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Abstract—This paper studies a network structure design problem constrained by the epidemic outbreaks. In our model, geographic
locations (nodes) and their connections (edges) are modeled as a ring graph. The movement of a person is represented as a flow from
one location to another. A person can be infected at a location (node), depending on the number of infected flows (persons) going
through that location. In our paper, diseases are not limited to real human diseases; they can also refer to the general epidemic
information propagations. Given desired interaction traffic from a node to other nodes in terms of flows, and a greedy shortest path
routing scheme that is analogous to the greedy coin change, we focus on the structure design (representing quarantine rules) that
determines the number and distribution of chords on the virtual ring network for remote connections. Our objective is to minimize the
average number of routing hops, while the epidemic outbreaks are controlled under given infection and recovery rates. We provide a
systematic isomorphic structure design on nine different cases, based on three traffic distribution and three infection rate models. Two
hypercube-based structures are proposed. We also provide a greedy solution for constructing polymorphic structures. Our study
reveals some intriguing theoretical results, validated through experiments, on tradeoffs between local and global infections. Our work
casts new light on the effective network quarantine that places minimal restrictions on connections, i.e., maximal preservation of
normal communication activities, while controlling epidemic outbreaks.

Index Terms—Epidemic outbreaks, interaction, quarantine, network structure design.
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1 INTRODUCTION

THe notion of the disease [1] has been extended from
human diseases, such as Ebola, to general epidemic

information propagations [2], such as rumors in distributed
networks. Controlling the spread of a communicable disease
in a population is usually done through the quarantine,
where persons that have, or are suspected to have, a com-
municable disease are restricted from having interactions
with others. However, a quarantine is inconvenient for com-
munication activities, due to its limitations on interactions.
Hence, there is a tradeoff between the control of epidemic
outbreaks and the convenience of communication activities.
To understand this tradeoff, we conduct studies based on
a virtual ring model, which is an abstraction of the real
world through meridian and parallel. As shown in Fig. 1(a),
meridian and parallel discretize the Earth into geographic
locations (represented by nodes) on multiple rings. For
each ring, neighboring nodes are connected via links (roads
between nearby towns). Geographically-remote nodes are
connected via chords (flights between remote cities). The
geographical distance between nodes can be measured by
their hop distances along the ring.

This paper studies a network structure design problem
constrained by the epidemic outbreaks. In our model, flows
represent the movements of people. A person can be in-
fected at a location (node), depending on the number of
infected flows (persons) going through that location. Person-
to-person interactions are controlled by flow routes among
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Fig. 1. Abstraction of the Earth with meridian and parallel.

different locations. The quarantine is represented as interac-
tions with neighbors only (through a link in a 1-D ring, say,
walking between two adjacent towns), and non-quarantine
is shown as interactions with remote nodes (through a chord
in a 1-D ring, say, flying between two cities). A real-world
example is that Australia clamped down on the entry of in-
dividuals traveling from West Africa [3], in order to control
Ebola. Such a quarantine rule is executed by the Australian
Customs and Border Protection Service. The SIS model [4]
is used to simulate the epidemic spreading, where flows
have states of being susceptible or infected. Flows transfer
their states through a cycle of being infected (based on a
given infection rate) from susceptible, and going back to
susceptible by recovery (based on a given recovery rate).
We consider three infection rate models, where the infection
probability is related to the infected flows at a node. The
recovery rate is constant, as used in existing models [4].

We assume that each node has fixed outgoing traffic,
in terms of flows, to other nodes, following a particular
distribution [5]. Flow interactions occur in nodes along a
routing path from source to destination, which is a sequence
of links and chords. The routing path is determined by
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(b) Global infection.

Fig. 2. An example of the traffic flow routing.

a greedy-coin-change-based routing scheme [6], [7]. Each
node will select a connected relay, which is the closest to
the destination, to forward its traffic. In Fig. 2(a), if N0

wants to interact with N5 by generating a flow F1, then
its path is {N0, N3, N4}. In general, each node has multiple
flows, including forwarding flows and its own traffic flows.
For example, N3 has its own desired traffic to N4 in the
flow F2, while forwarding the flow F1 from N0 to N4.

Classic epidemiology controls the epidemic outbreaks by
studying the space-time patterns of diseases [8]. In contrast,
we study a network structure design problem constrained
by the epidemic outbreaks. The designed network structure
should minimize the average number of routing hops for node
interactions without epidemic outbreaks. The application of
our work implies a quarantine rule, which can maximally
preserve normal communication activities without epidemic
outbreaks. Note that the effect of a given flow is not re-
stricted over its routing path. If we design a ring structure
that has few chords, then the traffic will aggregate along
local nodes. In this case, susceptible flows going through
locations with infected flows are very likely to be infected.
This phenomenon is called the local infection. For example,
Fig. 2(a) has less chords than Fig. 2(b). As a result, F1 and
F2 aggregate along the link from N3 to N4. Aggregated
flows lead to a larger infection probability, and thus, local
infection happens. On the other hand, if we design a ring
structure that has numerous chords, then the traffic is spread
widely through chords. An infected flow can reach many
susceptible remote flows to spread the disease, leading
to the global infection phenomenon. For example, infected
flows from N0 can directly reach more nodes in Fig. 2(b)
than Fig. 2(a). Since flows interacts with epidemics, the
tradeoff between local infection and global infection makes
the structure design problem very challenging.

In this paper, we mainly focus on isomorphic structures,
where each node on the ring has the same chord distribution
in terms of degree and neighbor distribution. The sensitivity
experiments demonstrate that the isomorphism assumption
can be relaxed, and thus they are feasible for real-world
applications. Table 1 shows our major findings, based on
three traffic distribution models and three infection rate
models. The traffic distribution models (indicating different
node communication patterns) are shown as follows: (I) The
traffic from one node to another node is a constant; (II)
The traffic from one node to another node decays slowly
with respect to their geographical distance; (III) The traffic
from one node to another node decays quickly with respect
to their geographical distance. The infection rate models
(indicating different epidemic infectivities) include: (A) The

TABLE 1
Major results for isomorphic structures

Properties of (1-6) are Traffic distribution models
itemized in the text. Model I Model II Model III

Infection Model A 1, 5 1 1, 4
rate Model B 2 2, 6 2, 4

models Model C 3 3 3

probability of being infected by infected flows is a con-
stant; (B) The probability of being infected is sub-linearly
proportional to the traffic amount of infected flows; (C) The
probability of being infected is linearly proportional to the
traffic amount of infected flows. For a virtual ring with n
nodes, the properties in Table 1 are listed as follows:

1) The global infection is the major factor for the
epidemic outbreak. Epidemic outbreaks could be
controlled, if the node degree is capped.

2) Neither local nor global infection is the major factor
for the epidemic outbreak. The optimal structure
remains an open problem.

3) The local infection is the major factor for the epi-
demic outbreak. The fully-connected network is the
optimal structure.

4) Chords should only connect to the geographically
nearest O(lnn) nodes to facilitate the communica-
tions. This is because the interaction traffic decays
exponentially with the geographical distance.

5) The Ulysses butterfly structure [9] is an asymptoti-
cally optimal structure.

6) This corresponds to the most complex case, and is
the focus of this paper. Two hypercube-based struc-
tures are proposed and analyzed. The first structure
uses binary jump sizes of chords [7]. The second
structure improves the first one by considering the
desired traffic distribution.

We also propose a greedy solution for constructing poly-
morphic structures, where nodes have heterogenous chord
distributions. This greedy solution is studied under the
desired traffic model I and the infection rate model A.
We show the relationship between the reduced average
number of routing hops (i.e., the benefit) and the increased
network vulnerability to epidemics (i.e., the cost), brought
by adding a chord. The chord, which has the largest benefit-
to-cost ratio, is iteratively added to construct a polymorphic
structure. This greedy solution gives out some insights on
efficiently constructing general polymorphic structures that
resist epidemic outbreaks.

The remainder of this paper is organized as follows. In
Section 2, the basic model is described and the problem is
formulated. In Section 3, two hypercube-based isomorphic
structures are studied. In Section 4, we consider other traffic
distribution and infection rate models. In Section 5, we focus
on constructing polymorphic structures. In Section 6, our
network structures are evaluated. In Section 7, we conclude
the paper. Supplementary material are published in [10].

2 MOTIVATION, MODEL, AND FORMULATION

We first describe the motivation. Then, the ring network
model, the traffic distribution models, and the infection rate
models are described. Finally, the problem is formulated.



IEEE/ACM TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. , NO. , 2016 3

∆0, i

0

links

chords

n -1

...

i +1

...

...

...

...

j
...

i -1

i

∆0, j

Directional

Bidirectional

Fig. 3. The virtual ring model with bidirectional links.

2.1 Motivation

This paper is based on the real earth. Meridians and parallel-
s discretize the earth into different locations (cities). People
move around different locations for their lives. Epidemics
(e.g., Ebola) are found and may spread. To avoid epidemic
outbreak, people’s movements are restricted by quarantine.
For example, Australia clamped down on the entry of in-
dividuals traveling from West Africa to against Ebola [3].
However, some movements are necessary and desired, even
under the threat of epidemics. For example, food suppliers
have to move around to feed people. Consequently, it is
challenging to find an answer to the question of how to
control these necessary movements while avoiding epidem-
ic outbreaks. Let us consider a motivational scenario on the
transportation network for food suppliers:

• To feed people, food must be transported from some
cities to some other cities by trains. These movements
are necessary, even under the threat of epidemics.

• To avoid epidemic outbreaks, two cities may not be
directly connected by trains. A transportation be-
tween them is forwarded via some third-party cities.

The structure of the transportation network (i.e., which two
cities are directly connected by trains) for food suppliers
is critical. It is the variable in this paper (represented by
the number and distribution of chords). We want to satisfy
the food supply requirement and control the epidemics,
with minimal transports. If all cities are directly connected
by trains, then an epidemic outbreak can spread globally.
However, if only a few cities are directly connected by trains,
then people need to go through multiple cities to gain access
to food supplies. People who goes through more cities also
have a higher possibility of being infected.

Cities on the earth are modeled by the ring network in
subsection 2.3. Necessary people’s movements (e.g., food
supplies) are described by given traffic distribution models,
with a routing scheme, in subsection 2.4. The traffic can be
routed directly and indirectly (e.g., nonstop and multi-stop
trains). This interacts with epidemic spreadings, which are
described by given infection rate models in subsection 2.5.
The problem is formulated in subsection 2.6. The objective
is to minimize the number of routing hops for traffic flows,
and the constraint is to control epidemic outbreaks.

2.2 Related Works

Our paper is closely related to transportation network de-
sign papers [5], [11], which design airline/train network
structures to satisfy transportation demands and constraints

Ni

Nj

Relay

Fig. 4. A globe representing Earth with meridian and parallel.

[12], [13]. For example, Wieberneit [13] review the literature
on designing the freight transportation network, including
the network structure, the freight frequency, and the freight
routing path. The freight service demands are satisfied. Our
research builds upon previous knowledge, but additionally
consider the constrains imposed by the epidemic outbreak.
This paper aims at a network structure, which brings a min-
imum routing for given traffics, and the constraint is that
epidemics will not outbreak. This paper is also related to
peer-to-peer network structure design problems. For exam-
ple, Xu’s work [5] studies a degree-capped network struc-
ture that achieves a minimum diameter. Our problem be-
comes equivalent to Xu’s work, when traffics are uniformly-
distributed and the epidemic is traffic-insensitive. This is
because the minimum routing becomes equivalent to the
minimum diameter, and the epidemic constraint becomes
equivalent to the degree cap.

The spreading of epidemics has been well-studied in
the literature [14], [15], [16], [17], [18]. Classic models in
epidemiology, such as SIS and SIR, are summarized in [4]
with respect to different network structures. These models
are known as compartmental models, which use interac-
tions between states (e.g., susceptible, infected, recover) to
describe epidemics. However, these models do not consider
the interactions between the epidemic spreading and the
traffic. Therefore, Preciado et al. [16], [17], [18], [19] in-
troduced convex optimization techniques for the epidemic
control under different traffic rates. In contrast, this paper
uses the existing SIS model to study the interaction between
the traffic flow routing path and the epidemic spreading
through a network structure design problem.

2.3 The Ring Network Model
As shown in Fig. 3, our study is based on a virtual ring
network of n nodes. Since the virtual ring is an abstraction
of a real-world geographic map, each node on the ring
represents a geographic location. Nodes have links with two
geographical neighbors, and chords with geographically-
remote nodes. The IDs of nodes are from 0 to n − 1, where
the ith node is denoted as Ni. The geographical distance
between Ni and Nj is denoted as 4i,j , which is measured
by their hop distances along the ring (the minor part). In
Fig. 3, we have 40,j = j and 40,i = n−i. Both links and
chords are called edges in this paper, and are directional. We
first explore isomorphic structures, where each node has a
degree of D (both in-degree and out-degree). Polymorphic
structures are considered later in Section 5.

The ring model can represent the geographic relation-
ships among different locations. It is widely acknowledged
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in research on P2P networks [7] and social networks (the
small-world phenomenon) [20]. As shown in Fig. 4, each
meridian or parallel of the Earth can be abstracted as a ring.
In such a case, node communications can be decomposed
on two rings. In Fig. 4, Ni and Nj can communicate with
each other through a relay node at the intersection of the
meridian and the parallel rings (X-Y routing). More details
are presented in the supplemental material.

Links in the ring represent the network backbone that
maintains the network connectivity. Quarantine is repre-
sented as interactions with neighbors only (through a link in
the ring, say, walking between two adjacent towns). People
are always allowed to move near to their home locations.
Chords stand for the normal connections. Non-quarantine
is shown as the interactions with remote nodes (through a
chord in the ring, say, flying between two cities). A real-
world example is that Australia clamped down on the entry
of individuals traveling from West Africa [3]. There is no
chord from West Africa to Australia, i.e., people in West
Africa are not allowed to travel to remote locations directly.

2.4 The Desired Traffic Distribution Model

In this subsection, we start with the desired traffic distribu-
tion model II. Let Ti,j denote the desired interaction traffic
from Ni to Nj . Ti,j can be interpreted as a flow, which
includes a certain number of people moving from locations
Ni to Nj . Tl is the total interaction traffic going through Nl
(including the traffic that heads for Nl, and the traffic that is
forwarded by Nl). The mean value of Tl is denoted as 〈Tl〉.
Since people are more likely to move around their home
locations, we consider Ti,j to be Ti,j∝ 1

4i,j
(monotonically

decreasing with geographical distance). For simplicity, we
assume that nodes have homogeneous traffic distributions.
After normalization (

∑
j Ti,j=1), we have (lnn� ln 2):

Ti,j =
1

2 ln n
2

1

4i,j
≈ 1

2 lnn

1

4i,j
(1)

Eq. 1 shows the desired traffic distribution model II. We also
consider two different models (model I where Ti,j∝1, and
model III where Ti,j∝e−4i,j ) in Section 4, since they repre-
sent different node communication patterns. The movement
in model I has no locality, meaning that people (e.g., busi-
nessmen) equally visit nearby and remote locations. On the
other hand, the movement in model III is locality-oriented,
meaning that people (e.g., farmers) only move around their
home locations. Model II is in the middle. Compared to ex-
isting traffic distribution models in [21], [22], our models are
more simple and abstracted. They describe the asymptotic
traffic distribution with respect to the geographical distance.

Flows are only allowed to be routed among connected
nodes (through links or chords). Flow interactions occur
in nodes along a routing path from source to destination,
which is a sequence of links and chords. The routing path
is the shortest one determined by a greedy-coin-change-based
routing scheme. In this routing scheme, each node greedily
forwards the interaction traffic flow to a connected relay
that is geographically closest to the destination [6], [23]. This
flow routing scheme is used, since people usually make local
decisions for their movements without a global view. The
routing path (representing the movement trace) from Ni to

0

n-11

4

n-22

3 n-3n-4

Fig. 5. An illustration of the 4-ary tree.

Nj is denoted as Pi,j , with its length being |Pi,j |. We define
the average number of routing hops as:

H =

∑
i,j Ti,j |Pi,j |∑

i,j Ti,j
(2)

H represents the communication convenience (a smaller H
means more convenient communications). Our goal is to
design a structure that can minimize H without epidemic
outbreaks. Then, we have the following observation:
Proposition 1. If the network structure is isomorphic and

all the nodes in the network have out-degrees of D, then
the average traffic received by a node is H . The average
amount of traffic going through each edge is H/D.

Proof: The interaction traffic from Ni to Nj is Ti,j , with a
path length |Pi,j |. Each node on the path Pi,j , except for the
source node Ni, receives this traffic. Therefore, |Pi,j | nodes
receive a traffic of Ti,j , and the total traffic is∑

i,j

Ti,j |Pi,j | =
∑
i,j

Ti,j ×
∑
i,j Ti,j |Pi,j |∑

i,j Ti,j
= nH (3)

Since the desired interaction traffic of each node is a speci-
fied unit, we have

∑
i,j Ti,j=n. Therefore, the average traffic

received by a node is H . Note that the traffic of a node is
shared by D edges, and thus the average amount of traffic
going through each edge is H/D. �

Proposition 1 means that longer routing paths bring
heavier forwarding traffic on each node. If the ring network
has fewer chords, then people need to go through more
locations to reach their destinations. Meanwhile, we have:
Theorem 1. In any network structures, if all the nodes have

out-degrees no more than D, then H ∈ Ω(logD n).

Proof: Since the out-degree of each node is bounded by
D, a node can reach at most D|P | nodes through a path
no longer than |P |. When the network structure is a D-ary
tree, the root node can reach the most nodes with a limited
path length. The lower bound of H is that each node can
be regarded as a root of a D-ary tree. Let us look into a
specified node, N0, as the root node. The neighbors of N0

in the ring are put into the higher layers of the tree, and the
remote nodes are assigned into the lower layers of the tree,
as shown in Fig. 5. This is because N0 has more interaction
traffic to nearby nodes than remote nodes. In Fig. 5, nodes
N1, N2, Nn−1, Nn−2 are placed into the second layer, while
the interaction traffic between the root and these nodes are
T0,1 = T0,n−1 = 1

2 lnn
1
1 and T0,2 = T0,n−2 = 1

2 lnn
1
2 . Then,

we have the following inequality:

H =

∑
i T0,i|P0,i|∑

i T0,i
=
n−1∑
i=1

T0,i|P0,i| = 2×
n
2−1∑
i=1

T0,i|P0,i|

≥ 1

lnn

logD n∑
x=1

[
x×

∫ (Dx+...+D0)/2

(Dx−1+...+D0)/2

1

y
dy
]

(4)
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This is because the tree has O(logD n) layers. For the xth

layer, the tree contains Dx−1 nodes. Then, we have∫ (Dx+...+D0)/2

(Dx−1+...+D0)/2

1

y
dy = ln

Dx + ...+D0

Dx−1 + ...+D0
> lnD (5)

Therefore, Eq. 4 can be rewritten as

H >
1

lnn

[logD n∑
x=1

x lnD

]
≈ log2

D n lnD

2 lnn
=

1

2
logD n (6)

where logD n = lnn
lnD . Hence, we have H ∈ Ω(logD n). �

2.5 The Infection Rate Model
We start with the infection rate model B, which is a simplifi-
cation of the classic SIS model [4]. The eigenvalue approach
[24] is not used because of complexity. In our model, the
infection rate can be traffic-sensitive. We highlight that a
desired traffic flow with different routing paths have different
impacts on epidemic spreadings [24]. This paper uniquely
connect the traffic flow routing and the epidemic spreading
through the network structure design.

Flows have states of being susceptible or infected. A
susceptible flow represents a group of moving people who
do not have the disease, but can be infected. A infected flow
represents a group of moving people, who have the disease
and can spread the disease at the locations they go through.
Infected flows can go back into the susceptible state upon
recovery, and can be reinfected. For isomorphic structures,
Theorem 1 shows that the average traffic per edge is H/D.
In the infection rate model B, let us consider a node with
D incoming edges, each of which loads a traffic of H/D.
If the flows on one incoming edge are infected, then they
would bring an infection rate (the infection probability per
time unit) of λ

√
H/D, where λ is a coefficient (λ > 0).

The square root depicts the decreasing hazard infection of
subsequent interactions [25]. Other sub-linear functions can
also be used here. Section 4 further considers a constant rate
model of λ as model A, and a linear rate model of λH/D
as model C. While model A is traffic-insensitive, model C is
traffic-sensitive. Model B is in the middle.

Based on the existing literature [4], λ and r are fixed.
Let f(t) and g(t) (or simply f and g) denote the average
fractions of edges that load infected and susceptible flows
at time t, respectively. Each node has, on average, Df in-
coming edges that load infected flows. Hence, the infection
probability for susceptible outgoing flows per time unit is:

1− (1− λ
√
H

D
)Df ≈ λ

√
HDf = µf (7)

In Eq. 7, we define µ = λ
√
HD for presentation simplicity.

We assume λ
√
H/D � 1. Otherwise, the epidemic out-

break cannot be controlled. Hence, a total fraction, µfg, of
all flows are infected during a time unit. Let r denote the
recovery rate of infected flows. Therefore, we have:

dg
dt

= rf − µfg and
df
dt

= µfg − rf (8)

Based on the existing literature [4], the solution to Eq. 8 is:

f(t) = f(0)
(µ− r)e(µ−r)t

µ− r + µf(0)e(µ−r)t
(9)

TABLE 2
Notations in this paper

Notation Description
Ni Node with an ID of i in the ring.
n Total number of nodes in the ring.
D In-/Out-degrees of all nodes

(only used for isomorphic structures).
d Number of chords for half a ring.

We have d = D/2− 1.
4i,j Geographical distance between Ni and Nj .
Ti,j Desired interaction traffic from Ni to Nj .
Pi,j Routing path from Ni to Nj .

|Pi,j | denotes the path length.
Tl Total interaction traffic going through Nl.
H Average number of routing hops.
f (g) Fraction of edges that load infected

(susceptible) flows.
λ, µ Coefficients for infection rate models.
r Recovery rate of the infected flows.

Q(D) Fraction of nodes with in-degree D
(only used for polymorphic structures).

〈·〉 Mean value of the corresponding variable.

If µ < r, f(t) decreases exponentially, meaning that the
epidemic outbreak is controlled. Hence, we have:

µ < r or
√
HD <

r

λ
(10)

A larger degree D generally brings a smaller H , since more
chords can shrink the network diameter. Eq. 10 means that
short routing paths can contribute to the control of epidemic
outbreaks. This is because flows visit fewer locations, when
H is smaller. However, the pattern of Eq. 10 is very complex:

• If H logarithmically decreases with D, the constraint
of controlling epidemic outbreaks is equivalent to a
degree limitation. For example, if H = lnn/ lnD,
then

√
HD increases monotonically with D > 2.718,

i.e., D should be smaller than a threshold. Our goal
becomes minimizing H with a limited degree.

• On the other hand, if H exponentially decreases
with D, then a larger D is better, which is counter-
intuitive. For example, if H = n/2D , then

√
HD

decreases monotonically with D > 1.443.

The above phenomena shows the tradeoff between local
and global infections. If D is small, then the traffic will
aggregate along local nodes (H is large). In this case, sus-
ceptible flows going through locations with infected flows
are very likely to be infected, resulting in a local infection
phenomenon. On the other hand, if D is large, then the traf-
fic is spread widely through chords. At this time, an infected
flow can reach many susceptible remote flows to spread the
disease, leading to the global infection phenomenon. The
challenge is that H cannot be directly derived as a function
of D. This is because networks with the same D can have a
different H due to different network structures.

2.6 Problem Formulation

This paper studies a network structure design problem con-
strained by the epidemic outbreaks. The network structure
refers to the number and distribution of chords on the ring.
Our objective is to minimize the average number of routing
hops (minimize H), and the constraint is that epidemics will
not outbreak. The variable of our problem is the number
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Fig. 6. An illustration of the binary-cut network structure (only the chords of N0 are shown).

and distribution of chords (how nodes connect each other
on the ring; as a result, the degree D is a variable). The
distribution of the desired traffic (Ti,j) is given. The routing
scheme (given the number and distribution of chords, which
path does Ti,j route from Ni to Nj) is given. The epidemic
outbreak constraint (

√
HD < r

λ for infection rate model B)
is given. In general, more chords brings a smaller H , but
the network may be more vulnerable to epidemic outbreaks
(
√
HD may be larger, since the degree D is larger). Net-

works with the same number of chords can have a different
H due to different chord distributions.

Our problem stands for an effective network quarantine
with minimal restrictions on communication activities. The
ring network is an abstraction of the real-world geographic
map, as shown in Fig. 1. The quarantine rule is represented
by the number and distribution of chords. Two unconnected
nodes (no chord) mean that they are isolated from each other
in the quarantine, in order to control epidemic outbreaks. A
real-world example is that Australia clamped down on the
entry of individuals traveling from West Africa [3]. Australia
and West Africa are represented as two nodes on the ring,
while there is no chord connecting these two nodes. Such a
quarantine rule is executed by the Australian Customs and
Border Protection Service. The average number of routing
hops represents the convenience level of the communication
activities. A smaller H means that fewer restrictions are
put on the communication activities. The epidemics in this
paper include human diseases, as well as epidemic infor-
mation propagations in distributed systems (more detailed
descriptions can be found in [2]).

In the next section, we design isomorphic structures, un-
der the desired traffic distribution model II and the infection
rate model B. In Section 4, we discuss other traffic distribu-
tion models and infection rate models. The reason for the
isomorphic structures is that networks with heterogenous
degrees are more vulnerable to epidemics [26]. We also show
a greedy solution for constructing polymorphic structures in
Section 5. Finally, all the notations are shown in Table 2.

3 ISOMORPHIC STRUCTURE DESIGN

In this section, we design two hypercube-based isomorphic
structures that correspond to property (6) in Table 1. Since
the structure is isomorphic, we only describe the chord
distribution of node N0 for clear presentation. A chord from
the node N0 to Ni (i<n2 ) indicates that N0 has a jump size of
i. The out-degree of N0 is D, including two links and D−2
chords. We use symmetric designs for each side of the ring,
meaning that d = D

2 −1 chords are assigned for the left-side
(or right-side) half ring of N0. The core idea of our structure
design is to find a good tradeoff between the degree and
the average number of routing hops, while the greedy-coin-
change-based routing is well-supported. All of these factors

can be found in hypercube structures [5], [7] because of their
structural symmetries. Epidemic outbreaks are revealed by
the tradeoff between the local and global infections, which
are, in turn, controlled by the degree.

First, we discuss the hypercube-based binary-cut struc-
ture, which is shown in Fig. 6. In this network structure, the
jump sizes are {+n/2

2 ,+n/2
22 , ...,+

n/2
2d
,+1} for the right-side

half ring and {−n/22 ,−n/222 , ...,−
n/2
2d
,−1} for the left-side

half ring. For example, if n = 16 and d = 2 (D = 6), N0

would have chords to nodes {N2, N4, N12, N14} and links
to nodes {N1, N15}. We have assumed d < log2 n such that
nodes in the range (−n/2

2d
,+n/2

2d
) are archived through step-

by-step links (jump sizes of 1). Then, the bounds of H for
the binary-cut structure are:

Theorem 2. In the binary-cut structure, the bounds of H are
H ∈ O( 3dn

4d lnn
) and H ∈ Ω( n

2d lnn
).

The proof of Theorem 2 is attached in the supplemental
material. Asymptotically, HD monotonically decreases with
D, meaning that a larger degree is better. This structure can
support at most d= log2

n
2 − 1 chords for half a ring. The

jump sizes for half a ring are {+1,+2,+4...,+n/2
2 }.

However, the binary-cut structure fails to consider the
desired traffic distribution for optimizing H . While each
node has more traffic to its geographically-nearby nodes, we
should provide more jumps to geographically-nearby nodes
and fewer jumps to geographically-remote nodes. Follow-
ing this intuition, we can improve the binary-cut network
structure to the binary-traffic-cut network structure. Instead
of jumping to the middle node of each interval, we jump
to the node that forwards half of its desired traffic. Consid-
ering that we have

∫√n
1

1
i di ≈

∫ n√
n

1
i di, the jump sizes are

set to be {+
√
n/2,+ 4

√
n/2,+ 8

√
n/2, ...,+ 2d

√
n/2,+1} and

{−
√
n/2,− 4

√
n/2,− 8

√
n/2, ...,− 2d

√
n/2,−1}. Here, the de-

sired traffic from node N0 to the nearest
√
n/2 nodes is the

same as its traffic to the remaining nodes. The bounds of H
for the binary-traffic-cut structure are:

Theorem 3. In the binary-traffic-cut structure, the upper and
lower bounds of H are H ∈ O(

√
n

lnn + lnd n
2d2

n
1

2d ) and H ∈
Ω(
√
n

lnn + 1
lnnn

1

2d ), respectively.

The proof of Theorem 3 is attached in the supplemen-
tal material. The binary-traffic-cut structure can support at
most O(ln lnn) chords. However, even if d is very small, the
first part of

√
n

lnn dominates the bounds of H . For this struc-
ture, HD monotonically increases with D, meaning that we
need to control the degree to avoid epidemic outbreaks:

Corollary 1. For a binary-traffic-cut network structure with-
out epidemic outbreaks, we have H ∈ O(

√
n

lnn
+lnd n

2d2
n

1

2d )

andH ∈ Ω(
√
n

lnn
+ 1

lnnn
1

2d ), where d ≈ (r2 lnn)/(2λ2
√
n).
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If (r2 lnn)/(2λ2
√
n)<1, epidemic outbreak is inevitable

for this structure. In terms of minimizing H , the binary-
traffic-cut structure outperforms the binary-cut structure,
since it considers the desired traffic distribution. However,
in the view of minimizing H without epidemic outbreaks,
it is hard to analytically compare these two structures, since
they have different vulnerabilities to epidemic outbreaks.

4 OTHER TRAFFIC DISTRIBUTION AND INFECTION
RATE MODELS FOR ISOMORPHIC STRUCTURES

In this section, we study isomorphic structures with differ-
ent traffic distribution and infection rate models.

4.1 Other Traffic Distribution Models
In previous sections, we only study the desired traffic dis-
tribution model II, where Ti,j ∝ 1/4i,j . In this subsection,
two different traffic distribution models (model I and model
III) are discussed. These three models present different node
communication patterns. Compared to model II (i.e., the
most general case), models I and III are two more extreme
models that have simpler properties as follows.

Let us start with the desired traffic distribution model I,
where we have a uniform distribution of Ti,j = 1

n . In this
case, the binary-cut structure is equivalent to the binary-
traffic-cut structure. For each jump size on one side of the
ring, half of the flows to nodes on that side will take it.
For example, if n = 16 and d = 2, flows from N0 to
{N4, N5, N6, N7} include a jump size of +4, flows from
N0 to {N2, N3, N6, N7} include a jump size of +2, and
flows from N0 to {N1, N3, N5, N7} include a jump size of
+1. Therefore, the average path length through chords is
Θ(d). For each node in the interval of (0, n

2d
), it is achieved

through links (jump sizes of 1), the average path length
of which is Θ( n

2d
). Therefore, we have H ∈ Θ(d + n

2d
),

where d ∈ Θ(log2 n) is the best choice. If HD < r2/λ2, we
have H ∈ Θ(log2 n) for the binary-cut structure. However,
better structures may exist. For the same number of chords,
the Ulysses butterfly network structure [9] achieves a lower
network diameter than does the hypercube structure.

The desired traffic distribution model III has an expo-
nential traffic distribution of Ti,j ∝ e−4i,j . Note that, the
distribution in model III decays exponentially, and thus the
traffic to remote nodes can be ignored (people’s movements
are extremely locality-oriented). Assuming N0 is the source,
then each node can be achieved in, at most, n

2 steps (by
links), and at least 1 step (by a chord). Then, we have the
following inequation:

n

2
×

∫ n
2

2 ln n
2

e−idi <
n

2
×e−2 ln n

2 � 1×
∫ 2 ln n

2

1
e−idi (11)

Eq. 11 means that the nearest 2 ln n
2 nodes on one side of

the ring are more important, while the traffic from N0 to the
remaining nodes on that side can be ignored. Even if all the
other nodes can only be achieved by links, their influences
on H are much smaller than the nearest 2 ln n

2 nodes.
Therefore, all the chords are only necessary to connect the
nearest O(lnn) nodes, regardless of the remaining remote
nodes. The insight is that we need smaller jump sizes for
a faster traffic decay, where remote connections are useless.
This result is stated as the property 4 in Table 1.

4.2 Other Infection Rate Models

In previous sections, we use the infection rate model B,
where µ = λ

√
HD. The reason behind the sub-linearity of

model B is that people are more likely to be infected by
the initial interactions with infectors than the subsequent
interactions with infectors. In this subsection, two different
infection rate models (model A and model C) are discussed.
These three infection rate models present different epidemic
infectivities. Compared to model B (i.e., the most general
case), models A and C are two more extreme models that
have simpler properties as follows.

First, we consider the infection rate model A, where the
infection rate is a constant, i.e., traffic-insensitive. In this
case, Eq. 7 can be rewritten as (let µ = λD for consistency):

1− (1− λ)Df ≈ λDf = µf (12)

Eqs. 8 and 9 remain the same, while Eq. 10 changes to:

D <
r

λ
(13)

Eq. 13 means that the constraint of controlled outbreaks
is equal to the degree limitation. The insight is that the
global infection dominates, and thus we need to restrict the
connections among different locations. This result is stated
as the property 1 in Table 1. Under the traffic distribution
model I and the infection rate model A, our problem is
reduced to minimizing H with a limited degree. As shown
in [9], Ulysses butterfly network structure is asymptotically
optimal for this problem, where we have H ∈ Ω(logr/λ n).
This result is stated as property 5 in Table 1.

As for the infection rate model C, we consider that
the infection rate is traffic-sensitive. For a given location,
each incoming edge that loads infected flows would in-
dependently bring an infection probability that is linearly
proportional to the traffic on that edge. Then, Eq. 7 can be
rewritten as (let µ = λH for presentation consistency):

1− (1− λH
D

)Df ≈ λHf = µf (14)

Eqs. 8 and 9 remain the same, while Eq. 10 changes to:

H <
r

λ
(15)

Eq. 15 means that the network structure with a smaller H
can resist epidemics better, and thus the fully-connected
network is the best choice. This is because the local infection
becomes the major factor for epidemic outbreaks. It implies
that the communication restrictions lead to negative effects,
under the infection rate model C. In this case, one node
should connect to as many nodes as possible, in order to
mitigate the traffic aggregation on local links. This result is
stated as property 3 in Table 1.

5 POLYMORPHIC STRUCTURE DESIGN

In this section, we study polymorphic structures, under the
desired traffic model I and the infection rate model A. Other
models are not explored due to their complexities.
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Algorithm 1 Greedy Construction
Input: A virtual ring network that has no chord;
Output: A polymorphic network structure;

1: while 〈D
2〉

〈D〉 <
r
λ do

2: for each pair of unconnected nodes do
3: Calculate the corresponding ∆H and ∆

[ 〈D2〉
〈D〉

]
, if a

chord is added for this pair of nodes;
4: Add the chord with the highest ∆H/∆

[ 〈D2〉
〈D〉

]
;

5: Remove the last added chord to guarantee 〈D
2〉

〈D〉 <
r
λ ;

6: return the current network structure;

Algorithm 2 Greedy Dismantlement
Input: A fully-connected virtual ring network;
Output: A polymorphic network structure;

1: while 〈D
2〉

〈D〉 >
r
λ do

2: for each pair of nodes connected by a chord do
3: Calculate the corresponding ∆H and ∆

[ 〈D2〉
〈D〉

]
, if a

chord is removed for this pair of nodes;
4: Remove the chord with the lowest ∆H/∆

[ 〈D2〉
〈D〉

]
;

5: return the current network structure;

5.1 Contributions of an Additional Chord
This subsection studies how H reduces, if an additional
chord is added into the current ring network (under the de-
sired traffic model I). Let ∆H denote the amount of reduced
H . Let us start with a virtual ring network that has no chord,
and then consider adding a chord from Ni−x to Ni with a
jump size of x. Then, nodes {Ni−n/2, ..., Nj , ..., Ni−x} can
benefit from this chord. For Nj specifically, its routing paths
of flows to nodes {Ni, ..., Nj+n/2} are shortened by x − 1.
Under the desired traffic model I, we have:

∆H = (x− 1)

n
2−x∑
j=0

(
n

2
− x− j) ≈ 1

2
(
n

2
− x)2x (16)

Eq. 16 is maximized, when we use a chord with the jump
size of x = n

6 . The insight behind Eq. 16 is the tradeoff
between (1) the number of routing paths that can benefit
from the chord and (2) the saved lengths of routing paths
brought by the chord. Here, we do not further explore
the contribution of an additional chord on a ring with
multiple chords. However, note that the ∆H brought by an
additional chord can be calculated in polynomial time. This
is because we have O(n2) pairs of nodes, while the routing
path for each pair of nodes can be determined within O(n).

5.2 Epidemics in Polymorphic Structures
This subsection introduces an advanced epidemic model
[26] for polymorphic structures under the infection rate
model A. To capture the structural heterogeneity, let Q(D)
denote the fraction of nodes with in-degree D, and let fD(t)
denote the fraction of incoming edges that load infected
flows in locations with in-degree D at time t. For the model
A of the constant infection probability, we have:

dfD(t)

dt
= λD[1− fD(t)]Θ(f(t))− rfD(t) (17)

Eq. 17 is similar to Eq. 8, which is for isomorphic structures.
The fraction of outgoing edges that load susceptible flows in
locations with in-degree D is [1−fD(t)]. Θ(f(t)) is the total
fraction of edges that load infected flows. Therefore, the first
term, λD[1 − fD(t)]Θ(f(t)), indicates the fraction of edges
that load new infected flows at locations with in-degree D.
The last term, rfD(t), shows the recovery. Existing work in
[26] shows the following result:

〈D2〉 − 〈D〉2

〈D〉
+ 〈D〉 < r

λ
(18)

〈D〉 is average node degree, and 〈D2〉 − 〈D〉2 represents
the node degree variance. Eq. 18 depicts the prerequisite
of controlled outbreaks in polymorphic structures, under
the infection rate model A. In contrast, the constraint for
isomorphic structures are shown in Eq. 13. The insight of
Eq. 18 is that a larger degree variance also brings a more
vulnerable network. Under the infection rate model A, both
the average degree and the degree variance determines the
network resistance to epidemics. 〈D

2〉
〈D〉 indicates the network

vulnerability to epidemics (the larger, the more vulnerable).

5.3 Constructing Polymorphic Structures

This subsection describes two greedy algorithms for poly-
morphic structures. Algorithm 1 starts with a ring network
that has no chords, and then iteratively adds chords with the
consideration of (1) ∆H that indicates the reduced average
number of routing hops (the benefit of that chord) and (2)
∆
[ 〈D2〉
〈D〉

]
that represents the increased network vulnerability

(the cost of that chord). Algorithm 1 iteratively adds the
chord with the highest ratio of ∆H to ∆

[ 〈D2〉
〈D〉

]
(the benefit-

to-cost ratio). In the event of a tie, a random one is picked.
A chord with a large ∆H means that it can effectively
minimize the number of average hops. A chord with a small
∆
[ 〈D2〉
〈D〉

]
indicates that adding this chord only slightly in-

creases the network vulnerability to epidemics. In contrast,
Algorithm 2 starts with a fully-connected ring network, and
then iteratively removes the chord with the lowest ratio
of ∆H to ∆

[ 〈D2〉
〈D〉

]
. Algorithms 1 and 2 are extendable to

heterogeneous traffic distribution and epidemic spreading
models [27], [28], since they construct polymorphic network
structures based on the benefit-to-cost ratio of each chord.
However, both Algorithms 1 and 2 are suboptimal. They
may be trapped into local optima due to the greedy nature.
The optimal solution remains to be explored.

6 EXPERIMENTS

This section conducts experiments to evaluate the proposed
structures. Codes are published in [29].

6.1 Experiments on Ring Networks

Settings. In this subsection, we focus on the proposed
isomorphic structures in a ring network. The ring network
has n = 217 nodes, with the number of chords ranging
from 2 to 30. The infection coefficient λ is 0.01, while
the recovery rate r varies in different settings, in order to
observe the epidemic outbreak point. 1% of the total edges
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, µ = λD, r = 0.1

Fig. 7. The evaluation results. The top line figures show the relationship between d andH, and the bottom line figures show the relationship between
d and the infection percentage of nodes after 1, 000 time units. (a) The evaluation results under the desired traffic model II and the infection rate
model B, with a recovery rate r = 0.15. (b) The evaluation results under the desired traffic model I and the infection rate model B, with a recovery
rate r = 0.3. (c) The evaluation results under the desired traffic model II and the infection rate model A, with a recovery rate r = 0.1.

are initialized as being infected, while the percentage of
infectors is checked again after 1, 000 time units. The time
period of 1, 000 time units is long enough to guarantee that
the infection percentage becomes steady. We do not consider
the other initializations on the percentage of infectors, since
[4] has shown that the initialized percentage of infectors has
a very limited influence on the eventual epidemic outbreak
(or not). Here, the desired traffic model III is not considered,
since all chords tend to connect to the nearest nodes. The
infection rate model C is not considered, since it results in a
fully-connected network as an optimal solution. Therefore,
we focus on the desired traffic model I (Ti,j = 1

n ) and model
II (Ti,j ∝ 1

4i,j
). As for the infection rate models, we only pay

attention to model A (µ = λD) and model B (µ = λ
√
HD).

Three additional isomorphic structures are used for com-
parison. The first one is the uniform-cut structure, where
the chords uniformly cut the half-ring. In this structure, the
jump sizes are {+1,+ n

2d ,+
2n
2d , ...,+

(d−1)n
2d } for half a ring.

The second one is the neighboring structure, where each
node connects to the nearest D geographical neighbors. The
third one is the Dcell structure [30], which was proposed for
the connections among servers in data center networks.

Testing Different Structures. The experimental results
are shown in Fig. 7. The top-line figures show the rela-
tionship between d and H , while the bottom-line figures
show the relationship between d and the percentage of
infected flows after 1, 000 time units. The three subfigures in
Fig. 7 describe three different settings of traffic distribution
models and infection rate models. The top lines of Figs. 7(a)
and 7(c) are the same, since they have the same traffic model.
In Fig. 7(b), the performance of the binary-cut and binary-
traffic-cut structures are the same, due to the uniform traffic
model. In the top line figures, the dashed boxes show the

theoretical interval of controlled epidemic outbreaks (i.e.,
the theoretical constraint of µ < r

λ ). The real infection
percentages, after 1, 000 time units (i.e., epidemic outbreaks
or not), are shown in the bottom line of Fig. 7.

It can be seen that the uniform-cut and the neighboring
structures are useless, since they cannot control epidemic
outbreaks. They have very large average numbers of rout-
ing hops. Although Dcell has a decent average number of
routing hops, it cannot control epidemic outbreaks. For the
desired traffic model II and the infection rate model B in
Fig. 7(a), the binary-cut structure controls outbreaks with
a large d, and the binary-traffic-cut structure controls out-
breaks with a small d. This is consistent with our theoretical
results. The binary-cut structure can achieve the smallest
H without outbreaks. For the desired traffic model I and
the infection rate model B in Fig. 7(b), the performance of
the two proposed structures are the same, and they can
control epidemic outbreaks when d is large enough. The
desired traffic model II and the infection rate model A in
Fig. 7(c) show that the epidemic outbreaks only depend
on the degree. These results verify that the prerequisite of
controlled epidemic outbreaks (i.e., µ < r

λ ) is accurate.

Sensitivity Experiments. One step further, here we also
study the sensitivities of the proposed structures, since the
assumption of isomorphic structures may be too strong for
real-world applications. We want to check whether this
assumption can be relaxed or not. Hence, we randomly
rewire a fraction of chords for the proposed structures
to check their sensitivities. If a chord is rewired, it will
reconnect to a pair of nodes that are randomly selected. For
the binary-cut and binary-traffic-cut structures, the resulting
structures with 10% rewired chords are denoted as binary-
cut* and binary-traffic-cut*, respectively. Then, the resulting
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Fig. 8. The sensitivity experiments. The settings are the same as those in Fig. 7. The binary-cut* and binary-traffic-cut* denote binary-cut and
binary-traffic-cut structures with 10% randomly rewired chords, respectively. Similarly, The binary-cut** and binary-traffic-cut** denote binary-cut
and binary-traffic-cut structures with 50% randomly rewired chords, respectively.

Fig. 9. The geographic map of the real data-driven experiment.

structures with 50% rewired chords are denoted as binary-
cut** and binary-traffic-cut**, respectively. The sensitivity
experiment results are shown in Fig. 8. It can be seen that,
rewired chords have a very limited impact, in terms of both
the average number of routing hops (H) and the infection
percentage. The network traffic model and infection rate
model also do not significantly change the result. The aver-
age number of routing hops (H) slightly increases, since the
hypercube-based structures are greatly fault-tolerant with
respect to greedy-coin-change-based routings. The variance
of the infection percentage is also limited, since the isomor-
phic structure is not destructed too much. Overall, these two
structures are not sensitive to a small portion of randomly
rewired chords, i.e., the isomorphism assumption can be
relaxed for real-world applications.

6.2 Real Data-Driven Experiments

Settings. This subsection conducts real data-driven exper-
iments to verify the applicability of our approach. We use
a real airline dataset of OpenFlights [31], which contains
59,036 routes between 3,209 airports on 531 airlines span-

ning the globe, as shown in Fig. 9 (airports are marked as
red points). Airports correspond to nodes in our model.
We discretize the Earth through 100 meridians and 100
parallels (10,000 points). Each airport is rounded to its
nearest geographic point. The existing airline routes imply
the information on the desired traffic distribution. In other
words, the desired traffic distribution model is given, where
each flight stands for a unit traffic. If we use the existing
airline routes as chords, then the average number of routing
hops (H) is one, but this structure fails to control epidemic
outbreaks. To apply our ring model, X-Y routing scheme is
used for node communications. The routing has two stages:
the first stage routes along the meridian ring of the source
node, and the second stage routes along the parallel ring of
the destination node. An example of such a routing has been
shown in Fig. 4. The number of routing hops is the sum of
these two stages on two different rings.

We use the real Ebola dataset in three countries (Guinea,
Liberia, and Sierra Leone) reported by Word Health Orga-
nization [32] to model epidemic spreadings. Table 3 shows
the data statistics, in terms of the number of recovers and
deaths. The number of recovers are significantly smaller
than the number of deaths in Guinea, approximately equal
to the number of deaths in Liberia, and significantly larger
than the number of deaths in Sierra Leone. The fractions
of recovers and deaths are used as the recover and infec-
tion rates, respectively. Here, the infection rate is traffic-
insensitive (infection rate model A). The other settings are
the same as those in the previous subsection.

Experimental results. The results for the real data-driven
experiments are shown in Fig. 10. Fig. 10(a) shows the
relationship between H and d. A larger node degree leads
to a smaller average number of routing hops. The binary-
traffic-cut outperforms other structures, when d is large. It
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(b) Epidemics in Guinea.
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(c) Epidemics in Liberia.
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(d) Epidemics in Sierra Leone.

Fig. 10. Evaluation results for real data-driven experiments.

TABLE 3
Ebola statistics reported by Word Health Organization.

Dataset Recover Death Total
Guinea (12/28/2015) 1,268 2,536 3,804

Liberia (5/9/2015) 5,860 4,806 10,666
Sierra Leone (11/7/2015) 10,167 3,955 14,122

has an H of about 4, when d = 8. In contrast, neighboring
has the largest H among all the structures. Another notable
point is that Dcell has the smallest H when d is small
(when d = 1). Fig. 10(b), Fig. 10(c), and Fig. 10(d) shows
the eventual infection percentages under the dataset of
Guinea, Liberia, and Sierra Leone, respectively. A larger d
always leads to a larger infection percentage. Note that, in
our structure design, each airport can have four routes to
nearby airports (on meridian and parallel), and 2d routes
to remote airports (d for meridian-remote airport and d
for parallel-remote airport). This is because the infection
rate is not traffic-sensitive, and thus, we should cap the
node degree to avoid epidemic outbreaks. Fig. 10(b) has the
highest infection percentages, since the dataset of Guinea
has the highest death-to-recover ratio, and the infection rate
is larger than the recovery rate. In Fig. 10(b), uniform-cut
and neighboring can only control epidemic outbreaks when
d = 2 with H ≈ 7. Dcell controls epidemic outbreaks
when d = 3 with H ≈ 6. Binary-cut and binary-traffic-
cut control epidemic outbreaks when d = 5 with H ≈ 5.
In Fig. 10(c), uniform-cut and neighboring control epidemic
outbreaks when d = 4 with H ≈ 6. Dcell controls epidemic
outbreaks when d = 6 with H ≈ 7. Binary-cut and binary-
traffic-cut control epidemics with H ≈ 4. Fig. 10(d) shows
similar results with Fig. 10(c), since Sierra Leone has the
lowest death-to-recover ratio. Real data-driven experiments
confirm the real-world applicability of our approach.

7 CONCLUSION

This paper studies network structures with minimum traffic
flow routings, while controling epidemic outbreaks through
regulating the number and distribution of chords on a ring
network. The objective is to design a structure (quarantine
rules) that can minimize the average number of routing hop-
s, while the epidemic outbreaks are controlled. For isomor-
phic structures, we provide a systematic structure design
on nine different cases. Two hypercube-based structures
are explored. Sensitivity experiments demonstrate that the
isomorphism assumption can be relaxed. For polymorphic
structures, we provide a greedy solution. Our work casts
new light on the effective network quarantine that places
minimal restrictions on communication activities.

ACKNOWLEDGMENTS

This work is supported in part by NSF grants CNS 149860,
CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774,
ECCS 1231461, ECCS 1128209, and CNS 1138963.

REFERENCES

[1] C. Lagorio, M. Dickison, F. Vazquez, L. A. Braunstein, P. A.
Macri, M. V. Migueles, S. Havlin, and H. E. Stanley, “Quarantine-
generated phase transition in epidemic spreading,” Physical Review
E, vol. 83, no. 2, p. 026102, 2011.

[2] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié,
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[27] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani,
“Velocity and hierarchical spread of epidemic outbreaks in scale-
free networks,” Physical Review Letters, vol. 92, no. 17, p. 178701,
2004.

[28] H. Rahmandad and J. Sterman, “Heterogeneity and network struc-
ture in the dynamics of diffusion: Comparing agent-based and
differential equation models,” Management Science, vol. 54, no. 5,
pp. 998–1014, 2008.

[29] https://www.dropbox.com/s/b64r3o1c0gi3iyb/codes.zip?dl=0.
[30] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a

scalable and fault-tolerant network structure for data centers,”
SIGCOMM Computer Communication Review, vol. 38, no. 4, pp. 75–
86, 2008.

[31] http://openflights.org/data.html.
[32] http://apps.who.int/gho/data/view.ebola-sitrep.ebola-

summary-latest?lang=en.

Huanyang Zheng received his B.Eng. degree in
Telecommunication Engineering from Beijing U-
niversity of Posts and Telecommunications, Chi-
na, in 2012. He is currently a Ph.D. candidate
in the Department of Computer and Information
Sciences, Temple University, USA. His research
focuses on wireless and mobile networks, social
networks and structures, and cloud systems.

Jie Wu is the Associate Vice Provost for Inter-
national Affairs at Temple University. He also
serves as the Chair and Laura H. Carnell profes-
sor in the Department of Computer and Informa-
tion Sciences. Prior to joining Tempe University,
he was a program director at the National Sci-
ence Foundation and was a distinguished pro-
fessor at Florida Atlantic University. His current
research interests include mobile computing and
wireless networks, routing protocols, cloud and
green computing, network trust and security, and

social network applications. Dr. Wu regularly publishes in scholarly
journals, conference proceedings, and books. He serves on several
editorial boards, including IEEE Transactions on Service Computing and
the Journal of Parallel and Distributed Computing. Dr. Wu was general
co-chair/chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS
2013, and ACM MobiHoc 2014, as well as program co-chair for IEEE
INFOCOM 2011 and CCF CNCC 2013. He was an IEEE Computer
Society Distinguished Visitor, ACM Distinguished Speaker, and chair for
the IEEE Technical Committee on Distributed Processing (TCDP). Dr.
Wu is a CCF Distinguished Speaker and a Fellow of the IEEE. He is
the recipient of the 2011 China Computer Federation (CCF) Overseas
Outstanding Achievement Award.


