

α, β, γ
Parameters to determine the ZD-VCS
strategy

χ Extortion factor

lr/le Lowest number of RSU/sensing tasks

hr/he Highest of RSU/sensing tasks
  

4    System Model

In  this  section,  we  introduce  the  mobile  crowd-

sensing  model  and  game  formulation  between  the

platform and ISP. 

4.1    Mobile Crowdsensing Model

M

E = {e1, . . . , eM}

Considering  the  general  scenario  of  the  mobile

crowdsensing shown in Fig.2,  there  are  three  partici-

pants: crowdsensing platform, mobile nodes, and wire-

less access point (AP). The platform is responsible for

publishing  the  crowdsensing  tasks  (such  as  monitor-

ing  the  temperatures  in  some  areas[3, 33])  and  assign-

ing  the  tasks  to  mobile  nodes  (e.g.,  vehicles,  mobile

users).  We  denote  the  set  of  sensing  tasks  as

.  The  crowdsensing  platform  could

C

belong  to  the  government[22] or  a  service  platform

company  (such  as  Uber[34]).  The  recruited  mobile

nodes are responsible for sensing the data from sens-

ing  tasks.  The  platform  pays  a  constant  operating

cost (denoted as ) to the recruited mobile nodes ev-

ery day. The mobile nodes sense data passively when

they  are  in  the  sensing  areas,  instead  of  actively  go-

ing to the sensing areas. The incentive mechanism for

mobile nodes has been proposed in [14, 35, 36], but it

is out of the scope of our paper.

R = {r1, . . . , rN} N

100− 500

The  wireless  APs,  such  as  Wi-Fi,  femtocell③,

Smart  Pole④,  and  other  RSUs,  are  installed  by  the

ISP and provide communication for the mobile nodes,

which  are  denoted  by .  These 

APs  are  responsible  for  uploading  the  sensing  data

generated  by  the  mobile  nodes.  Generally,  compared

with a  cell-tower  in  cellular  systems,  the  coverage  of

each AP is relatively small[37], such as the coverage of

RSU is about  meters. As a result, it is hard

to  provide  seamless  roaming for  vehicles[38],  therefore

the sensing data’s offloading can be delayed during its

lifetime through an access  point  that  acts  as  a  gate-

way. If there are no available APs, some sensing data

can  be  delayed  instead  of  being  immediately  sent  or

received  over  the  AP.  This  kind  of  technology  has

been  extensively  investigated[39, 40].  The  distributions

of sensing tasks, mobile modes, and the available APs

have an influence on the quality of sensing data. Da-

ta quality can only be measured when the quantity of

sensing data is large enough. The quantity of sensing

data is closely related to sensing tasks, mobile modes,

and the available APs. When the mobile nodes sense

the data in the area of a sensing task, the sensing da-

ta are transmitted through an AP, and then the sens-

ing data can be uploaded successfully. When the wire-

less  APs  and  crowdsensing  tasks  belong  to  different

operators,  the  interactions  between  the  published

tasks and the available APs form a game. We formu-

 

Sensing Data

Transmission

Wireless AP

Mobile Node

Crowdsensing

Taskt

Mobile

Sensing

Fig.2.  Mobile crowdsensing model.
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late this game in Subsection 4.2.

Fig.3(a) is  an example of  a temperature monitor-

ing  scenario  in  Rome,  Italy  by  the  real  data  trace⑤.

The  points  in Fig.3(a)  are  the  temperature  data

sensed by the vehicles, which is also called sensing da-

ta. The color of a point close to red refers to the place

with  a  higher  temperature,  and  that  close  to  blue

refers to the place with a lower temperature. On each

day,  the  platform  publishes  several  tasks  for  sensing

the temperatures of some areas in Fig.1, and the ISP

powers on a portion of RSUs for uploading the sens-

ing data to save energy costs. When a vehicle passes

by an area that needs to be sensed, it will generate a

sensing data packet  with temperature  records.  When

a vehicle leaves the current sensing area with sensing

data  and  moves  into  the  communication  range  of  a

working RSU, the sensing data packet is uploaded to

a remote cloud server via the RSU.

The traffic distribution of vehicles is different each

day, therefore different RSUs have different contribu-

tions to the data quality in crowdsensing. In order to

measure the importance of each RSU, when giving the

sensing tasks with priorities, we apply a matching al-

gorithm to obtain the selected important RSUs. Thus,

the number of RSUs can be used as the ISP’s action

in the game, which is formulated in the following Sub-

section 4.2. Fig.3(b) shows the trends of data quality

in different numbers of sensing tasks and RSUs. 

4.2    Game Formulation

X⃗e M

We  denote  the  action  of  assigning  tasks  by  the

platform as a vector  with dimension , where the

0 1

xe

xe = ||X⃗e||1
X⃗r

N 0 1

xr

xr = ||X⃗r||1
W ∈ RM×N

Wij

j i W xe,xr = (X⃗e

T
· X⃗r)◦

W xe

xr ◦
W xe,xr

i,j

i

j

element is  or , indicating whether a candidate task

is selected or not. Let  denote the number of select-

ed  tasks,  i.e., .  The  action  of  operating

RSUs by ISP is denoted by a vector  with dimen-

sion ,  where  the  element  is  or ,  indicating

whether the RSU is powered on or not. Let  denote

the number of selected RSUs, . We denote

 as  a  task-RSU  weighted  traffic  matrix,

which element  is the number of sensing data up-

loaded by the RSU  for task . 

, which refers to the traffic distribution of  sens-

ing tasks under  RSUs. The symbol  refers to the

Hadamard product,  and the element  also  rep-

resents  the  traffic  count  of  the -th  sensing  task  un-

der the -th RSU.

W xe,xr X⃗e = (1, 0, 1, 1)

X⃗r = (1, 0, 1) M = 4 N = 3 xe = 3

xr = 2

We  take  an  example  to  illustrate  how  to  obtain

the  matrix .  In  the  case  of 

and ,  that  is, , , ,

and . Then,
 

X⃗e

T
· X⃗r =


1 0 1
0 0 0
1 0 1
1 0 1

 .

WWhen  is set as:
 

W =


15 20 31
40 20 26
20 20 18
18 30 16

 ,

W 3,2 is calculated as:
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Fig.3.  Data analysis of the Roma temperature data in vehicular crowdsensing. (a) Sensing temperature. (b) Data quality.
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W 3,2 = (X⃗e

T
· X⃗r) ◦W =


15 0 31
0 0 0
20 0 18
18 0 16

 ,

W 3,2 refers to the traffic distribution of three sensing

tasks under two RSUs.

xe xr

xe xr

xe xr

xe

xr

We investigate the actions with different numbers

of tasks and RSUs in the iterated game, and simplify

each  action  with  tasks  or  RSUs  to  only  one

case.  Thus,  we  use  or  to  represent  the  unique

action,  respectively.  That  is,  and  denote  the

number  of  selected  tasks  and  RSUs,  respectively.

Generally, the sensing tasks and RSUs of different ar-

eas have different priorities, and top  tasks and and

 RSUs with higher priorities are selected. Bellow we

illustrate how to calculate the priorities.

×
10× 10

In this paper, we use vehicular crowdsensing as a

case  study.  We  use  the  Taxi-Roma  dataset⑤ to  ex-

plain  how  to  determine  the  priority  of  crowdsensing

tasks.  The  dataset  includes  the  GPS  coordinates  of

320 taxi drivers that working in the center of Rome.

These  GPS  coordinates  are  collected  over  30  days.

The dataset is preprocessed by filtering out some out-

liers. The traces cover an area with a range of 66 km 

59 km, and we divide the area into  grids. We

assume  that  each  RSU  in  the  grid  serves  as  a  gate-

way and each grid is  viewed as an area with a sens-

ing  task.  The priority  of  each sensing  task  and RSU

are  calculated  by  the  number  of  GPS coordinates  in

each  grid.  The  more  GPS  coordinates  in  a  grid,  the

higher  priority  of  the  each  sensing  task  and  RSU in

this grid. 

4.2.1    Payoff of Platform

In  our  vehicular  crowdsensing  scenario,  the  plat-

form earns values from the quality of harvested sens-

ing data and the diversity of tasks, paying for the da-

ta  transmission  and  recruitment  of  vehicles.  We  as-

sume  the  size  of  each  sensing  data  packet  is  the

same[41]. The data quality is defined as
 

Qd(xe, xr) =
∑

i, j

(
log(W xe, xr

i, j + 1)− Pij logPij

)
,

1 ⩽ i ⩽ M, 1 ⩽ j ⩽ N∑
i,j log(W

xe,xr

i,j + 1)

log

−Pij logPij

where ,  the  term  of

 reflects  the  growth  rate  of  plat-

form’s  data  quality  decreases  (diminishing return)  as

the  increment  of  sensing  data[42],  and  the  func-

tion also reflects that the redundant sensing data can-

not  contribute  much  to  the  data  quality.  We  utilize

entropy  to model the diversity of sensing

Pij = W xe,xr

i,j /
∑

i,j W
xe,xr

i,j

data[43],  which  reflects  the  task  and  transmission  di-

versity. The term .

The  utility  of  the  vehicular  crowdsensing  plat-

form depends on the data quality of the sensing data,

payment of transmitting them and recruiting vehicles.

We formulate  the  payoff  function  of  the  platform as

the  value  of  sensing  data  minus  the  costs  of  data

transmission,  and  the  payoff  function  is  represented

as
 

fg(xe, xr) = ud ×Qd(xe, xr)−ut ×
∑

i,j
W xe,xr

i,j −C, (2)

ud

ut

C

where  is  the  benefit  that  per  data  quality  could

bring,  is the transmission price per data traffic and

the  constant  refers  to  the  cost  of  recruiting  vehi-

cles.  Note  that  the  platform  hopes  to  publish  more

tasks, so as to cover more areas with more sensing da-

ta and obtain more utility. 

4.2.2    Payoff of ISP

xe xr

Fig.3(b) shows the trend of the data quality with

the selected  sensing tasks and  RSUs by the real

data  trace⑤.  We  notice  that  the  data  quality  is  in-

creased with more sensing tasks and RSUs, which de-

termines  the  platform’s  income.  To  transmit  more

sensing  data,  the  ISP  is  required  to  power  on  more

RSUs, which causes more energy costs. The ISP earns

the  traffic  income  of  transmitting  the  sensing  data,

and pays the energy costs of operations of RSUs and

data transmissions by RSUs. Thus, we formulate the

payoff function of ISP as the traffic income of sensing

data minus the energy costs on RSUs as follows
 

ft(xe, xr) = (ut − ue)×
∑

i,j
W xe,xr

i,j − xrur, (3)

xr

ur ue

where  represents the number of RSUs powered on,

 refers to the per cost of operating an RSU, and 

refers  to  the  average  energy  cost[44] to  transmit  per

sensing data.

ut ×
∑

i,j W
xe,xr

i,j

From (2) and (3), we see that the platform’s cost

of uploading sensing data is , which is

also the income of the ISP. In (3), when the number

of sensing tasks reaches a certain level,  the utility of

the  traffic  from the  sensing  data  is  greater  than  the

energy costs  of  RSUs,  and thus the ISP is  willing to

power on more RSUs. 

4.2.3    Discussion

Fig.4 is  an  example  of  two  actions  in  the  game.
Like  prisoner’s  dilemma,  cooperation  denotes  the
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xe, xr ∈ {cooperation,
defection} xe = xr = 4

xe = xr = 2

highest  number of  sensing tasks or  RSUs,  and defec-

tion  refers  to  the  lowest. 

.  This  example  sets  when  the

platform  and  ISP  cooperate  and  when

they defect. The value pair in Fig.4 is the utilities of

the platform and ISP. In each iteration, they move on

to the next round based on the actions generated by

their probabilistic strategies. 

4.3    Nash Equilibrium

We analyze  the  equilibrium of  the  game between

the  platform and ISP in  each  iteration.  Proofs  of  all

theorems are presented in the supplementary file⑥.

Theorem  1. The  game  between  the  crowdsensing
platform and ISP exists equilibrium.

Theorem 2. The equilibrium point is unique in the
game between the crowdsensing platform and ISP.

cooperation (xe = 4)

defection (xr = 2)

(20, 28)

20 + 28

Next,  we  take Fig.4 as  an  example  to  illustrate

the  equilibrium  point.  We  can  obtain  equilibrium

points  from  a  solver⑦.  In Fig.4,  from  the  platform’s
view, no matter what the ISP’s action is, its best ac-

tion  is  ,  and  similarly,  the  ISP’s
best action is  . Thus, this game has

an equilibrium of , where the social welfare is

,  which  is  certainly  less  than  the  case  when

both cooperate. Generally, an ISP does not know how

many  sensing  tasks  the  platform  will  publish,  there-

fore  a  selfish  ISP  tends  to  power  on  fewer  RSUs  in

each  game  round,  resulting  in  lower  social  welfare.

Thus,  an  equilibrium  point  is  not  the  optimal  solu-

tion to maximize social welfare. 

4.4    MDP in the Iterated Game

The iterated game is viewed as a Markov decision

process (MDP)[45].  For each player,  an MDP is mod-

eled as follows.

1) Action Space. The action space of the platform

Ae {le, he}, (xe∈Ae)

Ar {lr, hr}, (xr∈Ar)

he le

hr

lr

and  ISP  are  denoted  as  =  and

 =  respectively.  The  platform

chooses the action of assigning the highest or the low-

est number of tasks, denoted as  and  respectively.

The ISP determines the action on providing the high-

est or the lowest number of RSUs, and denoted as 

and  respectively.

S {(xe, xr)}
{(hehr), (helr), (lehr), (lelr)} st ∈ S

2) State Space. The state space is the action pairs

in the previous round, and denoted as  =  =

,   .

Re Rr

s s′

a

M e M r M e=(fg(h
e, hr), fg(h

e,

lr), fg(l
e, hr), fg(l

e, lr))T M r=(ft(h
e, hr), ft(h

e,

lr), ft(l
e, hr), ft(l

e, lr))T

3) Reward.  or  is the immediate reward re-

ceived after transitioning from state  to state  for

platform  and  ISP,  due  to  action .  We  define  the

payoff matrices of the platform and ISP in each round

as  and ,  respectively. 

,  and 

.

Pa(s, s
′)

Pr(st+1 = s′ | st = s, at = a)

a s t s′

t+ 1

4) State  Transition  Probabilities. =

 is  the  probability  that

action  in state  at the round  will lead to state 

at the  round.

π

S A

s

π(s)

Pr(st+1 = s′ | st=s, at=a)

Pr(st+1=s′ | st=s)

A policy function  is a (potentially probabilistic)

mapping from state space  to action space . Once

an MDP is combined with a policy, a Markov Chain

forms. Since the action chosen in state  is complete-

ly determined by , the state transition probabili-

ty  can  reduce  to

 (a Markov transition matrix).

st

st+1 Rt

Briefly speaking, in the Markov Decision Process,

a player will repeatedly observe the current state  of

the environment and take action from all available ac-

tions  in  this  state.  Then,  the  state  will  transfer  to

, and the agent will get a reward  from the en-

vironment for its action.

In  the  iterated  game,  due  to  RSU’s  actions  are

variable,  the  social  welfare  could  change  sometimes

high and sometimes low, which is unstable. Thus, we

aim to control social welfare at a stable possible maxi-

mal  value,  and  we  model  the  problem  of  social  wel-

 

ISP (RSU)

Platform (Task) 

(30,  21) (20 , 28)

(18, 10) (16, 22 )

Previous Round Current Round

(30,  21) (20 , 28)

(18, 10) (16, 22 )

Cooperation

{, , , }

Cooperation {, , , }

Defection

{, }

Defection {, }

(1-)

Fig.4.  Probability transfer process of previous round to current round.
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fare control as follows.

Problem  1 (Social  Welfare  Control). The  social
welfare  is  required  to  be  controlled  at  a  stable  and
maximal possible value, which indicates the social wel-
fare is showing little changes and maintains around a
maximal possible value with increase of the game iter-
ation.
 

max Uall = αU e + βU r

s.t. U e + U r = −γ,
(4)

α β

U e U r γ

where  and  refer to the weights of  expected utili-
ties  and , respectively, and  is a variable in a
range.

The constraint in (4) refers to the social welfare is

a constant. The objective function and the constraint

determine  that  the  goal  is  to  maintain  social  welfare

at a table and possible maximal value. 

5    Social Welfare Control with ZD-VCS

In this section, we analyze the iterated game with

the aim of social welfare control by zero-determinant

strategy, and then we discuss the discrete and contin-

uous strategies. 

5.1    Game Analysis: Zero-Determinant

Strategy

p1(1− q1)

We aim to maximize the social welfare of the iter-

ated game with a stable value, and the social welfare

is the sum of the expected payoff of the platform and

ISP.  To  achieve  this  goal,  we  take  advantage  of  the

zero-determinant  strategy  in  game  theory  and  pro-

pose  a  scheme  named  Zero-Determinant  strategy  for

Vehicular  CrowdSensing  platform  (ZD-VCS)  to  con-

trol social welfare. This strategy is a vector of condi-

tional  probabilities.  Each  element  in  the  vector  is  a

probability  for  cooperation  in  the  current  round  un-

der the actions of the previous round, and the proba-

bility is calculated by the payoff functions of the plat-

form and ISP. Fig.4 shows the transfer process of the

previous round to the current round,  is the

probability  from one  state  to  another  state.  To  sim-

plify  this  game,  we  consider  the  discrete  strategy,

where the platform and ISP adopt either an extreme-

ly amicable or vicious action. While a continuous one

refers to any integer action as long as it is in the cor-

responding  continuous  strategy  space.  It  is  essential

to explore the integer actions because a larger action

space may lead to higher social welfare. 

5.2    ZD-VCS Strategy in the Discrete Model

1, 2, 3 4

p = (p1, p2, p3, p4)

q = (q1, q2, q3, q4) p1, p2, p3, p4

q1, q2, q3, q4 he hr

xexr = (hehr, helr, lehr, lelr)

v = (v1, v2, v3, v4)
T∑4

i=1 vi = 1

U e = vTM e U r = vTM r

In  the  discrete  model,  the  player’s  action  is  pri-

vate at each round; thus, there are four outcomes for

each  game  iteration.  We  label  the  four  outcomes  of

each  iteration  as  and ,  respectively,  corre-

sponding to the four states. We assume that the two

players (platform and ISP) only have the state memo-

ry  of  the  previous  round.  In  the  game,  both  players

have mixed strategies at each round, denoting the co-

operation  probabilities  under  the  four  possible  states

of  outcomes  in  the  previous  round.  Accordingly,  we

define  the  mixed  strategy  of  the  platform  as

,  which  is  the  zero-determinant

strategy  of  the  platform.  The  mixed  strategy  of  the

ISP  is .  Here,  and

 are  the  probabilities  of  choosing  or 

in the current round when the outcome of the previ-

ous  round is . Fig.4 shows

the probability transfer process of the previous round’
s action to the current round’s action. In the current

round,  we  denote  the  possibilities  of  the  four  poten-

tial states of outcomes as , where

.  Thus,  the  expected  payoffs  of  the  plat-

form  and  ISP  are  and ,  re-

spectively.  Note  that  a  character  in  bold  in  this  pa-

per refers to a vector or a matrix.

p q

H

vs vT
s H = vT

s

Based  on  the  definitions  of  and ,  we  denote

the  Markov  state  transition  matrix  as ,  and  the

stationary vector as . , where
 

H =


p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)

p2q2 p2(1− q2) (1− p2)q2 (1− p2)(1− q2)

p3q3 p3(1− q3) (1− p3)q3 (1− p3)(1− q3)

p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)

 ,

H

p1(1− q1)

hehr helr

each element in  represents the transition probabili-

ty from one state to another state. For example, the

state  refers  to the transition probability of

the game from the state  to the state .

H ′ = H − I

vT
s H

′ = 0

Adj(H ′)H ′ = det(H ′)I = 0 Adj(H ′)

H ′

Adj(H ′) vT
s

f

vs

Inspired  by  [23],  we  suppose ,  then

. According to Cramer’s rule, we can obtain

,  where  denotes

the adjugate matrix of . Then, we obtain that ev-

ery row of  is  proportional  to .  Thus,  the

dot product of any vector  with the stationary vec-

tor  is calculated as follows,
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vT
s · f=D(p, q, f)=det


p1q1−1 p1−1 q1−1 f1
p2q2 p2−1 q2 f2
p3q3 p3 q3−1 f3
p4q4 p4 q4 f4

 .

(5)

p

p̃ = (p1 − 1, p2 − 1,

p3, p4)
T f = αM e + βM r + γ1

α β vT
s · f =

vT
s · (αM e + βM r + γ1) = αU e + βU r + γ γ

U e U r

αU e + βU r + γ = D(p, q, αM e + βM r + γ1).

p̃ = ϕ(αM e + βM r + γ1)(ϕ ̸= 0)

It  is  clear  that  the  second column of  (5)  consists

of  the  elements  of ,  and  can  be  determined  by  the

platform alone, which is denoted as 

.  Hence,  when ,  where

 and  are  weight  factors,  we  have 

,  where  is

a scalar,  and  are the expected utility in the fi-

nal  stable  state.  Based  on  (5),  we  also  have

 Namely,

when ,  the  corre-

sponding  matrix’s  second  column  is  proportional  to

the fourth column. According to the properties of the

matrix determinant, we have
 

αU e + βU r + γ = 0. (6)

p̃ = ϕ(αM e + βM r + γ1)(ϕ ̸= 0) p̃

p p̃ = (p1 − 1, p2 − 1, p3, p4)
T

p

Equation (6) indicates the expected payoffs have a

liner  relationship,  which  is  brought  by  the

.  Note  that  is  de-

termined  by ,  and .

Therefore, the strategy  adopted by the platform is

known as a ZD-VCS strategy. We define the weight-

ed social welfare of this game as follows:
 

Uall = αU e + βU r = −γ. (7)

Uall = −γ

The  above  analysis  implies  that  when  the  plat-

form adopts ZD-VCS strategy,  the platform has uni-

lateral control over the social welfare at a desired val-

ue  ( )  no  matter  what  strategy  the  ISP

adopts. This provides the platform a powerful tool to

maintain  the  stability  of  total  utility.  The  maximal

and stable social welfare that the platform maintains

regardless  of  the  ISP’s  strategy  can  be  achieved  by

solving the following problem:
 

max Uall = αU e(p, q) + βU r(p, q), ∀q,

s.t.
{

0 ⩽ p ⩽ 1,

αU e + βU r + γ = 0.

U e(p, q) U r(p, q)

p q

The  terms  and  refer  to  the  ex-

pected payoffs of the platform and ISP, which are de-

termined by  and . Accordingly, it is equivalent to

solving the following problem:
 

min γ

s.t.


0 ⩽ p ⩽ 1,

p̃ = ϕ(αM e + βM r + γ1),

ϕ ̸= 0.

(8)

p ϕ > 0

ϕ < 0 ϕ

Next, we discuss how to calculate each element of

. Specifically, we divide the discussion by  and

, respectively.  is a scaling coefficient that con-

trols the convergence rate to the stable state.

ϕ p ⩾ 0When  is  positive,  we  put  the  constraint 

into the second constraint of (8), and get
 

γmin = max(τi) ∀i ∈ {1, 2, 3, 4},

τi =

{
−αme

i − βmr
i − 1/ϕ, i = 1, 2,

−αme
i − βmr

i, i = 3, 4.

(9)

p ⩽ 1Correspondingly,  we put  the  constraint  in-

to the second constraint of (8) and obtain
 

γmax = min(τj) ∀j ∈ {5, 6, 7, 8},

τj = τi+4 =

{ −αme
i − βmr

i, i = 1, 2,

−αme
i − βmr

i + 1/ϕ i = 3, 4,

ϕ p

[0, 1] γ

γmin ⩽ γmax

where  is  a  positive  value  that  normalizes  in  the

range . Note that  is feasible only when it satis-

fies .

ϕ p

[0, 1] p ⩾ 0

Similarly, when  is negative and normalizes  in

the range . Considering the constraint , we

have
 

γmin = max(τj), ∀j ∈ {5, 6, 7, 8}. (10)

p ⩽ 1 γmax =

min(τi), ∀i ∈ {1, 2, 3, 4} γ

γmin ⩽ γmax max(τj) ⩽ min(τi), ∀i ∈
{1, 2, 3, 4}, ∀j ∈ {5, 6, 7, 8}

While  when  considering ,  we  have 

.  Therefore,  is  feasible

when ,  that  is 

.

γ γmin

p

According  to  (9)  and  (10),  when  reaches ,

each element of  is represented as follows:
 

pi =

{
ϕ(αme

i + βmr
i + γmin) + 1, i = 1, 2,

ϕ(αme
i + βmr

i + γmin), i = 3, 4.
(11)

p

p̃ = ϕ(αM e + βM r + γ1)(ϕ ̸= 0)

Thus,  the  ZD-VCS  strategy  of  platform  meets

.

M e = (me
1, m

e
2, m

e
3, m

e
4) = (30, 20, 18, 16)

M r = (mr
1 mr

2 mr
3 mr

4) = (21, 28, 10, 22)

ϕ = −0.05 α = β = 1 γmin = (−51, −48,

−28− 20, −38− 20) = −48 γmax = (−51 + 20,

−48 + 20, −28, −38) = −28 γmin < γmax

ϕ = −0.05 ϕ

p [0, 1]

p1 = −0.05(51− 48) + 1 = 0.85, p2 =

−0.05(48− 48) + 1 = 0, p3 = −0.05(28− 48) = 1

p4 = −0.05(38− 48) = 0.5

We take the payoff matrices in Fig.4 as an exam-

ple,  here 

and , , , . If we

set  and , then 

,  and 

,  therefore  is

feasible when .  Note that  is  set to guar-

antee each element in  is in the range of . Ac-

cording  to  (11), 

,  and

.  Thus,  the ZD-VCS strate-
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p = (0.85, 0, 1, 0.5) p

−γmin = 48

gy is  represented as .  When  is

adopted by the platform in the iterated game, the so-

cial welfare can achieve to a stable and maximal sta-

ble value . 

5.3    ZD-VCS  Strategy  in  the  Continuous

Model

In  this  subsection,  we  further  analyze  the  social

welfare control problem in the continuous case. Then,

we discuss how to obtain the ZD-VCS strategy in the

continuous  case  when we  aim to  maintain  the  maxi-

mal stable total expected payoff.

xe

xr

Fg(xe, xr) Ft(xe, xr)

xe

xr

p(x′
e, x

′
r, xe)

xe

x′
ex

′
r x′

e, xe ∈ [le, he]

x′
r, xr ∈ [lr, hr] xe∫ he

le
p(x′

e, x
′
r, xe)dxe = 1

q(x′
e, x

′
r, xr)

xr

x′
ex

′
r

q(x′
e, x

′
r, xr)

∫ hr

lr
q(x′

e, x
′
r, xr)dxr = 1

To further analyze the social welfare control prob-

lem, we consider the ZD-VCS strategy in the continu-

ous  case.  Based  on  the  number  of  sensing  tasks 

and the candidate available RSUs , we fit the con-

tinuous  payoff  functions  and  for

the platform and ISP, respectively, where the fixed 

and  correspond  to  the  fixed  actions.  We  assume

that  both  the  platform and  ISP choose  their  actions

according to the outcome of the previous round. Simi-

larly,  we  define  the  mixed  strategy  of  the  platform

 as  the  conditional  probability  to  choose

the action  at the current round when the state at

the previous round is , where  and

. Since  can be any value in the con-

tinuous  domain  in  mathematical  analysis,  we  have

.  In  addition,  the  ISP’s  mixed

strategy  also  refers  to  the  conditional

probability  that  the  ISP  adopts  action  when  the

state at the previous round is . The mixed strate-

gy  satisfies .

xe xr

v(xe, xr) Fg(xe, xr)

Ft(xe, xr)

U e=∫ hr

lr

∫ he

le
v(xe, xr)Fg(xe, xr)dxedxr U r=

∫ hr

lr

∫ he

le
v(xe,

xr)Ft(xe, xr)dxedxr

H

H(x′
e, x

′
r, xe, xr)

x′
ex

′
r xexr

H(x′
e, x

′
r, xe, xr) =

p(x′
e, x

′
r, xe)q(x

′
e, x

′
r, xr).

v(x′
e, x

′
r)H(x′

e, x
′
r, xe, xr) = v(xe, xr).

Next, we denote the joint probability for the plat-

form and ISP to  choose  and  in  each round by

.  Considering  the  payoff  functions 

and ,  we  obtain  the  expected  utility  of  the

platform  and  the  ISP  at  the  current  round  as: 

,  and 

 respectively.  Furthermore,  similar

to the state transition matrix  in the discrete mod-

el,  we  denote  a  transition  function ,

indicating  the  state  transition  probability  from  the

state  of  the  previous  round to  the  state  of

the current round, which is expressed as 

 Then, the relationship of the

state probabilities  at  two sequential  rounds is  denot-

ed as 

vs(xe, xr)

v(x′
e, x

′
r) =

We denote the stationary state as .  The

iterated game reaches a stable state when 

v(xe, xr) = vs(xe, xr).  Thus,  we  have  the  following

theorem.

p(x′
e, x

′
r,

xe) p̃(x′
e, x

′
r, h

e) = ϕ(αFg(xe, xr) + βFt(xe, xr)+

γ)(ϕ ̸= 0) U e

U r

αU e + βU r + γ = 0, p̃(x′
e, x

′
r,

he)

Theorem 3. When the platform’s strategy 
 satisfies 

,  the  platform’s  expected  utility  and  the
ISP’s expected utility  satisfy the following relation-
ship:  where  the  function 

 is defined as
 

p̃(x′
e, x

′
r, h

e) =

{
p(x′

e, x
′
r, h

e), if x′
e < he,

p(x′
e, x

′
r, h

e)− 1, if x′
e = he.

p(x′
e, x

′
r, h

e)

Next,  we  discuss  how  to  obtain  the  function

, which is the continuous ZD-VCS.

Uall = αU e + βU r = −γ

p(x′
e, x

′
r, h

e)

Uall

The  weighted  social  welfare  is  defined  as

.  According to  Theorem 3,  the

platform’s strategy  is the only factor af-

fecting ,  which is  viewed as the ZD-VCS strategy

in the continuous case.  Specifically,  the platform can

solve  the  following  optimization  problem  to  achieve

unilateral control of social welfare:
 

max Uall = αU e(p, q) + βU r(p, q), ∀q,

s.t.
{

0 ⩽ p ⩽ 1,

αU e + βU r + γ = 0.

(12)

T (xe, xr) = αFg(xe, xr) + βFt(xe, xr)

To  simply  illustrate  the  following  discussion,  we

denote . Then (12)

is converted into
 

min γ

s.t.


0 ⩽ p(x′

e, x
′
r, h

e) ⩽ 1,

p̃(x′
e, x

′
r, h

e) = ϕ(T (xe, xr) + γ),

ϕ ̸= 0.

p(x′
e, x

′
r, h

e)

ϕ > 0 ϕ < 0

In  order  to  obtain  the  function ,  we

divide the discussion by  and , respectively.

ϕ p ⩾ 0When  is  positive  and  the  constraint ,  we

obtain
 

γmin = max(τ(x′
e, x

′
r)) ∀x′

e ∈ [le, he],∀x′
r ∈ [lr, hr],

τ(x′
e, x

′
r) =

{
−T (x′

e, x
′
r), if x′

e < he,

−T (x′
e, x

′
r)− 1/ϕ, if x′

e = he.

p ⩽ 1While  considering  the  constraint  condition ,

we obtain
 

γmax = min(τ(x′′
e , x

′′
r )), ∀x′′

e ∈ [le, he],∀x′′
r ∈ [lr, hr],

τ(x′′
e , x

′′
r ) =

{
1/ϕ− T (x′′

e , x
′′
r ), if x′′

e < he,

−T (x′′
e , x

′′
r ), if x′′

e = he.

γ γmin < γmax max(τ(x′
e,

x′
r)) < min(τ(x′′

e , x
′′
r )),∀x′

e, x
′′
e ∈ [le, he],∀x′

r, x
′′
r ∈ [lr, hr]

ϕ p

[0, 1] γ

 is  feasible  when .  That  is 

.

Since  is  a  positive  value  that  normalizes  in  the

range , we get the minimum value of :
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γmin=max(−T (x′
e, x

′
r)), ∀x′

e∈ [le, he), ∀x′
r∈ [lr, hr].

(13)

ϕ

p ⩾ 0 γmax=min(τ(x′
e, x

′
r)), ∀x′

e∈ [le, he],

∀x′
r∈ [lr, hr] p⩽1 γmin=

max(τ(x′′
e , x

′′
r ), ∀x′′

e ∈ [le, he],∀x′′
r ∈ [lr, hr] γ

γmin<γmax max(τ(x′′
e , x

′′
r ))<

min(τ(x′
e, x

′
r)) max(−T (x′′

e , x
′′
r ))< min(−T (x′

e,

x′
r)) ∀x′

e, x
′′
e ∈ [le, he],∀x′

r, x
′′
r ∈ [lr, hr]

When  is  negative,  considering  the  constraint

,  we  obtain 

.  When  considering ,  we  have 

.  Then,  is

feasible  only  when ,  i.e., 

, that is 

, .  Thus,  we  have

the following result:
 

γmin = max(τ(x′′
e , x

′′
r )) = max(−T (x′′

e , x
′′
r )),

∀x′′
e = he,∀x′′

r ∈ [lr, hr].
(14)

Therefore,  according  to  (13)  and  (14),  the  plat-

form’s  continuous  ZD-VCS  strategy  is  computed  as

follows:
 

p(x′
e, x

′
r, h

e)=

{
ϕ(T (x′

e, x
′
r)+γmin), if x′

e<he,

ϕ(T (x′
e, x

′
r)+γmin) + 1, if x′

e=he.
(15)

ϕ < 0, α = β = 1 xe ∈ [1, 10],

(he = 10) xr ∈ [1, 10] Fg(xe, xr) = 6xr − xe

Ft(xe, xr) = 3xe − 6xr

T (xe, xr) = Fg(xe, xr) + Ft(xe,

xr) = 2xe ϕ < 0 γmin = max(τ(x′′
e , x

′′
r )) =

max(−T (x′′
e , x

′′
r )) = max(−2x′′

e ) x′′
e = he = 10

γmin = max(−2× 10) = −20 γmax =

min(τ(x′
e, x

′
r)) = max(−2x′

e) xe ∈ [1, 10]

γmax = −2× 1 = −2 γmin < γmax

p(x′
e, x

′
r, h

e)

We illustrate how to obtain the wise-function by a

simple example. We set , 

 and ,  then ,

and .  According to  the  previous

discussion,  we  obtain 

. In the case of , 

,  where ,

therefore .  And 

,  where ,

therefore .  Thus, .  Ac-

cording to (15), the ZD-VCS strategy  in

the continuous case is represented as follows:
 

p(x′
e, x

′
r, h

e)=

{
ϕ(2xe−20), if x′

e ∈ [1, 10),

ϕ(2xe−20)+1 = 1, if x′
e=10.

ϕ < 0

0 ⩽ p(x′
e, x

′
r, h

e) ⩽ 1 0 ⩽
ϕ(2x′

e − 20) ⩽ 1 (2x′
e − 20)−1 ⩽ ϕ < 0, 1(⩽

x′
e < 10) ϕ

(2x′
e − 20)−1 ⩽ ϕ < 0 0 ⩽ p(x′

e, x
′
r, h

e)

⩽ 1

p(x′
e, x

′
r, h

e)

−γmin = 20

Note that we need to choose proper  to sat-

isfy .  From  the  equation 

, we can obtain 

.  Therefore,  the  parameter  is  chosen  as

 to  guarantee 

. In the iterated game, when the platform adopts

the pre-calculated  in the continuous case,

the  social  welfare  can  be  unilaterally  controlled  at  a

maximal  and  stable  value  in  the  long

term.

−γmin

In sum, in the continuous case, the ZD-VCS strat-

egy adopted by the platform is a piece-wise function,

as shown in (15). No matter what the strategy of ISP

is, the social welfare can be unilaterally maintained at

the value . 

5.4    Extension: Extortion Strategy

Based on the equation (6), a special kind of zero-

determinant  strategy,  extortion  strategy,  is  derived.

Below  we  discuss  how  the  extortion  strategy  is  de-

rived,  and  how  it  is  used  in  the  iterated  vehicular

crowdsensing game.

When  the  platform  is  in  a  dominant  role  and

wants  to  control  its  and  its  opponent’s  payoffs  at  a

predefined ratio in some scenarios, for the purpose of

unilateral control, we can help the platform to extor-

tionately control the payoff of the opponent at a low

value.  Thus,  we  propose  an  extortion  strategy  in  a

discrete model for the platform, which is a kind of ze-

ro-determinant  strategy  with  special  parameter  set-

tings, and the details are as follows.

p̃ =

ϕ((M e −me
41)− χ(M r −mr

41)) α = ϕ β = −ϕχ

ϕ ̸= 0 χ = −β

α
γ = ϕ(χmr

4 −me
4)

(U e −me
4) = χ(U r −mr

4) χ ⩾ 1

ϕ

p [0, 1]

In the case that the platform attempts to enforce

an extortionate share of payoffs larger than the mutu-

al  noncooperation  value.  Based  on  (6),  when 

, , and 

( ), that is , . Then the

linear relationship between the expected payoff of the

platform  and  that  of  the  ISP  is  obtained,  and

, where  is called the ex-

tortion  ratio  and  is  employed  to  guarantee  that

each element in  is at the range of . The specif-

ic extortion strategy of the platform can be obtained

by solving the following equations:
  

p1 = 1 + ϕ((me
1 −me

4)− χ(mr
1 −mr

4)),

p2 = 1 + ϕ((me
2 −me

4)− χ(mr
2 −mr

4)),

p3 = ϕ((me
3 −me

4)− χ(mr
3 −mr

4)),

p4 = 0.

χ ϕ

p

[0, 1] ϕ ϕ ∈ (0, ϕ̃1] ϕ > 0

ϕ ∈ [ϕ̃2, 0) ϕ < 0 ϕ̃1 = min{π1, π2, π3}
ϕ̃2 = max{π1, π2, π3}

Obviously,  the  feasible  solution  exists  and  is  de-

termined by any  and a sufficiently small . Specifi-

cally,  to  ensure  that  each  element  of  belongs  to

,  should  satisfy:  when ,  and

 when ,  where ,

. For convenience, we set
 

π1 =
−1

(me
1 −me

4)− χ(mr
1 −mr

4)

π2 =
−1

(me
2 −me

4)− χ(mr
2 −mr

4)

π3 =
1

(me
3 −me

4)− χ(mr
3 −mr

4)

q = (0, 0, 0, 0)

mr
4

q = (1, 1, 1, 1)

When  ISP  always  takes  the  action  of  defection,

that is , the minimum utility of ISP is

. While when ISP unconditionally cooperates, that

is .  According  to  (5),  the  maximum
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utility of ISP can be calculated as
 

min U r|q=(1, 1, 1, 1) =
D(p, q, M r)

D(p, q, 1)
.

χ = 1Furthermore, when , that means there is no

extortion of the platform to ISP, and thus the maxi-

mum utility  of  the  platform can be  obtained by (5),

and be calculated as follows:
 

max U r|q=(1, 1, 1, 1), χ=1 =
D(p, q, M r)

D(p, q, 1)
.

 

6    Performance Evaluation

In  this  section,  we  first  introduce  the  experimen-

tal setup. Then, we present the experimental results. 

6.1    Experimental Setup

10× 10

xe xr

2 8

le = lr = 2 he = hr = 8

ud = 30, ut = 1, ue = 0.01, ur = 50
C = 500

We  perform  experiments  on  the  Taxi-Roma

dataset⑤.  The  dataset  includes  the  GPS  coordinates

of  320 taxi  drivers  that work in the center of  Rome.

These  GPS  coordinates  are  collected  over  30  days.

The dataset is preprocessed by filtering out some out-

liers.  We  implement  the  proposed  strategy  with  real

trace-driven  simulations.  The  communication  in  the

physical layer is assumed to be stable and reliable[24].

The traces cover an area with a range of 66 km × 59 km,

and  we  divide  the  area  into  grids.  We  as-

sume each RSU in  the  grid  serves  as  a  gateway and

each grid is viewed as an area with a sensing task. We

calculate  the  priority  of  the  sensing  tasks  and  RSUs

by  the  number  of  GPS  coordinates  in  the  grid,  and

both top  sensing tasks and top  RSUs are select-

ed by their priorities. From the analysis of traces, we

obtain the average task-RSU weighted traffic matrix.

Each element in the matrix is the number of sensing

data  uploaded to  an  RSU for  a  task.  In  the  discrete

model, we set the lowest and the highest numbers of

sensing  tasks  and  RSUs  are  and ,  respectively.

That  is ,  and .  The  parameters

are  set  as ,  and

. We discuss how to implement the ZD-VCS

strategy  in Subsection 6.5 when  task-RSU  weighted

traffic matrix varies on each day. We implement the

ZD-VCS  strategy  based  schemes  in  Python  3.8.  All

experiments  were  conducted  on  a  computer  with  In-

tel Core i7-6700 CPU and 8G RAM. 

6.2    Comparison Methods

We describe the following baselines for comparison.

p = (1, 1, 1, 1)

1) ALLC[12, 14, 29]. It is an all cooperation strategy

, which means whatever the opponent

player has done in the previous round, and it always

chooses cooperation.

p = (0, 0, 0, 0)

2) ALLD[12, 29].  It  is  an  all  defection  strategy

, which means whatever the opponent

player has done in the previous round, and it always

chooses defection.

p = (0.5, 0.5, 0.5, 0.5)

3) Random[12, 14, 29].  It  is  an  all-random  strategy,

that  is ,  which  means  whatev-

er  the  opponent  player  has  done  in  the  previous

round, it randomly chooses cooperation.

4) TFT (tit-for-tat)[46, 47].  A  TFT  player  cooper-

ates in the first round and then does whatever the op-

ponent player has done in the previous round.

q = (0, 0, 0, 0)

q

5) Evolved[15, 23]. It is an evolved strategy that an

evolutionary  player  starts  his/her  strategy

,  and  his/her  opponent  adopts  ZD-

VCS strategy in the iterated games.  is  updated in

each iteration and will be stable at the end of the it-

erations.  The  process  of  calculating  evolved  strategy

is shown in Algorithm 2.

6) Pavlov (win-stay-lose-shift  strategy)[47, 48].  If  a

Pavlov  player  receives  a  higher  payoff,  it  will  repeat

the  same  action  in  the  next  round,  which  is “win-

stay”.  If  a  Pavlov  player  receives  a  lower  payoff,  it

will  switch  to  the  opposite  action,  which  is “lose-

shift”. 

6.3    Performance Evaluation on Social

Welfare Control

In this subsection, we evaluate the performance of

the proposed ZD-VCS on social welfare control in the

discrete and continuous model. 

6.3.1    Experiments in the Discrete Model

α = β = 1

p = (1, 1, 1, 1)

p = (0, 0, 0, 0)

Algorithms 1 and 2 together  are  the  processes  of

calculating the utilities of the platform and ISP in the

experiment.  Considering  the  general  definition  of  so-

cial welfare in (7), we set  in social welfare

control.  In  order  to  evaluate  the  effectiveness  of  our

proposed  scheme,  we  compare  the  ZD-VCS  strategy

with  five  other  classical  strategies  that  might  be

adopted by the platform. We display the results when

the  platform  adopts  the  proposed  ZD-VCS  strategy,

all  cooperation  ( ,  denoted  as  ALLC),

all  defection  ( ,  denoted  as  ALLD),
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p = (0.5, 0.5, 0.5, 0.5)and random ( , denoted as Ran-

dom) strategies while the ISP adopts three strategies,

i.e., ALLC, ALLD, and Random. Furthermore, we al-

so adopt an evolved strategy with ISP. We view ISP

as  an  evolutionary  player  that  adopts  an  evolved

strategy.  As  shown  in Fig.5,  when  the  platform

adopts  the  proposed  ZD-VCS strategy,  whatever  the

ISP adopts, the social welfare can maintain stable and

achieve  its  possible  maximal  value.  However,  when

the platform takes the other strategies, the social wel-

fare is determined by the strategies of both the plat-

form and the  ISP,  which indicates  that  the  platform

does not dominate the control over the social welfare.

In Fig.5(b),  when  the  platform adopts  ALLC strate-

gy,  and  the  ISP  adopts  ALLC  or  Random  strategy,

the social welfare keeps stable in the long term. But,

the platform adopted ALLC cannot control social wel-

fare when ISP adopts different strategies.

Algorithm 1. ZD-VCS Strategy in Discrete Model

p, q xr x′
e, x

′
r, M

e

n
　　Input: , ,  previous state ,  number of  iter-
      ations 

U e, x′
e

　　Output: 

i = 1; i ⩽ n; i++1　 for  do

random() ⩽ p(he|x′
ex

′
r) : xe = he2 　　　if ;

xe = le3 　　　else: ;

x′
e = xe4 　　　 ;

U e
i = M e(xe, xr)5 　　　 ;

(
∑n

i=1 U
e
i )/n, x

′
e6 　　　return ;

Fig.6 shows the comparison results between the ZD-

VCS  strategy  and  two  other  classical  strategies,  i.e.,

TFT[46] and Pavlov[48].  The experiment starts  from a

random state of the game. It is obvious that the plat-

form adopts  the  ZD-VCS strategy  and  ISP  takes  ei-

ther TFT or Pavlov, and the social welfare is approxi-

mately  the  same  and  is  stable.  However,  when  the

platform changes its strategy to any other strategies,

the  social  welfare  is  not  dominated  by  the  platform

and is affected by the strategies of both players.

Algorithm 2. Evolved Strategy by ISP
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p, q xe x′
e, x

′
r, M

t θ
n

　　Input: , ,  previous state ,  learning rate ,
      number of iterations 

U e, q, x′
r

　　Output: 

i = 1; i ⩽ n; i++1 　for  do

random() ⩽ q(hr|x′
ex

′
r) : xr = hr2 　　　if ;

xr = lr3 　　　else: ;

x′
r = xr4 　　　 ;

U r = D(p, q,M r)/D(p, q,1)5 　　　 ,;

U r
i = M r(xe, xr)6 　　　 ;

each element qi ∈ q7 　　　for   do

qi = qi + θ
∂U r(q)

∂qi
8 　　　　　

(
∑n

i=1 U
r
i )/n q, x′

r9 　　　return , ;

Fig.7 and Fig.8 show the respective utilities of the

platform  and  ISP.  The  results  are  shown  in Fig.7

when the platform adopts the ZD-VCS strategy, and

the  ISP  takes  Evolved,  ALLC,  ALLD,  and  Random

strategies. Fig.7(a)  and Fig.7(b)  show  the  average

utility  for  the  platform  and  ISP  of  all  current  itera-

tions, respectively. From the results, we can see that

the utilities of the platform and ISP are becoming sta-

ble  as  the  number  of  iterations  increases.  The  corre-

sponding total utility (i.e., social welfare) is shown in

Fig.5(a).  Similarly, Fig.8 shows  the  results  when  the

platform  adopts  ZD-VCS  strategy  and  ISP  takes

TFT,  and  Pavlov  strategies. Fig.8(a)  and Fig.8(b)
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show the mean utility for the platform and ISP of all

current  iterations,  respectively.  From  the  results,  we

can  find  that  the  utilities  of  the  platform  and  ISP

gradually  become  stable  as  the  number  of  iterations

increases.  Its  corresponding  total  utility  is  shown  in

Fig.6(a). From Fig.7 and Fig.8, we can find the utili-
ty of the platform in a stable state is larger than that
of the ISP in all strategy pairs. 

6.3.2    Experiments in the Continuous Model
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In  the  continuous  model,  we  adopt  continuous

strategies for the platform and ISP. We assume that

both the number of sensing tasks and available RSUs

are  selected  from  [2, 8].  We  first  compare  the  social

welfare when the platform adopt the ZD-VCS strate-

p(x′
e, x

′
r, h

e) = 1 p(x′
e, x

′
r, h

e) =

0 p(x′
e, x

′
r, h

e) = 1/(he − le)

q(x′
e, x

′
r, h

r) = 1 q(x′
e, x

′
r, h

r) = 0

q(x′
e, x

′
r, h

r) = 1/(hr − lr)

gy and the normal strategies, such as the ALLC strat-

egy , the ALLD strategy 

, and the Random strategy .

As shown in Fig.9(a), when the platform adopts ZD-

VCS  strategy,  the  social  welfare  becomes  stable  re-

gardless  of  the  ISP’s  strategy  (the  ALLC  strategy

, the ALLD strategy ,

or  the  Random  strategy ).

However, in Fig.9(b), Fig.9(c), and Fig.9(d), when the

platform  adopts  ALLC,  ALLD,  and  Random  strate-

gies, it cannot control the social welfare.

Fig.10(a)  shows  that  social  welfare  stays  stable

when the platform adopts ZD-VCS strategy and ISP

adopts  TFT  and  Pavlov  strategies.  When  the  plat-

form  adopts  TFT  and  Pavlov  strategies,  it  cannot

control  social  welfare  in Fig.10(b)  and Fig.10(c).  In

Fig.9(a)  and Fig.10(a),  the  stable  social  welfare  is

slightly  higher  than  that  in  the  discrete  model.

Fig.11(a)  and Fig.11(b)  show the  utility  of  the  plat-

form.  When  it  adopts  ZD-VCS  strategy  and  ISP

adopts  ALLC,  ALLD,  and  Random strategy,  respec-

tively, and the platform’s utility is higher than that of

the  ISP  on  the  whole. Fig.12(a)  and Fig.12(b)  show

the  utility  of  the  platform  adopts  ZD-VCS  strategy

and  ISP  adopts  TFT  and  Pavlov  strategies,  respec-

tively.  Similarly,  the platform’s utility is  higher than

that of the ISP.
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ISP) in the continuous model. (a) ZD-VCS vs TFT/Pavlov. (b)
TFT vs TFT/Pavlov. (c) Pavlov vs TFT/ Pavlov.

JiQing Gu et al.: Unilateral Control for Social Welfare of Iterated Game in Mobile Crowdsensing 17

In 
Pres

s



 

 

0 100 200 300 400 500

Number of Iterations

(a)

0 100 200 300 400 500

Number of Iterations

(b)

U
ti
li
ty

 o
f 
P
la

tf
o
rm

50

45

40

U
ti
li
ty

 o
f 
IS

P

35

30

25

ZD-VCS vs TFT
ZD-VCS vs Pavlov

ZD-VCS vs TFT
ZD-VCS vs Pavlov

Fig.12.  Utility of Platform and ISP when platform adopts the ZD-VCS strategy, and ISP adopts TFT/Pavlov strategy in the con-
tinuous model. (a) Utility of platform. (b) Utility of ISP.

 

0 25 50

80

60

40

20

75 100

Number of Iterations

(a)

Exploitation Factor 

(b)

U
ti
li
ty

68

64

60

56

S
o
c
ia

l 
W

e
lf
a
re

2 4 6 8 10

Total Utility
ISP: Evolution Strategy
Platform: Extortion Strategy

χ = 2
Fig.13.  Utility and social welfare when the platform adopts an extortion strategy in the discrete model. (a) Utility of platform and
ISP in different numbers of iterations when extortion factor . (b) Social welfare under different extortion factors.

18 J. Comput. Sci. & Technol., Jan. 2025, Vol.40, No.1

In 
Pres

s



0 100 200 300 400 500

Number of Iterations

(a)

U
ti
li
ty

 o
f 
P
la

tf
o
rm

50

45

40

ZD-VCS vs ALLC
ZD-VCS vs ALLD
ZD-VCS vs Random

0 100 200 300 400 500

Number of Iterations

(b)

U
ti
li
ty

 o
f 
IS

P

35

30

25

ZD-VCS vs ALLC
ZD-VCS vs ALLD
ZD-VCS vs Random

Fig.11.  Utility of platform and ISP when the platform adopts
the ZD-VCS strategy, and ISP adopts the ALLC/ALLD/Ran-
dom strategy in the continuous model. (a) Utility of platform.
(b) Utility of ISP. 

6.4    Performance of the Extortion Strategy

χ = 2

To  evaluate  the  influence  of  social  welfare  when

the platform adopts an extortion strategy, we do ex-

periments  in  the  iterated  game  with  the  platform

adopting an extortion strategy and the ISP adopting

an  evolution  strategy.  Specifically,  we  set  the  extor-

tion  factor ,  and  the  results  are  shown  in

Fig.13(a). The red dot line refers to the utility of ISP

adopting  an  evolution  strategy,  and  the  blue  line

refers to the utility of the platform adopting an extor-

tion strategy. The platform’s utility is approximately

two times more than the ISP’s utility when both are

minus  a  constant  value.  The  solid  green  line  repre-

sents the total utility (i.e., social welfare) of the plat-

form and ISP, which is becoming stable as the num-

ber of iteration increases. However, the stable value is

less  than  that  of  when the  platform adopts  ZD-VCS

strategy. Furthermore, we discuss the influence of dif-

χ = 1 α = β = 1

ferent  extortion  factors  on  social  welfare. Fig.13(b)

shows  that  social  welfare  first  decreases  sharply  and

then  slowly  as  the  extortion  factor  increases.  When

the  extortion  factor ,  we  set ,  which

means  the  platform  has  no  extortion  to  ISP.  There-

fore the extortion strategy turns to a ZD-VCS strate-

gy  used  in Subsection 5.2,  and  the  social  welfare  is

the same as the stable value in Fig.5(a) and Fig.6(a). 

6.5    Discussion

In some scenarios,  each day’s traffic varies differ-

ently,  therefore  the  payoff  matrices  vary  each  day.

Therefore, how to use ZD-VCS strategy in practice is

an issue. Usually, the traffic in a city or an area obeys

a regular distribution in the periods, therefore we can

predict each day’s traffic according to the traffic his-

tories  (such  as  fitting  a  periodic  function  for  predic-

tion).  Then,  the predicted payoff  matrix of  each day

could  be  calculated.  Therefore,  we  can  pre-calculate

the  ZD-VCS  strategy  adopted  by  the  platform  each

day when the action space is discrete. Thus, the plat-

form controls  the social  welfare with a high and sta-

ble value in the long term, which is shown in Fig.5(a)

and Fig.6(a).  Furthermore,  when  the  platform  and

the ISP’s utilities are represented by continuous func-

tions, the parameters of tasks and RSUs are continu-

ous (parameters only make sense if they are integers),

and  then  the  ZD-VCS  strategy  is  represented  by  a

piece-wise function. The platform also controls the so-

cial  welfare  with  a  high  and  stable  value,  which  is

shown in Fig.9(a) and Fig.10(a).

In short, the utility function is appropriately rep-

resented by the utility matrix or the utility function.

When  an  action  space  is  discrete  or  continuous,  the

ZD-VCS  strategy  can  be  pre-calculated  directly  or

represented by a piece-wise function.  Then,  the plat-

form can adopt ZD-VCS strategy and control the so-

cial welfare without considering the ISP’s strategy. 

7    Conclusion

In  this  paper,  we  formulated  the  interaction  be-

tween  the  platform  and  ISP  under  vehicular  crowd-

sensing as an iterated game, and addressed the prob-

lem  of  social  welfare  control  in  this  game.  We  pro-

posed  a  zero-determinant  strategy  for  the  vehicular

crowdsensing  platform  strategy  to  control  the  social

welfare  without  considering  ISP’s  strategy.  We theo-

retically  analyzed  that  the  platform can  achieve  sta-
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ble  and  possible  maximal  social  welfare  regardless  of

the  ISP’s  strategy.  Additionally,  we  investigated  the

influence  of  the  extortion  strategy  on  social  welfare.

Experimental  results  verify  that  the  platform  using

the  ZD-VCS  strategy  unilaterally  controls  the  social

welfare. In the future, we will study the different vari-

ants of the zero-determinant strategy and apply them

in other scenarios. 
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