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ABSTRACT

This paper investigates the linear bandit problem in nonstationary
environments where the unknown environment parameter 6; evolves
according to a mean-reverting process. Unlike existing works that
only assume a bounded amount of parameter variation without ex-
ploiting its temporal structure, our formulation leverages the mean-
reverting dynamics to enable more precise estimation and efficient
learning. We establish regret lower bounds for two scenarios: (i) a
linear mean-reverting process, and (ii) a more practical case where 6
is constrained within a bounded domain around its long-term mean.
For both settings, we propose filtering-based state estimation algo-
rithms and show that they achieve regret upper bounds that nearly
match our lower bounds. Our theoretical analysis demonstrates that
the steady-state regret of the proposed algorithm for the linear case
is optimal with respect to the environment evolution noise, yield-
ing tight bounds. Simulation results further validate the theoretical
findings and highlight the effectiveness of the proposed methods.

Index Terms— Linear Bandits, Mean Reverting Process, Regret
Bounds

1. INTRODUCTION

Sequential decision making under uncertainty is a fundamental prob-
lem in machine learning, statistics, and control theory. In many real-
world scenarios, a decision maker must repeatedly take actions and
receive feedback, aiming to maximize cumulative rewards over time.
One of the most prominent models in this area is the multi-armed
bandit (MAB) problem, which captures the core trade-off between
exploration, gathering information about the environment, and ex-
ploitation, leveraging existing knowledge to make high-reward deci-
sions. The bandit formulation has found wide applicability in areas
such as recommendation systems, online advertising, adaptive clini-
cal trials, and dynamic pricing [1112} 3} 4115} 6L [7].

The classical bandit literature predominantly focuses on station-
ary environments. However, many practical applications involve
environments that evolve dynamically. In such non-stationary set-
tings, the optimal decision may shift over time, and algorithms
must adapt accordingly [8} |9, [10, (11} [12]]. Despite the prevalence
of non-stationarity in practical problems, most existing works on
non-stationary bandits adopt time-structure-agnostic assumptions.
These approaches typically impose constraints on the total amount
of change (e.g., bounded total variation or limited number of shifts)
and design algorithms that either discount old observations or detect
and adapt to abrupt changes [[13} |14, 15,116} 17} [18]. While effective
in certain settings, such methods overlook the fact that in many
applications, the temporal evolution of the environment is stochastic
yet not entirely arbitrary. The evolution often follows underlying dy-
namics that can be exploited. A particularly relevant and practically

motivated dynamic is the mean-reverting process, in which the envi-
ronment parameter evolves stochastically but tends to revert towards
a long-term equilibrium. Intuitively, this process captures systems
where short-term fluctuations occur around a stable equilibrium. For
example, in wireless communication or control systems, channel
conditions or system states may deviate due to noise or disturbances
but are stabilized by physical constraints, pulling them back towards
nominal operating points [19]. In financial applications, asset re-
turns often exhibit temporary deviations driven by shocks but revert
toward a long-run equilibrium dictated by market fundamentals [20].

Motivated by these observations, this paper focuses on the linear
bandit problem under mean-reverting dynamics. This formulation
provides a principled way to capture structured nonstationarity com-
monly observed in practice. Our study considers two complemen-
tary settings: (i) a linear mean-reverting model, and (ii) a bounded
nonlinear variant where the parameter is constrained within a fixed
domain around the equilibrium. For both cases, we analyze the re-
gret lower bound, and develop filtering-based algorithms—Kalman
filtering for the linear case and particle filtering for the bounded case.
The proposed method’s regret upper bound matches the lower bound
for the linear case. Our results establish that the proposed algorithms
attain optimal steady-state regret with respect to the environment
evolution noise, yielding tight theoretical guarantees.

Our work connects to a growing literature on non-stationary
bandits that incorporate temporal dynamics. For instance, Mussi et
al. [21] studies controllable linear dynamical systems and aims to
maximize cumulative reward by strategically choosing the control
input. Trella et al. [22] considers multi-armed bandits with reward
changes induced by an unobserved latent state evolving according to
an auto-regressive process. Bacchiocchi er al. [23] models the cur-
rent reward as a linear combination of rewards from previous rounds,
thereby capturing temporal dependencies in a non-parametric fash-
ion. Other works [24] [25] examine non-stationarity driven by sea-
sonal or periodic changes. The most closely related work is [26],
which considers a multi-armed bandit problem and models reward
means as an autoregressive process but assumes a state-informed set-
ting where the latent state is the same as the reward and is directly ob-
served at each step. By contrast, our setting is state-oblivious: the la-
tent parameter is unobserved and must be inferred from noisy reward
feedback. Moreover, unlike prior works that focus on specific algo-
rithmic heuristics, our contribution lies in establishing tight regret
lower and upper bounds under mean-reverting dynamics, thereby
providing a sharp theoretical characterization of this important class
of nonstationary bandits.

2. PROBLEM FORMULATION

We consider a sequential decision-making problem in the linear ban-
dit setting. At each discrete time step ¢ = 1,2, ..., 7, the learner



selects an action z; € D, where D is a known subset of R? and
L = maxgep ||z||. After choosing the action x¢, the learner ob-
serves a scalar reward y; € R, which is generated according to a
linear model y; = x 0; + n;, where §; € R is the unknown,
time-varying parameter (also referred to as the system state), and
nt ~ N(0,02) is independent zero-mean Gaussian noise. The goal
of the learner is to sequentially choose actions z; to maximize the
cumulative reward, under the evolving environment parameter 6;.

In contrast to classical stationary bandit problems, we consider
a non-stationary setting in which the environment parameter 6,
evolves over time. Motivated by practical scenarios where systems
tend to revert toward a stable long-term equilibrium, we assumed
the state evolution follows a mean-reverting stochastic process.
Specifically, ; is governed by the following dynamics

Ori1 = (1 —p)0: + pp + &, )]

where 1 € R? is the long-term mean, p € (0,1) is the reversion
parameter, and & ~ A (0, ol ) is the Gaussian noise. This model
captures a structured evolution of the system state, wherein 6, grad-
ually drifts toward the equilibrium, subject to random perturbations.
In many real-world applications, the system state deviation from
the long term equilibrium is bounded in norm, due to physical or
domain-specific constraints. To account for this, we further consider
a nonlinear extension, where the state vector will be projected onto
the sphere centered at p with radius S if the deviation exceeds .S:

(1= p)0: + pp+ &) 5 2

where I, s(-) denotes the Euclidean projection onto the ball
B, S) i= {6 € R : |0 — pl2 < S}.

At each round ¢, the learner selects an action x; € D, while
the optimal action is z} := arg maxgep x " ;. Then the instanta-
neous regret at round ¢ is 74 := xj 7o, — xtT 0. This represents the
loss in expected reward incurred by selecting x; instead of the op-
timal action 7. The cumulative regret up to time T is defined as
Ry = Zle r¢. An effective bandit algorithm aims to minimize
R, ideally achieving sublinear regret as 7' — oo, even in the pres-
ence of a time-varying environment. However, as we will show in
Section 3] in the specific setting considered in this paper, the regret
of any proper bandit algorithm will grow linearly with respect to 7'.
Therefore, it is more reasonable to consider the rate of this linear
growth in the long term. To this end, we define the steady-state in-
stantaneous regret as the expected regret incurred when ¢ — oo, i.e.

9t+1 = H,u,S

7:= lim x:TGt — x:@t.
t— o0
One can check that this definition is equivalent to the growth rate of
Ry in the long term, i.e., 7 = limr_oc Rr/T.

3. REGRET LOWER BOUND

In this section, we establish lower bounds for the mean-reverting
bandit problem. These lower bounds show that for any admissible
learning algorithm, the steady-state instantaneous regret cannot be
arbitrarily small and is fundamentally constrained by the stochastic
nature of the environment.

3.1. Regret lower bound for the linear case

Since the system state evolves according to a mean-reverting
stochastic process, it admits a unique stationary distribution, and
the distribution of ; converges to this stationary regime as ¢t — oco.
The long-term instantaneous regret defined previously corresponds
to the expected regret under this stationary distribution. We first

consider the unconstrained process in Eq.(I). Assume without loss
of generality that the long-term mean is zero, then the steady-state
distribution is ; ~ AN(0,%), where Soe = 021/(2p — p°).
For this mean reversion process, we provide the following regret
lower bound.

Theorem 1. For the unconstrained process in Eq.(1), for any proper
bandit algorithm, the expected long-term instantaneous regret has
the following lower bound: E[F] > /2d/mowL~\/p/(2 — p).

Proof Sketch. We can consider the structured action set D =
{£L/V/d}¢, which corresponds to the 27 vertices of a hypercube
centered at the origin. By this construction, every action has norm
|lz||2 = L, and for any direction of the system state 6, there exists
an action in D that aligns optimally with it. In the mean-reverting
linear process, the noise &; can cause the sign of certain coordinates
of 0, to flip from one time step to the next. This implies that the
optimal action may shift to a different orthant of the space. However,
since the noise realization £; is unobservable to the learner at ¢, no
algorithm can perfectly anticipate these sign changes. Therefore,
any algorithm will, with non-zero probability, select a suboptimal
action that lies in a non-aligned orthant. Let s; denote the vec-
tor of coordinate-wise signs of 6;. Given knowledge of only the
previous state 0:_1, the learner will select s¢—1L/ \/3, while the
optimal action is s;L/v/d. Then the instantaneous regret is r; =
L/\/a 6 (st —s¢t—1). Hence, we have E[r¢] = L\/EIE[@M (st,1—
St—l,l)] = 4L\/g‘]‘9t,1>0’9t—1,1<0 9t11 dP(et,1,9t_1,1). In the
steady state, (6¢—1,,0¢,;) follows a bivariate Gaussian distribution
with correlation coefficient 1 — p. By evaluating the above expecta-
tion via distributional integration, the proof can be completed.  [J

3.2. Regret lower bound for the bounded case

For the bounded evolve model in Eq.(2), the distribution of the sys-
tem state is centered at y and exhibits central symmetry. We as-
sume p = 0 to simplify the analysis, without loss of generality. As
t — oo the process converges to a unique stationary distribution 7,
which consists of two components, a continuous density supported
in the interior of the ball, and a distribution supported on the bound-
ary of the ball.

Using the symmetry, the density within the ball only depends on
|[0 — ]|, and the distribution on the boundary is uniform. The rela-
tive mass between the interior and the boundary can be determined
through a steady-state balance condition that matches the incoming
probability flow from the linear process and the projection mecha-
nism at the boundary. Let ps represent the total probability mass on
the sphere, and 1 — p, be the probability mass inside the sphere. The
following theorem provides an analytical expression for ps.

Theorem 2. For the state evolve process in Eq.(@), the steady state
probability mass on the surface is ps(p) = A(p)/ (1 + A(p) — B(p)) .
Let Q4/2(a,b) denote the generalized Marcum Q-function, which
represents the right-tail probability of a non-central x* distri-
bution.  Then A(p) = FErjinside [Qd/g ((1- p)T/O'w,S/O’w)],
B(p) = Quyz (1 = p)S/0, S/0w):

Proof Sketch. For a given state § with magnitude r = ||0||, the next
state before projection is given by (1—p)04& ~ N ((1—p)8, o2 I).
This state remains inside the sphere if its magnitude is less than
S, otherwise, it is projected onto the spherical surface. Therefore,
the conditional probability of the next state being on the surface is
Pr([|(1=p)0+nl = S [0l =) = Qas2 (1 = p)r/ow, S/ow).
In the steady state, the probability mass on the surface is equal to the
probability of a state being projected onto the surface in one step,
starting from the current steady-state distribution. By separating the
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Fig. 1. Sphere probability mass, conditioned regret, and total regret
lower bound under different values of o, and p.

contributions from states inside the sphere and those on the surface,
we can establish that ps = (1 — ps)A(p) + psB(p), where A(p)
and B(p) are defined in the theorem. Solving for the fixed point, we
can complete the proof. O

Since Qq/2(a,b) is a monotonically increasing function with
respect to a, ps(p) decreases monotonically with p. Besides, as
p — 07, the system state distribution approaches the sphere, and
a “boundary layer” emerges in the vicinity of the boundary. Intu-
itively, the probability distribution “clings to the boundary”, with
the spherical term dominating.

Following a similar line of reasoning to Theorem [I] we can get
the following lower bound for the evolution process in Eq.(2).

Theorem 3. For the nonlinear bounded process in Eq.(@), for any
proper bandit algorithm, the expected steady state instantaneous
regret satisfies IE[F] > psRs, and Rs is the expected instantaneous
regret conditioned on the event that 0; is on the sphere, Ry =

2I/d fos [awti)(g—:) — au@(—:—z)] fw)du, where « = 1 — p,
@(-) and ®(-) is the PDF and CDF of the standard normal dis-
tribution, respectively, and f(u) = 2I'(%)/y/mST(4E) - (1 —

d—
u?/5%) “2 s the single dimension PDF of the uniform distribution

on sphere S 1.
Proof Sketch. We again consider the action set D = {#L/v/d}*.
The optimal action at time ¢ + 1 is aj4; = L/\/E sign(0¢+1),
while the oracle selects the action based on information from
the previous step: a; = L/vdsign(f;). Let X = 6;; and
Y = 041, = aX + ¢, with e ~ N(0,0’ﬁ,). The regret is
written as E[r,] = E[YX% ] = 3%, L/Vd E[Y (sign(Y) —
sign(X))] = 2LVd E[|Y] - 1{XY < 0}]. We focus on the
regret caused by the probability mass ps of the system state be-
ing uniformly distributed on the spherical surface. Under this
assumption, the probability density for a single dimension X is
flu) = 2D0(4)/ymST(452) - (1 — %5)@=3/2. Due to symme-
try, we have E [|[Y|1{Y < 0}| |X|=u| = E[-Y1{Y <0}] =
ocwp(k) — aud(—k), where k = au/o,. By integrating this ex-
pression over the distribution of |X| = U and multiplying by ps,
the proof can be completed. O
This theorem presents the conditional regret in the form of an
integral. To simplify the form, we may consider the scenario where
the dimension d is relatively large. Then the single coordinate of the
uniform distribution on the sphere is almost concentrated in a Gaus-
sian distribution with a variance of S?/d, and the corresponding re-
gret is given by Rephere = 2L(Vdo2¢(y) — aS®(—7)), where
v = aS/(ow \/E) This regret increases with the growth of oy,
and p. In Fig. [T} we plot the sphere probability mass ps in Theo-
rem|Z|(1eft column), conditional regret R, (middle column), and the

Algorithm 1 Recursive State Estimation for Linear Bandits

Require: Action set D, time horizon T
1: Initialize prior belief 6o and filtering parameters
2: for t=1,...,Tdo
3: Estimate state 0; using Eq.(3) or Eq.(3)
Select action x; = arg maxgzep & 6,
Play action x+, observe reward y.
Update the state estimate using Eq.() or Eq.(6)

SR

lower bound of total regret (right column) under different parame-
ters. From the three upper subfigures, it can be seen that when o,
is large, the sphere probability ps approaches 1, and the regret lower
bound exhibits a linear growth trend with respect to o,,. From the
three lower subfigures, it is shown that the regret lower bound is rel-
atively small when p ~ 0.5, whereas it becomes larger when p is
closetoOor 1.

4. PROPOSED METHOD AND REGRET BOUND

We address the mean-reverting bandit problem using a unified algo-
rithmic framework that leverages recursive state estimation via fil-
tering techniques. The central idea is to maintain an online estimate
of the state 0;, and to use this estimate to select actions that approx-
imate the optimal ones at each round. The proposed procedure is
summarized in Algorithm[T]

This approach can adapt to both the unconstrained linear evo-
lution process in Eq.(T) and the constrained nonlinear process in
Eq.(2). For the linear evolution process in Eq.(I), the optimal state
estimator is the Kalman filter. Let ; be the estimate of 0; and 3
be the corresponding covariance matrix. The prediction and update
equations are

0: = (1= p)bir + pp, St = (1= p)°Se1 + 071, (3)
ét = ét +Kt(yt - xjét):it = ([ - KtiUtT)in 4)

where K; = 2 /(x{ Sz + 2). Fot the constrained nonlinear
process in Eq.(2), we adopt the particle filter to approximate the pos-
terior distribution of 6;. Assume that we use IV particles {95”}{-21

with weights wt(i), then the state prediction is done by

i i i A N i) (i
6;) =T((1 = p)0yy +pu+m2y).0: =3 w6, (5

where ngi) ~ N(0,0°I). After observing y:, we first update parti-
cle weights via

wi? ocwy - exp(—(ye — 2 07)° /207), ©)
and then normalize the weights. If necessary, we will also resample
the particles.

4.1. Regret bound for the linear evolution case

Under the state evolution model in Eq.(T), if we address this problem
using Algorithm |I| combined with the Kalman filter, in the steady-
state regime, the estimation error 6, — 0, becomes a stationary
stochastic process with bounded second moment. Leveraging this
property, we can control the instantaneous regret in the steady state.

Theorem 4. Suppose the system state evolves according to Eq.(T),
and Algorithm |Z| uses a Kalman filter to estimate 0;. Assume o, =
oe = 0, then after a sufficient number of time steps, the algorithm’s
expected instantaneous regret satisfies B[] < C-aL\/d/\/2p — p?
for some universal constant C' > 0 with high probability.
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Fig. 2. Comparison of experimental and theoretical results.

Proof Sketch. At round ¢, the instantaneous regret is 7, = 0, A} —
0] Ay =07 A7 —0] Ay +(0: —0,)T Ay < (0:—0,) T (A7 — Ap) <

147 = Aells, 10e = Bell -1 < 2L/ Anae(£1) |6 — 0 | 5,1, where

Amax(3¢) denotes the largest eigen value of 3. The first inequal-
ity follows from the action-selection rule of the algorithm, namely
that for any a € D, it holds that HA: Ay > é: a, therefore we have
6] A, > 6] A;. The second inequality holds from Cauchy—Schwarz
inequality. Using Kalman filtering for state estimation, the esti-
mation error satisfies [|0; — 01||2f_1 < /B(6) with probability
at least 1 — &, where 3(8) corresponds to the (1 — §)-quantile of
the chi-squared distribution x2. Based on existing research, we
have B(0) < d + 24/dlog(1/0) + 2log(1/6). This result im-
plies that 5(d) is on the order of d, or 5(6) ~ O(d). On the
other hand, during the Kalman filtering process, the state evolution
Equation (@) tends to enlarge the state covariance, while the mea-
surement update Equation (@) reduces it. To derive an upper bound
on )\max(it), we consider only the evolution process in Equation
(4), which yields Amax(3:) < (1 = p)*Amax(Si_1) + 2. After
sufficiently many iterations, this recursion stabilizes, and we obtain
/\max(i]t) < % Therefore, with high probability, the regret is

bounded by 7 < 2Lo\/B(5)/\/2p — p>. O

Theorem [] shows that the steady state regret is linearly related
to o, L, and v/d. Furthermore, this regret decreases as p grows.
Compared to the lower bound in Theorem (]} this regret bound is 1/p
times the lower bound established Theorem [II This demonstrates
that the regret of Algorithm [T]is optimal with respect to o, d, and
L. When p is large, this regret upper bound is also very close to the
lower bound, which is on the theoretically optimal level. Only when
p — 07, the regret of Theoremwill be significantly larger than the
theoretical lower bound. However, for the linear evolution process
described in Eq. (), as p — 0%, the steady-state variance of the
state distribution o tends to infinity, which implies that the system
state diverges. This scenario would not occur in practice.

5. EXPERIMENTS

We compare simulation results against the lower bound from Theo-
rem|T]and the upper bound from Theorem[d] Specifically, we set the
time horizon to 7' = 10,000 and use the average instantaneous re-
gret over the final 2, 000 time steps as a measure of the steady-state
regret. The default parameters for our experiments are 0 = 0.5,
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Fig. 4. Regret comparison under nonlinear dynamics (Eq.(2)).

= 0.5,d = 2,and L = 2. We vary o from 0.1 to 3, p from 0.1
to 0.9, d from 2 to 10, and L from 1 to 10. We perform 100 inde-
pendent runs for each parameter setting and record the steady-state
regret per time step. The results are presented in Fig. 2} The figure
clearly shows that the empirical results fall consistently between the
theoretical lower and upper bounds. Furthermore, the regret exhibits
a linear relationship with o, L, and V/d. These findings are in com-
plete agreement with our theoretical predictions. Additionally, we
observe that when p is large, the regret upper bound is very close to
the lower bound. This indicates that Algorithm [I] performs nearly
optimally when the mean reversion rate is high.

We also compare the proposed method against two baseline
methods that incorporate no knowledge of the underlying system
dynamics: sliding window method [13] (SW) and discount method
[14] (Discount). The SW method estimates the system state using
only the most recent W observations, discarding all earlier data.
The Discount method applies exponentially decaying weights to
past observations, assigning higher importance to recent data. The
discount factor controls the rate of memory decay. The regret of
each method is computed over 5000 time steps and averaged over
50 repeated trials. For the linear system state evolution process in
Eq.(I), Fig. ] presents the regret curves under various values of p
and o. For the nonlinear bounded evolution model in Eq.(2), similar
results are given in Fig. ] It’s shown that the proposed method
consistently outperforms the baselines across all scenarios, and its
advantage becomes more pronounced for large o and small p.

6. CONCLUSION

This paper studied the nonstationary linear bandit problem where the
latent parameter evolves according to a mean-reverting process. We
analyzed the fundamental difficulty of this setting and established
regret lower bounds for both the linear mean-reverting model and a
nonlinear variant. We propose filtering-based algorithms that effec-
tively track the latent parameter. For the linear case, we show that
the resulting regret upper bound matches the lower bound and is op-
timal with respect to the environment evolution noise. These results
provide tight characterization of regret in mean-reverting linear ban-
dits. Simulation results demonstrate that our approach outperforms
existing baselines.
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