
CHANGE DETECTION METHODS FOR NON-STATIONARY STOCHASTIC LINEAR
BANDITS

Linghang Mengω and Jie Wuω†

ωCloud Computing Research Institute, China Telecom
†Department of Computer and Information Sciences, Temple University

ABSTRACT
This paper investigates the linear bandit problem in non-stationary
environments, focusing on the piecewise stationary setting where the
environment undergoes abrupt changes at unknown time points. In
such settings, the lower bound for the dynamic regret is !(d

→
MT ),

where d is the dimension of the features, M is the number of sta-
tionary segments, and T is the time horizon. We employ the change
detection-based framework to address this problem and design two
algorithms, LBCD-AW and LBCD-CUSUM, by incorporating dif-
ferent change detection techniques. We provide theoretical analysis
for both algorithms and show that the proposed LBCD-AW achieves
nearly optimal regret in T . Simulation experiments demonstrate that
our algorithms outperform existing methods in environments with
abrupt changes and exhibit comparable performance to state-of-the-
art algorithms in environments with gradual changes.

Index Terms— Change Detection, Linear Bandits, Nonstation-
ary Bandits, Performance Analysis

1. INTRODUCTION

The multi-armed bandit (MAB) problem is a fundamental frame-
work for sequential decision-making under uncertainty. In this prob-
lem, an agent is tasked with selecting an arm from a set of avail-
able options at each time step to maximize the cumulative reward
over a time horizon [1]. A key challenge in MAB lies in balanc-
ing the trade-off between exploration and exploitation. This balance
makes MAB models particularly well-suited for sequential decision-
making tasks where decisions must be made in real time with incom-
plete information. The versatility of MAB has led to its successful
application in a wide range of domains [2, 3, 4, 5, 6].

The classical bandit problem assumes a stationary environment
in which the reward distributions of arms remain constant over time.
However, real-world environments are inherently non-stationary [7,
8]. Existing studies on non-stationary bandits typically distinguish
between two types of environmental changes: gradual shifts and
abrupt shifts. The former refers to scenarios where the underlying
reward distributions evolve slowly over time, requiring learning al-
gorithms to continuously adapt to these incremental changes. In con-
trast, abrupt shifts involve sudden, discrete changes in the environ-
ment, necessitating algorithms that can rapidly update their estimates
of the environment once a change occurs.

For gradual changes, the extent of variation in the environment
is often characterized by the total variation of environment parame-
ter over the time horizon, defined as BT =

∑T→1
t=1 ↑ωt ↓ ωt+1↑2.

Forgetting-based methods are particularly well suited to such set-
tings. These methods rely on discarding outdated observations to
better adapt to recent changes. Some approaches implement this by
discounting past rewards [9], while others employ sliding-window

techniques [10]. These mechanisms can also be combined with other
bandit algorithms, such as Thompson Sampling [11] and Exp3 [12].
By smoothly balancing past and recent information, these methods
can achieve near-optimal regret with respect to both T and BT . On
the other hand, change-detection-based methods are suited for en-
vironments with abrupt changes [13, 14, 15, 16, 17, 18, 19]. Such
approaches typically combine a bandit algorithm with a change de-
tection module. When a change is detected, the algorithm is restarted
and the estimate of the environment is updated accordingly. How-
ever, a key limitation of these approaches lies in the need for forced
exploration across all actions. Since a bandit algorithm naturally
tends to exploit a small subset of actions, it may fail to detect changes
in other actions. To ensure that all changes can be detected with
small delay, these methods impose forced exploration over all ac-
tions. This strategy, however, may result in additional linear regret.

This paper focuses on the stochastic linear bandit problem.
In the linear bandit setting, most existing works employ forgetting-
based methods to address gradual changes [20, 21, 22]. Under abrupt
changes, these methods yield a regret bound of Õ(B1/4

T T 3/4),
which exceeds the theoretical lower bound of !(d2/3B1/3

T T 2/3).
This gap arises because forgetting strategies cannot eliminate the
influence of outdated information quickly enough after a sudden
shift. The work of [23] also adopts a change-detection perspective
by maintaining multiple slave bandit models and tracking their re-
ward estimation accuracy. When environmental changes degrade
estimation quality, new models are generated while outdated ones
are discarded. However, subsequent studies [21, 22] have shown that
this approach performs well only under low-noise settings, while its
effectiveness deteriorates in noisier environments. In addition, [24]
proposed a black-box algorithm that employs a prior-free change
detection mechanism. Their theoretical results can specialize to the
linear bandit setting and yield near-optimal regret. Nonetheless, as
highlighted by the recent work [25], the detection mechanism in [24]
requires an extremely long time horizon to be triggered. In practice,
its performance is comparable to random-restart strategies.

This paper reveals two key insights beyond existing studies.
First, the linear bandit setting induces a correlation among the arms
through the shared environment parameter. When the environment
changes, the rewards of all actions are affected. As a result, it is
unnecessary to enforce forced exploration of all actions to detect
environmental changes, making it possible to achieve sub-linear
regret. Second, our experiment results show that even in a gradual
change environment, a change detection algorithm can still iden-
tify environmental shifts as long as the drift of the environment
parameter vector exceeds a threshold. In this paper, we employ the
linear bandits with change detection (LBCD) framework. Within
this framework, we design a simple yet effective detection method,
the Averaged Window (AW) method, Other detection methods, such



Algorithm 1 Linear bandits with change detection (LBCD)

Require: Change detection method F , window length W
1: Initialize linearUCB method.
2: Initialize reward estimation of all arms using INITEST
3: for t = 1, 2, · · · , T do
4: Choose arm At = ak using linearUCB
5: Play arm k and recieve reward Xt

6: Update the linearUCB sub-routine using ak and Xt

7: if arm k’s estimation not done, i.e. wk < W then
8: Update reward estimate of arm k:
9: rk ↔ (rk ↗ wk +Xt)/(wk + 1), wk ↔ wk + 1

10: if arm k’s estimation is done, i.e. wk = W then
11: Initialize change detection Fk for arm k

12: else
13: Detect change on arm k: IsChange = Fk(Xt)
14: if IsChange then
15: Re-initialize linearUCB
16: Re-initialize estimation using INITEST

17: Procedure INITEST
18: for each arm index k = 1, . . . ,K do
19: Initialize counter and estimate: wk ↔ 0, rk ↔ 0

as CUSUM, can also be incorporated. We establish regret bounds
for the proposed LBCD-AW and LBCD-CUSUM algorithms, the
regret of LBCD-AW is nearly optimal in T .

2. PROBLEM FORMULATION AND LOWER BOUND

The environment provides the learner with a finite set of avail-
able actions A ↘ Rd. At each round t ≃ 1, the learner chooses
an action At ⇐ A and receives a reward Xt such that Xt =
⇒At,ωt⇑ + ωt, where ωt ⇐ Rd is the unknown environment pa-
rameter and ωt is a Gaussian noise with variance ε2. The envi-
ronment parameter ωt may change, requiring the learner to track
the environmental shifts and adapt its action selection accord-
ingly. The goal of the learner is to minimize the dynamic regret
R(T ) =

∑T
t=1 maxa↑A ⇒a↓At,ωt⇑ . We focus on the piecewise

stationary setting, where the environment undergoes abrupt changes
at certain unknown points in time. Formally, the time horizon T
is divided into M stationary segments. We use ti to denote the
i-th changepoint. For all time steps in the i-th segment, ωt = ωi.
The changepoints {t2, . . . , tM} are unknown to the learner. In this
setting, the learner must simultaneously identify the optimal actions
and adapt to the changes at the boundaries of these segments.

We can establish the following regret lower bound for the piece-
wise stationary linear bandit problem, which provides insights into
the best possible regret achievable. Proofs for all the theorems and
lemmas are available online1.

Theorem 1. For any piecewise stationary linear bandit problem
with M ↓ 1 change points, the dynamic regret of any linear bandit
algorithm satisfies R(T ) = !(d

→
MT ), where d is the dimension

and T is the time horizon.

3. PROPOSED ALGORITHMS

We combine change detection techniques with the linearUCB algo-
rithm to address the challenges of non-stationary environments. The
framework is summarized in Algorithm 1. It consists of two kinds of

1https://zenodo.org/records/17149159

sub-routines. The linearUCB sub-routine estimate the environment
parameters and select actions based on the principle of optimism in
the face of uncertainty. Alongside this, we estimate the reward mean
for each action using the first W observations for that action. After
the mean reward estimate for the action is calculated with enough
observations, a change detection sub-routine is launched and mon-
itors new reward feedbacks. When a change detection sub-routine
alerts a change, the framework resets all the sub-routines.

Compared to algorithms in [17, 18, 19], which introduce change
detection techniques into the piecewise stationary MAB problem,
Algorithm 1 has a significant distinction: it does not require the ad-
ditional steps of forced exploration of all actions to ensure timely
detection of environmental changes. This advantage arises from the
inherent properties of the linear bandit setting. Specifically, when
the environment’s parameter shifts from ωi to ωi+1, the mean re-
wards of all actions change simultaneously. Consequently, even if
the linearUCB sub-routine restricts its action selection to a few high-
reward actions, the mean rewards of these actions will still reflect the
environment change. As a result, the change detection sub-routines
can raise alerts without the need for forced exploration of all actions.
The elimination of forced exploration reduces the selection of sub-
optimal actions and thus reduces the algorithm’s regret.

We introduce two change detection methods, both of which can
be integrated into Algorithm 1 as subroutines for detecting changes.
The Averaged Window (AW) Method monitors potential changes in
the environment by comparing the running average of rewards within
a window of length W to the reward mean estimated at the start of
the stationary segment. When the deviation exceeds a pre-defined
threshold b, the method signals a potential change in the environ-
ment. The Cumulative Sum (CUSUM) Method [26] detects changes
by maintaining cumulative statistics that track the deviation of ob-
served rewards from the reference mean. Since the change direction
is unknown, the reward may increase or decrease after a change. So
we need to detect changes in both directions. At each round we first
calculate the deviations s+ = Xt ↓ µ̂ ↓ ϑ, s→ = µ̂ ↓ ϑ ↓ Xt,
where ϑ is a noise tolerance parameter that helps the algorithm ig-
nore minor fluctuations. Then we calculate the cumulative statis-
tics g+ ↔ max

(
g+ + s+, 0

)
, g→ ↔ max

(
g→ + s→, 0

)
. If either

statistic exceeds threshold h, the algorithm signals a change.
Algorithm 1 can becomes computationally inefficient when the

action space is large. To address this issue, we can cluster the actions
based on their contextual features under the assumption that actions
with similar contexts yield similar rewards. Within each cluster, we
aggregate samples from all actions to estimate a shared reward mean.
When the environment changes and the optimal action shifts from
one cluster to another, the mean reward of the affected cluster also
changes. Then we can detect change on the estimated cluster-level
reward mean. This clustering-based approach can significantly im-
prove the efficiency of the algorithm.

4. REGRET BOUNDS OF THE ALGORITHMS
The regret of the framework presented in Algorithm 1 is primarily
determined by the false alarms and detection delays in change de-
tection. Figure 1 illustrates the dynamics of environment changes
and the corresponding change detection results during the execu-
tion of the algorithm. The horizontal axis represents the timeline.
Black ticks on the timeline indicate the changepoints ti. The envi-
ronment experiences M ↓1 changepoints, resulting in M stationary
segments. We use Ii to denote these segments. Blue ticks represent
the detection points where the algorithm issues change detection sig-
nals, denoted as ϖj . Each detection point triggers a restart of the al-
gorithm, with N denoting the total number of restarts. We use Jj to

https://zenodo.org/records/17149159


Fig. 1: Illustration of environmental changes and change detections.

denote the j-th restart period. It is evident that the number of total
false alarms is F = N ↓M . After each changepoint, the algorithm
experiences a delay represented as Di. We have Di, D =

∑M
i=1 Di.

Using the definitions of F and D provided here, we can derive the
following regret upper bound for the framework.
Theorem 2. By setting the confidence parameter of the linearUCB
subroutine as ϱ, with probability at least 1↓2ϱ, the dynamic regret of
Algorithm 1 is bounded by C1d

√
(M + F )T log((1+L2)T/(M+

F )) + C2

√
d(M +D + F )3, where d is the dimension of the con-

textual feature, C1 = 2
→
2(

↓
ωS↓

d log 2
+
√

1 + 2 log(1/ε)
d log 2 ), C2 = 8L2S

3
↓
ω

are constants, and ς is the regularization coefficient of the Lin-
earUCB algorithm.

This theorem establishes the relationship between the dynamic
regret of Algorithm 1 and key variables such as T , M , D, and F .
The constants C1 and C2 depend on L, S, d,ς and ϱ. Typically,
L, S, d and ς are constants independent of T , and ϱ is set as 1/T .
In this case, we have C1 ⇓

→
log T and R(T ) = Õ(

→
d(M +D +

F )
3
2 +d

√
(M + F )T ). Comparing this upper bound to Theorem 1,

it is evident that both D and F must be controlled to achieve optimal
regret. Typically, there is a trade-off between detection delay and
false alarms in the design of change detection algorithms.

4.1. Regret Bound of LBCD-AW
For the proposed LBCD-AW algorithm, consider the setting where
the Gaussian noise has a variance of ε2, and the parameters are b,W ,
the following lemma provides an upper bound on the false alarms.
Lemma 1. For the LBCD-AW algorithm, the expected total number
of false alarms F satisfies E (F ) ⇔ T exp(↓(b/

√
2ε2/W )2/2).

Moreover, if b ≃ 2ε
√

log (T 2/φM) /W, we have Pr (F ≃ φM) ⇔
1/T, where φ > 0 is a constant to be determined later.

As shown in this lemma, the expected number of false alarms
decreases exponentially with increasing detection threshold b. The
constant φ can take any positive value. On average, φ represents the
expected number of false alarms within each stationary segment. If
we expect only one false alarm for each segment, the threshold can
be set as b = 2ε

√
log(T 2/M)/W .

To ensure low detection delay, the change in reward means must
exceed a certain threshold. Specifically, we assume for any arm
k ⇐ [K] and any stationary segment i ⇐ [M ↓ 1], the change is
sufficiently large, such that

∣∣aT
k ↼i ↓ aT

k ↼i+1

∣∣ > ”, where ” rep-
resents the minimum required change in the expected reward for all
arms. Under this assumption, the following lemma provides an up-
per bound on the total detection delay.
Lemma 2. When ” ≃ b + 2ϑ↓

W

√
log ((M ↓ 1)↽T/2), the total

detection delay satisfies Pr(D ≃ (M ↓ 1)(KW + ↽)) ⇔ 1/T,
where ↽ ≃ 1 is a constant to be determined later.

Since the bandit algorithm selects arms in a random way, in the
worst-case scenario, each arm needs to be selected sufficiently many
times to detect the change. Consequently, the delay bound provided
in this lemma is proportional to KW . The parameter ↽ in the the-
orem accounts for additional interactions beyond KW . In practice,

Fig. 2: Experiment results in the abrupt change environment.

Fig. 3: Experiment results in the gradual change environment.

after running for enough steps, the LinearUCB module tends to fo-
cus on selecting a small subset of actions rather than sampling all
actions evenly. As a result, the actual delay is likely to be much
smaller than the bound in the theorem. By substituting the conclu-
sions of Lemma 1 and Lemma 2 into Theorem 2, we can derive the
following upper bound.
Theorem 3. When M ⇔

→
T , we can set the sliding window as

W = 16ε2/”2
· log(T 2/M) and the threshold as b = ”/2,

then the regret of LBCD-AW is bounded by C1d
→
2MT log((1 +

L2)T/M) + C2

√
dM3(3 + 32K(ε/”)2 log T )3, where C1, C2

are constants defined in Theorem 2.
Lemma 1 requires b to be sufficiently large to control the num-

ber of false alarms, while Lemma 2 demands that ” exceeds b by
a certain margin to control the detection delay. To satisfy both re-
quirements simultaneously, in this theorem, we set W to be propor-
tional to ε2/”2, and b is chosen as ”/2. If both K and ε/” are
relatively small compared to T , the derived bound can be written as
R(T ) = O(

√
dM3(log T )3+d

→
MT log(T/M)), which is nearly

optimal in d and T .

4.2. Regret Bound of LBCD-CUSUM
The CUSUM algorithm accumulates the deviations between the cur-
rent observations and a reference value. In this work, we use the
estimated mean as the reference value. The estimation error directly
affects the expected deviation step in each round. By choosing W
large enough, we can ensure that the estimation error is, with high
probability, no greater than ”/4. Then, by setting ϑ ⇓ ”/2, we
can guarantee that the expected deviation step is at most ↓”/4 un-
der the no-change regime, and at least ”/4 after a change occurs.
Under this condition, by setting h properly, we can control both the
detection delay and the false alarm, which leads to the result below.
Theorem 4. For the LBCD-CUSUM algorithm, suppose the ref-
erence window is sufficiently large. Set the algorithm parameters
as h = 2ε2/” · log T and ϑ = ”/4. Then, the false alarm
satisfies Pr(F = 0) ≃ 1 ↓ 1/T , and the detection delay satis-
fies Pr

(
D ⇔

2MKϑ
!

(→
T log T + 2ϑ

! log T
))

≃ 1 ↓ 1/T. Conse-
quently, with high probability the cumulative regret is upper bounded
by Õ

(
d
→
MT

)
+ Õ

(
d

1
2M

3
2K

3
2
(

ϑ
!

) 3
2 T

3
4

)
.



Fig. 4: Impact of noise and feature dimension. Fig. 5: Experiment on Criteo Live dataset.

5. EXPERIMENTS

We compared the proposed algorithm against several baseline meth-
ods, including Sliding Window linearUCB (SW, [20]), Discounted
linearUCB (Discount, [21]), and Restarted linearUCB (Restart,
[22]). These methods are based on forgetting mechanisms. They use
the total variation BT of the environment to quantify the magnitude
of changes and tune parameters accordingly. Therefore, in our ex-
periments, once the total variation of the environment is simulated,
we calculate BT and set the parameters of the baseline algorithms
to their optimal values. Besides, we also compared the proposed
algorithm with the dynamic linearUCB (Dynamic) algorithm [23].
We used the publicly available implementation provided by the
authors. We also conducted experiments using the traditional lin-
earUCB [27, 28]. The two algorithms proposed in this paper, based
on averaged window and CUSUM, are labeled as LBCD-AW and
LBCD-CUSUM, respectively.

5.1. Abruptly changing environment
In this experiment, during t ⇐ [1, 25000] the environment param-
eters changed abruptly from (1, 0) to (0, 1), then to (↓1, 0), and
finally to (0,↓1). During t ⇐ [25001, 50000], the environment pa-
rameters returned to (1, 0) and remained static. We randomly gener-
ated 50 candidate actions on the unit circle. The noise level was set
to ε = 1, which is relatively high compared to the mean rewards.
For LBCD-AW, we set W = 50 and b = 0.8. For LBCD-CUSUM,
we set W = 50, ϑ = 1, and h = 10. The average cumulative regret
over 100 trials is shown in the right subplot of Figure 2. The left
subplot of Figure 2 shows the changes in the estimated environment
parameters for each algorithm. Specifically, the estimated param-
eters were sampled every 1000 rounds, averaged over 100 repeted
trials, and plotted sequentially over time. In the left subplot of Fig-
ure 2, after each abrupt change, the lines corresponding to LBCD-
AW and LBCD-CUSUM quickly jumps to the new positions. In
contrast, SW, Restart, and Discount algorithms lag behind in track-
ing the abrupt changes. Consequently, as shown in the right sub-
plot, the cumulative regrets of LBCD-AW and LBCD-CUSUM are
significantly lower than that of other algorithms. The Dynamic al-
gorithm can also detect changes in the environment parameters rel-
atively quickly. However, compared to the method proposed in this
paper, the convergence of its estimate is slower, resulting in a higher
regret than the proposed algorithm.

5.2. Gradually changing environment
The environment parameters start at (0, 0) and gradually drift coun-
terclockwise along the unit circle, completing one full rotation. All
other settings remain the same as in the first experiment. For LBCD-
AW, we set W = 50 and b = 0.5. For LBCD-CUSUM, we set

W = 50, ϑ = 1, and h = 10. The experiment results are shown
in Figure 3. From the left subplot, we observe that the yellow and
blue lines, corresponding to LBCD-AW and LBCD-CUSUM, align
well with the unit circle, indicating that the proposed algorithms can
effectively capture the overall trend of the parameter changes.

5.3. Impact of noise and feature dimension
For the abrupt change setup, we analyzed the impact of noise level
ε and feature dimension d using simulated data. Specifically, we
set ε ⇐ [0.1, 0.2, 0.5, 1.0, 1.5, 2.0] and d ⇐ [2, 5, 10, 20, 30], and
recorded the average regret of each algorithm over 50 independent
runs. The results are presented in Figure 4. As shown in the figure,
the proposed LBCD-AW and LBCD-CUSUM consistently outper-
form all baselines across different settings.

5.4. Experiment on Criteo Live Dataset
The Criteo live traffic dataset records 30 days of Criteo live traf-
fic data. Each record corresponds to a banner displayed to a user.
Detailed information about each banner is provided, based on which
the bandit model needs to predict whether the banner will be clicked.
Following similar setting in [21], we employ PCA to reduce the fea-
ture dimension to 10. From all the data, 10,000 positive samples
and 10,000 negative samples are randomly selected to form a sam-
ple pool. In each round, 100 candidates are selected from the sample
pool, and the model is tasked with choosing the optimal action from
these candidates. To enhance the efficiency, we use the k-means al-
gorithm to cluster all context features from the sample pool into 100
clusters. Actions in the same cluster exhibit similar rewards, and
we detect changes in the rewards of these clusters. At t = 5000, a
shift in user preferences occurs, requiring the bandit model to adapt
to the change. The results are presented in Figure 5, from which it
can be observed that the LBCD-CUSUM and LBCD-AW algorithm
proposed in this paper demonstrates the best performance.

6. CONCLUSIONS

This paper addresses the problem of non-stationary linear ban-
dits, focusing on piecewise stationary settings with limited abrupt
changes. We employ the change detection-based algorithmic frame-
work and introduce two specific algorithms: LBCD-AW and LBCD-
CUSUM. We provide detailed theoretical analysis for the proposed
framework. Regret upper bounds are derived for LBCD-AW and
LBCD-CUSUM. It is proved that under appropriate parameter set-
tings, the LBCD-AW algorithm achieves the optimal regret rate. We
conduct experiments on both simulated data and real-world data.
Experimental results show that the proposed methods significantly
outperform other algorithms in abrupt change environments and
perform well in gradual change environments.



7. REFERENCES

[1] Tor Lattimore and Csaba Szepesvári, Bandit algorithms, Cam-
bridge University Press, 2020.

[2] Eric M Schwartz, Eric T Bradlow, and Peter S Fader, “Cus-
tomer acquisition via display advertising using multi-armed
bandit experiments,” Marketing Science, vol. 36, no. 4, pp.
500–522, 2017.

[3] Sofı́a S Villar, Jack Bowden, and James Wason, “Multi-armed
bandit models for the optimal design of clinical trials: bene-
fits and challenges,” Statistical science: a review journal of
the Institute of Mathematical Statistics, vol. 30, no. 2, pp. 199,
2015.

[4] Tor Lattimore, Koby Crammer, and Csaba Szepesvári, “Lin-
ear multi-resource allocation with semi-bandit feedback,” Ad-
vances in Neural Information Processing Systems, vol. 28,
2015.

[5] I-Hong Hou, “Distributed no-regret learning for multi-stage
systems with end-to-end bandit feedback,” in Proceedings of
the Twenty-fifth International Symposium on Theory, Algorith-
mic Foundations, and Protocol Design for Mobile Networks
and Mobile Computing, 2024, pp. 41–50.

[6] Nida Zamir and I-Hong Hou, “Deep index policy for multi-
resource restless matching bandit and its application in multi-
channel scheduling,” in Proceedings of the Twenty-fifth Inter-
national Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Computing,
2024, pp. 71–80.

[7] Quang Minh Nguyen and Eytan Modiano, “Learning to sched-
ule in non-stationary wireless networks with unknown statis-
tics,” in Proceedings of the Twenty-fourth International Sym-
posium on Theory, Algorithmic Foundations, and Protocol De-
sign for Mobile Networks and Mobile Computing, 2023, pp.
181–190.

[8] Lihong Li, Wei Chu, John Langford, and Robert E Schapire,
“A contextual-bandit approach to personalized news article
recommendation,” in Proceedings of the 19th international
conference on World wide web, 2010, pp. 661–670.

[9] Levente Kocsis and Csaba Szepesvári, “Discounted ucb,” in
2nd PASCAL Challenges Workshop, 2006, vol. 2, pp. 51–134.

[10] Aurélien Garivier and Eric Moulines, “On upper-confidence
bound policies for switching bandit problems,” in International
conference on algorithmic learning theory. Springer, 2011, pp.
174–188.

[11] Francesco Trovo, Stefano Paladino, Marcello Restelli, and
Nicola Gatti, “Sliding-window thompson sampling for non-
stationary settings,” Journal of Artificial Intelligence Research,
vol. 68, pp. 311–364, 2020.

[12] Omar Besbes, Yonatan Gur, and Assaf Zeevi, “Stochastic
multi-armed-bandit problem with non-stationary rewards,” Ad-
vances in neural information processing systems, vol. 27, 2014.

[13] Robin Allesiardo, Raphaël Féraud, and Odalric-Ambrym Mail-
lard, “The non-stationary stochastic multi-armed bandit prob-
lem,” International Journal of Data Science and Analytics, vol.
3, pp. 267–283, 2017.

[14] Réda Alami, Odalric Maillard, and Raphael Féraud, “Memory
bandits: a bayesian approach for the switching bandit prob-
lem,” in NIPS 2017-31st conference on neural information
processing systems, 2017.

[15] Fang Liu, Joohyun Lee, and Ness Shroff, “A change-detection
based framework for piecewise-stationary multi-armed bandit
problem,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2018, vol. 32.

[16] Lilian Besson and Emilie Kaufmann, “The generalized likeli-
hood ratio test meets klucb: an improved algorithm for piece-
wise non-stationary bandits,” in Proceedings of Machine
Learning Research vol XX, 2019, vol. 1, p. 35.

[17] Lilian Besson, Emilie Kaufmann, Odalric-Ambrym Maillard,
and Julien Seznec, “Efficient change-point detection for tack-
ling piecewise-stationary bandits,” Journal of Machine Learn-
ing Research, vol. 23, no. 77, pp. 1–40, 2022.

[18] Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie,
“Nearly optimal adaptive procedure with change detection for
piecewise-stationary bandit,” in The 22nd International Con-
ference on Artificial Intelligence and Statistics. PMLR, 2019,
pp. 418–427.

[19] Subhojyoti Mukherjee and Odalric-Ambrym Maillard,
“Distribution-dependent and time-uniform bounds for piece-
wise iid bandits,” arXiv preprint arXiv:1905.13159, 2019.

[20] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu,
“Learning to optimize under non-stationarity,” in The 22nd In-
ternational Conference on Artificial Intelligence and Statistics.
PMLR, 2019, pp. 1079–1087.

[21] Yoan Russac, Claire Vernade, and Olivier Cappé, “Weighted
linear bandits for non-stationary environments,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[22] Peng Zhao, Lijun Zhang, Yuan Jiang, and Zhi-Hua Zhou, “A
simple approach for non-stationary linear bandits,” in Inter-
national Conference on Artificial Intelligence and Statistics.
PMLR, 2020, pp. 746–755.

[23] Qingyun Wu, Naveen Iyer, and Hongning Wang, “Learning
contextual bandits in a non-stationary environment,” in The
41st International ACM SIGIR Conference on Research & De-
velopment in Information Retrieval, 2018, pp. 495–504.

[24] Chen-Yu Wei and Haipeng Luo, “Non-stationary reinforce-
ment learning without prior knowledge: An optimal black-box
approach,” in Conference on learning theory. PMLR, 2021,
pp. 4300–4354.

[25] Argyrios Gerogiannis, Yu-Han Huang, and Venugopal Veer-
avalli, “Is prior-free black-box non-stationary reinforcement
learning feasible?,” in Proceedings of The 28th International
Conference on Artificial Intelligence and Statistics, Yingzhen
Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan, Eds.
03–05 May 2025, vol. 258 of Proceedings of Machine Learn-
ing Research, pp. 2692–2700, PMLR.

[26] Ewan S Page, “Continuous inspection schemes,” Biometrika,
vol. 41, no. 1/2, pp. 100–115, 1954.

[27] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári, “Im-
proved algorithms for linear stochastic bandits,” Advances in
neural information processing systems, vol. 24, 2011.

[28] Peter Auer, “Using confidence bounds for exploitation-
exploration trade-offs,” Journal of Machine Learning Re-
search, vol. 3, no. Nov, pp. 397–422, 2002.

[29] Ahmed Touati and Pascal Vincent, “Efficient learning in non-
stationary linear markov decision processes,” arXiv preprint
arXiv:2010.12870, 2020.


	 Introduction
	 Problem Formulation and Lower Bound
	 Proposed Algorithms
	 Regret Bounds of the Algorithms
	 Regret Bound of LBCD-AW
	 Regret Bound of LBCD-CUSUM

	 Experiments
	 Abruptly changing environment
	 Gradually changing environment
	 Impact of noise and feature dimension
	 Experiment on Criteo Live Dataset

	 Conclusions
	 References
	 Additional lemmas and proofs

