Co-existence of LTE-U and Wi-Fi with Direct Communication

Rajorshi Biswas and Jie Wu Dept. of Computer and Information Sciences Temple University

Road Map

- 1 Wi-Fi & LTE coexistence
- 2. Two versions of LTE
- 3. Related work
- 4. Direct-communication between LTE and WiFi
- 5. Architecture
- 6. Simulation
- 7. Conclusion

1. Wi-Fi & LTE Coexistence in 5GHz Band

- Wi-Fi is already operating in 5GHz bands (U-NII)
 - 802.11 ac and 802.11 n
- Long Term Evolution (LTE) got permission to 5GHz bands

Coexistence: Wi-Fi does not get fair share.

2. Two Versions of LTE for Future (5G)

Limitations:

- Our solution:
- Still sensing module is needed.

• Wi-Fi AP sends usage information to LTE eNB (tower).

*Qualcomm Research, LTE in Unlicensed Spectrum: Harmonious Coexistence with Wi-Fi. June 2014.

3. Related Work

Systems		Limitations
Adaptive Almost Blank	Subframe (AABS) LTE-eNB & Wi-Fi AP sends their usage information to the C-RAN. C-RAN decides LTE channel access mechanism.	 Long delay of communication has bad effect on throughput. High overhead of sensing module (LTE keeps sensing).
An adaptive channel access mechanism for LTE-U and WiFi coexistence in an unlicensed spectrum (Jie Xiao, Jun Zheng in ICC 2016) Reinforcement learning-based resource allocation to		 Computation overhead is
	Mobile Management Unit (MMU) uses reinforce learning to determine location of blank space in LTE frame. Blank spaces are aperiodic.	 high. Non consecutive blank space might reduce Wi-Fi throughput.

4. Direct-Communication between LTE and Wi-Fi

unlimited data to transmit.

Direct-communication between LTE and Wi-Fi

5. Architecture of Proposed Model

Simulator used: LTE LAA model: LTE-U model: Wi-Fi version: Used channel: NS3 LTE release 13 LTE-U direct communication IEEE 802.11n 5170MHz-5190MHz Propagation model:NS3 indoor loss modelSimulations time:15s to 50sUser packet type:UDP (1024 bytes)Continuous UDP transmission.

250 m

Operator A: LTE & Wi-Fi coverage

Operator B: Wi-Fi coverage

Random walk mobility model used for users in complex scenario

Simple:

1 LTE eNB, 1 Wi-Fi AP, 1 LTE user, and 1 Wi-Fi user

Complex:

4 LTE eNB, 4 Wi-Fi AP, 10 LTE user, and 10 Wi-Fi user

- 0.5 duty cycle: time fairness, does not guarantee throughput fairness.
- Throughput fairness is achieved, and efficiency is acceptable.

Results (simple): throughput over time

High fairness and throughput achieved in LTE-U direct comm.

Results (complex): throughput over time

High fairness and throughput achieved in LTE-U direct comm.

Results (simple): effect of communication delay

• Higher delay of communication-> Higher deviation from ideal scenario

7. Summary

- A model to achieve the fair coexistence
 - LTE and Wi-Fi in 5 GHZ bands
- \circ A new metric Δ to balance fairness and efficiency
 - Controlling convergence speed
- Achieving
 - Fairness while ensuring acceptable efficiency

