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Abstract—The increasing traffic demand has become a serious
concern for cellular networks. To solve the traffic explosion
problem in a vehicular network environment, there have been
many efforts to offload the traffic from cellular links to Roadside
Units (RSUs). Compared with the cost of downloading from
cellular link, downloading through RSUs is considered practically
free. In most cases, we have to wait for one or several RSUs to
download the entire data, which causing huge delays. However,
people can always download data from the cellular network.
In reality, people are sensitive to the downloading delay but
would like to pay little money for downloading the data. As
the result, there exists a delay-cost trade-off. In this paper, we
unify the downloading cost and downloading delay as the user’s
satisfaction. The objective of this paper is to maximize the user’s
satisfaction. A user will be unsatisfied if they are paying too
much for data, or if they wait for a long time. We analyze the
optimal solution under the condition that the encountering time
between vehicles and RSUs follows the exponential and Gaussian
distributions. Generally, we propose an adaptive algorithm. A
downloading strategy is made based on the historical encoun-
tering situation between the vehicle and multiple RSUs. After a
period of time, if the real situation is different with the initial
prediction, the data downloading strategy will be correspondingly
adjusted. Extensive real-trace driven experiment results show
that our algorithm achieves a good performance.

Index Terms—Offloading, roadside units, vehicular networks

I. INTRODUCTION

In recent years, the demand for high-speed mobile Internet
services has increased dramatically. People expect to connect
to the Internet anywhere and anytime, including within their
own cars. Content distribution to vehicular users through
wireless network access is emerging as a necessity to better
facilitate road safety and enhance driving experience. The
contents include electronic newspapers, advertisements, road-
situation reports, maps with traffic statistics, movie clips, etc.
Leading technology companies like Google and Apple all
developed the standards for automobile applications [1].

There exist two types of wireless access methods in the ve-
hicular network [2]. Cellular-based access technologies such as
3G/4G and Long Term Evolution, play a vital role in providing
reliable and ubiquitous Internet access to vehicles, since the
cellular infrastructure is well-planned and widely available.
Meanwhile, WiFi-based Access Points (APs) have shown
their feasibility in content distribution for vehicles. These
APs can be Roadside Units (RSUs) deployed intentionally
by network service providers and government departments.
They are installed in roadside shops or in buildings and
are configured for public access, such as, Google WiFi in
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Fig. 1. A network model illustration, where a vehicle can request data from
the cellular tower at any time, or waits for opportunistic contact with RSUs.

Mountain View [3]. These APs are characterized by short-
range coverage (hundreds of meters), are relatively cheap, have
easy deployment and a high data access rate (a theoretically
6.7 Gbps data rate in 802.11ad) [4].

In this paper, we consider the interfaces scheduling problem
in the aforementioned two accessing technologies, i.e., WiFi
and cellular network, in the vehicular network. A model is
shown in Fig. 1. The vehicle can download data through the
cellular network at any time. However, the cost of using this
interface is also significant. On the other hand, the vehicle
can download the data through opportunistically-encountered
RSUs, compared with the cost of using cellular network, it is
cost can be regarded as free [5]. Due to the limited contact
opportunity with RSUs (tens of seconds), the vehicle might
need several encountering opportunities with RSUs to get the
entire data. In this case, the user will suffer a long delay, which
leads to the data utility decay in reality [6].

From the user’s perspective, the user would, ideally, like to
download data quickly and inexpensively. There is a trade-off
between delay and cost. If we unify the downloading cost and
data utility as the user’s satisfaction. The user’s satisfaction
will be low if they pay much for the data, or if they wait for a
long time. Therefore, the problem that arises naturally is how
to make a decision properly from the two access interfaces,
which maximizes the user’s satisfaction.

This question is challenging due to the opportunistic en-
countering with RSUs in the vehicular network. The vehicle
might not be able to know the location of the RSUs in the
road. Even if we know the location of the RSUs, due to the
various traffic conditions, it cannot accurately predict about the
encountering time between vehicles and RSUs. Besides, the



encountering event between these multiple RSUs is correlated.
For example, at the beginning, a vehicle predicted the future
encountering events with several RSUs. Then, consider that it
meets with a RSU earlier than the initial estimation, due to
good traffic conditions, it is highly possible that the vehicle
will also meet the next RSU earlier than the initial estimation,
and vice versa. Another problem is that the actual situation
does not match with our initial estimation. For example, the
vehicle did not meet a RSU as expected, or the vehicle does
not download the estimated amount of data. The question then
becomes, how to make a decision and when should the vehicle
adjust its strategy?

We propose an adaptive routing method to solve the user’s
satisfaction maximization problem. First, when the data re-
quest is generated by an application, the vehicle estimates
the waiting time from the current location to the next several
RSUs, and makes a data downloading decision through these
two interfaces. If the vehicle does not encounter with a RSU
as expected, the vehicle might re-estimate the encountering
time based on the actual situation and do re-decision. The re-
decision frequency is highly related to the RSU distribution.
An example is shown in Fig. 2, where the vehicle did an
initial estimation of the encountering time with the RSUs, and
calculated the optimal strategy based on this estimation. The
optimal strategy is shown in the gray boxes. However, the
real situation might not be the same as the initial estimation.
If the vehicle encountered with the RSUs earlier, the vehicle
would like to reduce some amount of data, which planned
to be retrieved from the cellular network, as shown in the
black boxes. If the vehicle did not encounter with the RSUs as
expected, the optimal strategy might be to re-download some
data from the cellular network, as shown in white boxes.

The contributions of this paper are summarized as follows:
• To our best knowledge, we are the first to propose the

opportunistic decision-making problem in the vehicular
network with two interfaces, with the data utility decay.
The limited contact opportunity is also considered, which
makes it more practical than the existing models.

• We analyze the optimal data downloading strategies in
the exponential and Gaussian distributions. The theory
results provide us a road-map for the solution.

• We propose a novel algorithm in a general situation;
the algorithm can dynamically adjust our estimation and
adjust the current strategy, if necessary.

The remainder of the paper is organized as follows. The
problem statement is introduced in Section II. Then, the theory
analysis about the optimal strategies in special distributions is
provided in Sections III. The adaptive algorithm is presented
in Section IV. The experiment results are shown in Section V.
The related works are in Section VI. We conclude the paper
in Section VII. Some proofs are provided in the Appendix.

II. PROBLEM STATEMENT

In this section, we first introduce the network model,
followed by the problem and the corresponding challenges.
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Fig. 2. An illustration of the adaptive data downloading method, where the
first timeline represents the time to request data from the cellular network,
and the second timeline represents the time to download data through
RSUs. Initially, the estimated encountering time with RSUs are t2 and t5,
respectively. If the vehicle encountered with RSUs in advance, at t1 and t4,
respectively, the vehicle might download less data from the cellular network.
If the vehicle encountered RSUs late, at t3 and t7, respectively, the vehicle
might decide to download more data from the cellular network at t6.

A. Network Model

This paper considers a vehicular network with multiple
Roadside Units (RSUs), which are connected with the Internet
to offer the Internet access for the drive-thru vehicles through
WiFi. Due to the variety of the traffic conditions and the
RSUs’ distribution, we model the encountering between a
vehicle (node) and the RSUs as the opportunistic events.
The vehicles have two communication interfaces, i.e., WiFi
and cellular network. A vehicle can download data from the
cellular network at any time for a high price. Compared with
the high cost of downloading data from the cellular network,
the cost of downloading data from RSUs can be regarded as
free [5]. With the wide usage of high-resolution pictures and
videos, the entire data can hardly be downloaded instantly, no
matter in the cellular network or through RSUs.

In reality, users are sensitive about the data downloading
delay [6]. For example, the old posts on Facebook or Twitter
are not so attractive. Here, we model that the vehicle will gain
the utility for every bit of data that it downloaded. However,
the utility decays along with the time, which reflects the user’s
time sensitivity for the downloading data. In this paper, we use
a linear decay model [7], that is,

Ut = U0 − at, (1)

where the initial utility of visual cues is U0 per bit, then,
the utility decays a per second. Note that when U0 − at <
0, we will regard corresponding Ut as 0. The parameter a
models the sensitivity of the user, and it has the influence on
the offloading decision. If a user is very sensitive to the delay,
a is large, the node might prefer to download from the cellular
network. Then, if we assume the cost for retrieving data from
the cellular network will reduce c utility per bit, we can denote
the actual benefit that the vehicle gets from retrieving data
through the cellular network as U ′t , U

′
t = U0−at−c. Similarly,

the U ′t will not be negative.

B. User’s Satisfaction Maximization Problem

The objective of this paper is to find the best download
strategy, so that the user’s satisfaction, which unifies the
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Fig. 3. User’s satisfaction in different scenarios, where the minimizing delay
strategy and the minimizing cost strategy mean that the vehicle downloads
all the data through the cellular network and RSU, respectively. The optimal
solution is got by brute-force computation.

downloading cost and data utility, is maximized. To avoid
infinite computing of different strategies, we assume that the
vehicle might change its strategy in a discrete manner, per
second, as the most adaptive algorithms did. let us denote the
data downloaded at the ith seconds as di, the moments of using
RSU, and the moments of using cellular network as S and S′i,
respectively. For example, the vehicle used 1st, 2nd, 5th and
6th seconds to download data from the cellular network, and
it encountered with a RSU at the 3rd and 6th second. That is,
S = {3, 6} and S′ = {1, 2, 5}. If the data size is denoted as
M bits, then, the math formulation of the user’s satisfaction
maximization problem can be written as:

max
∑
i∈S

Uidi +
∑
j∈S′

U ′jdj

s.t.
∑
i∈S

di +
∑
j∈S′

dj ≥M, di ≤ Bmaxr , dj ≤ Bmaxc

where Bmaxr and Bmaxc is maximum bandwidth in the RSU
and the cellular network, respectively.

C. Challenges

The first challenge lies in the trade-off between the utility
decay speed and cost. If the utility decays fast, the vehicle
would like to download the data right away. That is, the best
strategy is to download through the cellular network. On the
other hand, if the data utility decays slowly, the vehicle will
still get high utility through waiting, so the best strategy is to
wait for the RSUs. In any other case, each of above strategies
only achieves good performance in certain scenarios, as shown
in Fig. 3, where the two simple strategies always downloading
data from cellular network or always downloading data from
RSUs, can only achieve good performance in certain scenario.

The second challenge is caused by the dynamic situation
changing. The vehicle’s estimation about the future also
changes along with the dynamic situation. If the vehicle did
not encounter a RSU as estimated, or it estimates that it will
encounter a RSU later than the initial estimation, should the
vehicle adjust its downloading strategy, and how to adjust its
strategy is a challenging problem. Besides, how to estimate
the future event, and when to adjust the future estimation is
non-trivial. For example, the vehicle initially estimated that it
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Fig. 4. Inter-encountering distribution between a vehicle and RSUs in Diesel.

would encounter with two RSUs at the 5th second and 10th

second, respectively. If it actually encountered with the first
RSU at the 4th second, will it meet the second RSU at the
9th or 10th second?

Another challenge is how to assign the weight to the
prediction. If the vehicle just uses the expected encounter-
ing time and the corresponding duration with the RSUs to
calculate the downloading strategy as in a static environment,
there exists the risk, that the vehicle actually encountered the
RSUs later, the data utility will decrease. However, if the
vehicle downloads much data through cellular network at the
beginning, it might not fully use the free opportunistic data
downloading through roadside WiFi.

III. OPTIMAL STRATEGY IN SPECIAL DISTRIBUTIONS

In this section, we analyze the optimal download strategies
under the assumption that the encountering time between the
vehicle and RSUs follows exponential and Gaussian distribu-
tions. The reason is that the real situation is always one or a
mixture of these two. Examples in the literature are [8, 9]. We
also verified the real situation in Diesel Bus Dataset [10]. In
Fig. 4, we show the encountering time distributions between
No. 3204 and No. 5676 bus and RSUs in Diesel Dataset as an
example. For the analysis, we start with the simple case, that
the Bandwidth of the RSUs is unlimited. Then, we move to a
general case, that the bandwidth of the RSUs is limited.

A. Offloading through a Single Roadside Unit

In the single RSU model, this RSU can provide the remain-
ing data. The data downloading procedure will end, when the
vehicle meets a RSU. Let us denote f(t) as the probability
density function (PDF) of the encountering between vehicle
and the RSU at time t, and F (t) as the cumulative distribution
function (CDF) of the encountering between vehicle and
the RSU in time t, respectively. Then, the user’s expected
satisfaction in T is written into the following format:

T∑
t=0

( t∑
i=0

U ′idi + Ut+1dt+1

)
(1− F (t))f(t+ 1) =

T∑
t=0

( t∑
i=0

(U0 − c− ai)di + (U0 − a(t+ 1))dt+1

)
(1− F (t))f(t+ 1),

(2)
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Fig. 5. Probability change along with the time in the Gaussian distribution.
Fig. 5(a) is the PDF in different time. For example, t = 1s, 2s, 3s, 4s and
5s means that the PDF after 1s, 2s, 3s, 4s, 5s, respectively.

where (1 − F (t))f(t + 1) represents the probability that the
vehicle does not meet a RSU at the first t seconds, but
meets a RSU at the t + 1 second.

∑t
i=0 U

′
idi + Ut+1di+1

is a general function to represent the user’s satisfaction for
any downloading strategy. Then, our main concern is to
decide the {di, . . . , dT }. In the following, we will analyze
the downloading strategies in two special distributions.

1) Exponential distribution of the encountering rate be-
tween the vehicle and RSUs: The application scenario is that
the vehicle is leaving the center city, so that the longer it waits,
the smaller chance that it will meet a RSU. Assume that the
encountering rate between vehicle and RSUs is λ. Then, the
Eq. 2 can be written into the following equation:

T∑
t=0

(

t∑
i=0

(U0−c−ai)di+(U0−a(t+1))di+1))e−λt·λe−λ(t+1)).

(3)

Theorem 1. For exponential distribution of the encountering
time between the vehicle and RSUs, the vehicle only needs to
do the decision once: download from the cellular network right
now, or never. The criterion of choosing the cellular network
right now is a

2λ > c.

The proof is appended at the end of the paper. The insight is
that the exponential distribution has the memoryless property,
so that we cannot get better prediction with the increasing of
time. For example, if the expected encountering time is 5s,
after 1s, the expected encountering time is still 5s. However,
the longer you wait, the less utility of data it will be. Therefore,
the vehicle should decide to use the cellular network right
away, or never. As for the interface selection, if the cost of
the cellular network is large, it is more beneficial to wait for
a RSU. If the data utility decay or the inter-encountering time
is small, the vehicle prefers to wait for a RSU.

2) Gaussian distribution of the encountering rate between
the vehicle and RSUs: It can reflect the situation in the
urban area. Usually, the vehicle will take an average time to
encounter with a RSU. Sometimes, however, the vehicle will
meet a RSU in a really short or long time. In Gaussian distri-
bution, along with time, our estimation about the future will
become more and more accurate. The Fig. 5 shows a vehicle’s
estimation about the future in the Gaussian distribution. The

expected encountering time is initially 5s; As time elapses,
the prediction uncertainty decreases, as shown in Fig. 5(a).
When t = 5s, a large amount of probability density (higher
than t = 0s) is centered at the near future, and the expected
encountering time with a RSU from now decreases, as shown
in the Fig. 5(b). Note that the estimation changing does not
have a linear relationship with the time.

Due to the difficulty of doing the operation for the CDF
of Gaussian distribution, we use a Gaussian-like distribution
made by a polynomial function to approximate it. The PDF
and the CDF of this distribution are shown in the following:{

f(t) = tβ

w (0 < t < T e)

f(t) = (t−2T e)β
w (T e < t < 2T e),

(4)

where the vehicle has the probability of encountering the RSU
from t ∈ [0, 2T e], and β is a constant, which controls the
variance of the probability distribution, the same as variance,
σ, in the Gaussian distribution, and w is the normalization
factor. It is easy to know the expected encountering time is
T e. Then, we can calculate the CDF of f(t):{

F (t) = tβ+1

(β+1)w (0 < t < T e)

F (t) = 1− (2T e−t)β+1

(β+1)w (T e < t < 2T e).
(5)

If we substitute Eqs. 4 and 5 into Eq. 2, we will get the
following result: if we choose to download data from the
cellular network right now, the user’s satisfaction is

2T e(U0 − c)
w2

(

T e∑
t=1

(1− tβ+1

β + 1
)tβ+

2T e∑
t=T e

(2T e − t)β+1

β + 1
(2T e−t)β).

(6)
The expected satisfaction after one second to meet a RSU is

2T e(U0 − c− a)

w2
(

T e∑
t=1

(1− tβ+1

β + 1
)tβ

+

2T e∑
t=T e

(2T e − t)β+1

β + 1
(2T e − t)β +

c

w2
(1− 1

β + 1
)).

(7)

By comparing the Eqs. 6 and 7, we can get the theorem 2:

Theorem 2. For Gaussian distribution of the encountering
time between the vehicle and RSUs, the criterion for choosing
the cellular network right now is (T e)β+1a

β > c.

The proof is appended at the end of the paper. The reason
that we compare the benefit of the first two seconds is that we
are concerned about whether the vehicle will download data
from the cellular network now. It is a conservative estimation.
The insight behind the result is that if the cellular network
is expensive or the utility decays slowly, the vehicle prefers
to wait. If the predicted encountering time, T e, appears late,
the vehicle prefers to download from the cellular network.
When β is large, the majority of probabilities are centered in
the T e, thus, waiting becomes less beneficial. For example,
we estimate that the vehicle will encounter with a RSU after
5 minutes. If the uncertainty is low, the vehicle can almost



encounter at the 5th minute, and our prediction about the future
is very certain. However, if the uncertainty is high, the vehicle
might have a high probability of encountering the vehicle at
the 6th minute, which will cause extra utility loss.

B. Offloading through Multiple Roadside Units

Due to the limited contact opportunity between the vehicle
and RSUs, a practical model is that the vehicle will finish
downloading the data after encountering with several RSUs.

In this scenario, the encountering situation in one RSU
has an influence on the future event. For example, if the
inter-encountering time between RSUs are independent, and
the average inter-encountering time is 5 minutes, a vehicle
estimated that it would meet the 2th RSU at 10th minute.
However, the vehicle has the possibility to meet the 1th RSU at
the 4th minute. Then, the estimated encountering time with the
second RSU should be the 9th minute, rather than at the 10th

minute. In general, let us assume that the inter-encountering
time between two adjacent RSUs is independent, the inter-
encountering time PDF of the kth RSUs from the current
location is Eq. 8.

f(t1, t2, . . . , tk) =
1

q
· f1(t) ∗ f2(t) · · · ∗ fk(t), (8)

where fi(t) is the independent inter-encountering PDF from
the (i − 1)th RSU to the ith RSU and ∗ denotes the con-
volution. The f(t1, t2, . . . , tk) is the joint encountering time
distribution between the vehicle and the kth RSU.

1) Identical exponential inter-encountering time distribu-
tion of the encountering rate between two RSUs: It means that
the probability of arriving at the next RSU from the current
RSU in t second is f(t) = λe−λt, where λ is the rate.

Theorem 3. If the inter-encountering time distribution of the
encountering rate between two RSUs follows the identical
exponential distribution, and the encountering rate is λ, the
encountering distribution of kth RSU is f(t1, t2, . . . , tk) ≈

1
σk
√
2π
e
t−µk
2σ2
k , where µk = k

λ and σk =
√
k

λ2 .

The proof is appended at the end of the paper. The insight of
this theorem is that the expected encountering time of kth RSU
remains the same. However, the variance of the estimation
increases in a

√
k matter. That is, the estimation accuracy

decreases along with the distance increases.
2) Identical Gaussian inter-encountering time distribution

of the encountering rate between two RSUs: It means that
probability of arriving the next RSU from the current RSU in
t second follows the Gaussian distribution. We use identically
Gaussian distribution to estimate the inter-encountering time

probability between two RSUs, that is, f(t) = 1
σ
√
2π
e−

(t−t̄)2

2σ2 .
where t̄ is the expected time to encounter with the next RSU.
Then, we can get the following theorem.

Theorem 4. If the inter-encountering time distribution of the
encountering rate between two RSUs follows the identical
Gaussian distribution, the encountering distribution of kth

Algorithm 1 Dynamic decision making

Input: Utility decay function U(t), encountering interval dis-
tribution estimation, the bandwidth of cellular network and
RSUs Bc and Br, respectively.

Output: The downloading strategy of the vehicle.
1: Estimate the requested data size and the encountering time

with first RSU based on the APP type and the RSUs’
encountering history. Do decision based on Eq. 11.

2: Get the data size information after the vehicle encounters
with the first RSU. Adjust the decision, if necessary.

3: Do re-decision after encountering with a RSU, or the time
exceeds the predicted decision interval.

RSU is f(t1, t2, . . . , tk) = 1
σ′k
√
2π
e
− (t−t′k)2

2σ′
k

2 where t′k = kt̄

and σ′k =
√
kσ.

The proof is appended at the end of the paper. The insight
behind this theorem is that the opportunistic encountering
will not change the expected encountering time, but increases
the uncertainty about estimation of encountering with further
RSUs. If the encountering distribution is Gaussian distribution,
the uncertainty about the next k RSUs increases

√
k time.

The above two theorems show that the expected encoun-
tering time with RSUs will not change, but the vehicle’s
estimation about the future event will become more uncertain.
Therefore making a distant prediction is unreliable.

IV. THE SOLUTION IN GENERAL SCENARIOS

Based on the theoretical analysis from the Section III,
we figure out the two important factors for estimating the
opportunistic encountering with the RSUs, the expectation
encountering time, and the uncertainty of the expectation.
Therefore, our adaptive algorithm considers these two factors.

1) Decision making: Assume the vehicle expects to meet
the n RSUs after {T1, T2, . . . , Tn}, and the uncertainty of
estimation is {σ1, σ2, . . . , σn}, respectively. During each con-
tact opportunity, the vehicle can download m̄ bits on average
through RSU, and the entire data can be download in n times
without using cellular network. If the vehicle decides to use the
cellular network, it should download data as soon as possible.
Then, we can get the lowest cost to download the data from
the cellular network. The user’s satisfaction by this strategy is

m̄n(Ut −
m̄n

2Bc
a− c). (9)

Additionally, the overall utility by waiting for the RSUs is

n∑
i=1

m̄(Ut − a
i∑

k=1

(Tk + σk)). (10)

It is a conservative estimation, since we consider the worst
case. Though we might not fully use the offloading oppor-
tunity, the user’s experience will be better. Based on Eqs. 9



Fig. 6. Meeting positions of a bus with RSUs in Diesel data trace, where the
red marker represents the contact records between a vehicle and RSUs

and 10. if downloading from the cellular network is better, the
following in-equation will hold,

(

n∑
i=1

i∑
k=1

(Tk + σk)− m̄n2

2Bc
)a > nc. (11)

The observation from the Eq. 11 is that the best strategy is to
use the cellular network to download data, when the WiFi
speed is slow or the average waiting time is long, i.e., n
is large. Otherwise, it is more beneficial to wait. Also, the
uncertainty degree has an influence on the decision. As for
the amount of data that the vehicle should download through
the cellular network, the vehicle should continue downloading
until the Eq. 11 is not held. When T1 = · · · = Tn = T , and
σk =

√
kσ, Eq. 11 can be simplified into

(T − m̄

Bc
)na > 2c− aT − 4

5

√
n3σ. (12)

2) Re-decision: Due to the fact that our estimation will
improve with time, slight adjustments to our decision will be
made in a certain frequency. This frequency is related to the
distribution about the encountering time with RSUs. Based on
the history encountering summary, the vehicle calculates the
encountering time distribution to estimate the frequency.

3) RSUs encountering prediction: Here, we try to estimate
the future encountering time from the current time by using the
historical records. We use the exponentially weighted moving
average (EWMA) method; that is, we give the different weight
on the past encountering interval. The idea is that the most
recent event has a bigger influence on future event prediction,

Tk+1 = αTk + (1− α)Tk−1, (13)

where the window size and α are empirical values.
4) Algorithms: The vehicle estimates the data size based

on the application type, and decides whether to download
some data through the cellular network or not. Then, when
the vehicle encounters the first RSU, it will get the actual size
of this data. Now, the vehicle will adjust its decision based
on the current situation, if necessary. Later, after a certain
period, it will do re-decision to adjust the situation at that
time. The decision frequency is also adjusted along with the
RSUs’ encountering frequency. By using the historical records,
we can get the distribution of encountering interval, so that we
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Fig. 7. Utility decay speed

can adjust our decision frequency adaptively. Basically, if the
encountering interval increases, we can reduce the decision
frequency. Otherwise, we should do decision more frequently.

V. PERFORMANCE EVALUATIONS

In this section, we compare several algorithms mentioned
in this paper by extensive experiments. We first introduce
the experiment settings and their parameters. Then, we will
discuss the performance evaluation results.

A. Trace Introduction

1) Synthetic trace: We generate random encountering
events between RSUs and vehicles, where the encounter-
ing distribution follows the exponential distributions or the
Gaussian distribution. The expected contact interval, and the
bandwidth between them are all the same.

2) Real trace: Here, we use DieselNet [10] traces to do
evaluations. DieselNet traces were compiled during Fall 2007
from buses running routes serviced by Umass Transit. Umass
Transit’s 40 buses were equipped with DieselNet equipment.
Each bus scans for a connection with RSUs on the road, and
when found, connects to the RSUs. As you can see from Fig. 6,
the 47 RSUs generate 301 contact positions. The encountering
position between the buses and RSUs is opportunistic.

In the experiment, we assume data utility decays in a linear
manner. The bandwidth of WiFi and cellular network for one
application in the movement situation, referring from the [2],
is set as 100 kbps and 20 kbps, respectively. The average
data size is assigned as 6M, which is the size of multimedia
newspaper or a piece of song [11].

B. Algorithm Comparison

Here, we use four algorithms to do performance compar-
isons. 1) The minimal delay algorithm: the vehicle keeps
downloading data from the cellular network, and uses the
opportunistic encountered RSUs to download at the same time.
2) The minimal cost algorithm: the vehicle always waits for
RSUs to download data unless the data utility is reduced to
zero. 3) The optimal solution: we use the encountering records
in the vehicles to do post-analysis. That is, we know the actual
encountering time with the RSUs. Then, we use the brute-force
method to get the best solution. 4)The proposed algorithm: the
vehicle adaptively selects the two interfaces, according to the
current situation, to download data.
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C. Experiment Results

In synthetic data traces, the initial data utility is 1, 000
units. The average encountering interval is 20s. Figs. 7, 8, and
9 depict results from exponential distribution and Gaussian
distribution, respectively. The minimizing delay algorithm
performs well, when the utility decay of data is large or the
cost of the cellular network is small. For the minimizing cost
algorithm, it achieves a good performance, when the utility
decay of data is small or the cost of a cellular network is
large. Our proposed algorithm always achieves a relatively
good performance in different scenarios. We also compare our
solution with the optimal solution. The results show that our
proposed solution is close to the optimal solution. As for the
cost variation, when cost is small, our proposed algorithm is
close to the minimizing delay algorithm. When the cost is
large, our algorithm is close to the minimizing cost algorithm.
In the middle, our algorithm can adjust the vehicle’s solution to
achieve a larger user’s satisfaction. The results indicate that the
proposed algorithm achieves more than 90% than the optimal
solution. The proposed algorithm achieves 15% more utility
than those two simple strategies.

As for the influence of the uncertainty, we adjust the
variance to be 0s, 8s, and 15s in the Gaussian distribution,
respectively. As shown in Fig. 10, when the variance is 0,
our proposed algorithm achieves the same performance as the
optimal one. Then, when the variance is 8s, our proposed
algorithm performs similarly to the optimal one. However,
when the variance is 15s, our algorithm’s performance is much
lower than the optimal solution. The result shows that the
uncertainty degree matters regarding decision-making.

In the Diesel trace, the results are similar to those of the

Gaussian distribution, as shown in Fig. 11. It indicates that
waiting for RSUs is more like the Gaussian distribution. Since
UMass is in the urban area, the result matches the location
of UMass well. The result also indicates that our proposed
algorithm can achieve a good performance. It is close to the
optimal solution in different data size and utility decreasing
speed. As for the cost, our proposed algorithm has better
performance when the cost for the cellular network is large.
The result also shows that always waiting for RSUs will lead
to a low user satisfaction in most cases, as shown in Fig 11(b).

VI. RELATED WORKS

In this section, we summarize the two mainstream mobile
offloading schemes: (1) the vehicles encountering prediction
with RSUs. [6, 8, 11, 12], (2) the RSU deployment, aiming to
minimize the encountering delay with RSUs or maximize the
vehicle coverage with given number of RSUs [9, 13].

1) RSUs deployment problem: Due to the limited contact
opportunity, the vehicle might need multiple RSUs to down-
load the whole data, especially with the increasing content
size. However, the existing works [9, 13, 14] simply assumed
that the vehicles can get the request data through one RSU.
Therefore, they focused on how to place RSUs so that these
RSUs can cover as many vehicles’ trajectories as possible. In
[15], the author considered the multiple RSUs’ content down-
loading problem. However, they assumed that the backhaul
access is the bottleneck, and primarily focused their attention
on the RSUs’ pre-fetch and buffer replacement policy. How-
ever, in reality, the RSU network is built by different shops and
different service providers. therefore, there are many scenarios
where pre-fetching data might be impractical.

2) Mobile contact prediction: The accurate prediction of
the encountering between vehicles and the RSUs in the exist-
ing RSU network is very important. The contact distribution
varies in different scenarios, especially under the highly dy-
namic vehicular environment [11, 16–18]. To the best of our
knowledge, we are the first to consider the correlated multiple
RSUs’ encountering estimation. The different estimation accu-
racy for multiple coming RSUs are considered in our model.

To our best knowledge, we are the first to consider the utility
decay in the mobile offloading. In [6], the authors investigate
the relationship between the access delay of messages and
the users’ satisfaction. In [8], the authors found the utility
decay phenomenon by using the real data trace in the online
social networks by experiment. Therefore, the time-sensitive
data delivery in mobile offloading is meaningful.

VII. CONCLUSION

In this paper, we focus on data offload scheduling in two
interfaces. The different cost of these two interfaces and the
delay of downloading is considered. The data utility will decay
with time. A user would like to pay less money, and waits for a
short time in reality. Then, we formulate the user’s satisfaction
maximization problem. Since the encountering between the
vehicle and RSUs is opportunistic, we first propose a method
to estimate the future event for multiple RSUs, then the vehicle
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Fig. 11. Performance comparison of our algorithm in Diesel Dataset

tries to find the best strategy based on the current estimation.
Also, the vehicle might need to do re-decision regarding
when to adjust the decision based on the actual situation.
We do analysis regarding the problem on exponential and
Gaussian distributions. The extensive experiments show that
our algorithm achieves a good performance.
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APPENDIX

A. Proof of Theorem 1

The encountering probability will decrease along with the
time. The longer the vehicle waits, the smaller the expected
satisfaction will be. Therefore, the vehicle only need to com-
pare the utility of the current benefit and the expected benefit
of the next second. If the vehicle decides to download data
from the cellular network, the following equation should be
satisfied based on Eq. 3.

(U0 − c)
T∑
t=0

e−λt · λe−λ(t+1)

> (U0 − c− a)

T∑
t=0

e−λt · λe−λ(t+1) + λce−λ.

Here, we can use integration to replace the summation in
order to simplify the above equation. The estimation error is
bounded, and decreases along with the degree of discretization.

(U0 − c)
∫ T

t=0

e−λt · λe−λ(t+1)dt

> (U0 − c− a)

∫ T

t=0

e−λt · λe−λ(t+1)dt+ λce−λ.

After calculation, we get the following conclusion: a
2λ > c.

Besides, due to the memoryless property of exponential dis-
tribution, the estimated inter-encountering time with a RSU
is the same in the future. However, waiting causes the utility
decrease. So, the vehicle should decide to use the cellular
network at either the beginning, or never.

B. Proof of Theorem 2

When the decision-making interval is small enough, Eq.6
can be approximated by using the integration. The above
approximation is bounded by the degree of discretization.
Then, we get the following equation:

2T e(U0 − c)
w2

∫ T e

t=1

((1− tβ+1

β + 1
)tβ

+

∫ 2T e

t=T e
(
(2T e − t)β+1

β + 1
)(2T e − t)β)dt.

(14)

Eq. 7 can be approximated as

T e(U0 − c− a)

w2
(

∫ T e

t=1

(1− tβ+1

β + 1
)tβ

+

∫ 2T e

t=T e
(
(2T e − t)β+1

β + 1
)(2T e − t)β) +

c

w2
(1− 1

β + 1
).

(15)

Comparing Eqs. 14 and 15, we get the result: (T e)β+1a
β > c.

C. Proof of Theorem 3
According to the Fourier transformation theory, the PDF of

exponential distribution can be changed into:

F{f(t)} =

∫ +∞

−∞
f(t)e−jwtdt

=

∫ +∞

−∞
λe−λte−jwtdt =

λ

λ+ jw
.

(16)

Where j is the imaginary unit. Then, according to the [19],

F{f(t1, t2, . . . , tk)} =

k∏
i=i

λi
λi + jw

=

k∏
i=i

λi ·
k∑
i=1

1∏k
m=1&m6=i(λm − λi)

1

λi + jw

=

k∑
i=1

∏k
i=i λ∏k

m=1&m6=i(λm − λi)
1

λi + jw
.

(17)

Applying the inverse Fourier transformation to Eq. 17, we have

f(t1, t2, . . . , tk) =

k∑
i=1

k∏
m=1&j 6=i

λm
λm − λi

e−λit. (18)

When the n RSUs have the same λ, according to the central
limit theorem [20], above equation can be approximated into

f(t1, t2, . . . , tk) ≈ 1

σk
√

2π
e
t−µk
2σ2
k , (19)

where µk = k
λ and σk =

√
k

λ2 .

D. Proof of Theorem 4
Clearly, when t equals σk, the encountering probability fails

into the 1
e . So, we can say that the encountering will mainly

happen during [t̄−σ, t̄+σ]. This Gaussian distribution can be
regarded as the time shift of function 1

σ
√
2π
e−

1
2 (

t
σ )

2

. Accord-

ing to the Fourier transformation theory, if f(t) = Ee−
1
2 (

t
σ )

2

,
we can get its Fourier transformation by the following equation

F{f(t)} =

∫ +∞

−∞
f(t)e−jwtdt =

∫ +∞

−∞

1

σ
√

2π
e−

1
2 (

t
σ )

2

e−jwtdt

=
1

σ
√

2π

∫ +∞

−∞
e−

1
2 (

t
τ )

2

[cos(wt)− jsin(wt)]dt

=
2

σ
√

2π

∫ +∞

0

e−
1
2 (

t
σ )

2

[cos(wt)]dt =
√

2 · e− 1
2 (
wσ
2 )2 .

(20)

Then, we can get the F{f(t1, t2, . . . , tk)} by multiplying the
right part of Eq. 20 k times, the result is 2

k
2 ·e− k2 (wσ2 )2 ·e−jwt′k ,

where t′k, t′k = kt̄, is the expected encountering time with RSU
k. If we denote σ′k =

√
kσk, we can get the following equation

F{f(t− t′k)} = 2
k
2 · e− 1

2 (
wσ′k

2 )2 . (21)

According the symmetry property of Fourier transformation,
the joint probability density function is:

f(t1, t2, . . . , tk) =
1

σ′k
√

2π
e
− 1

2 (
t−tk
σ′
k

)2

.


