Minimizing the Subscription Aggregation Cost in the Content-based Pub/Sub System

Ning Wang and Jie Wu
Dept. of Computer and Info. Sciences
Temple University
Road Map

- Introduction
- Subscription aggregation problem
- Proposed subscription aggregation algorithm
- Subscription tree construction
- Experiments
- Conclusion and future work
Introduction

- **Content-based pub/sub system**
 - Messages are only delivered to a subscriber if the attributes or content of those messages match a subscription range.
 - Some subscription examples:
 - stock trade (issue = “IBM” & price < 120 & volume > 1000);
 - car brand (made = “ford” & price > 10,000 & price < 20,000);
 - news delivery (all the sports channels).

- **Real projects:**
 - IBM Gryphon, Microsoft’s OpenPS project, WS-Messenger, SIENA, and Hermes.
Subscription Aggregation Problem

- Subscription tree

- Without subscription aggregation

- Problem:
 - Network congestion
 - High broker load

- Subscription aggregation (Benefit)

 - Aggregate several subscriptions into one subscription

 - Reduce the routing table; reduce the bandwidth consumption; accelerate the routing decision
Subscription Aggregation Problem

In a dynamic environment (e.g., s1 leaves and reports immediately)

- **Without subscription aggregation**
 - Update routing table
 - (immediate)

- **Cost of Subscription aggregation**
 - Re-ask subscription
 - Subscription re-transmission
 - (re-configuration needs time)
Challenges

● There is a trade-off between benefit and cost in the subscription aggregation.

Questions:

○ **Where** to do the subscription aggregation?
 ● Which broker should we try to do subscription aggregation?

○ **How** to do the subscription aggregation.
 ● Which subscriptions should be aggregated?
Subscription Aggregation Problem

Model:

- Network benefit
 - Proportional to the bandwidth saving amount.

- Without subscription aggregation

- Subscription aggregation
 - Saving 2 bandwidth

\[b_1, s_1, s_2 \]
\[p_1 \]
\[b_2 \]

\[[0,5] \] \[[4,10] \]
\[[0,5] \] \[[4,10] \]

\[[0,10] \]
\[[0,10] \]
Subscription Aggregation Problem

- **Model:**
 - Cost (the production of the two following metrics)
 - Unique subscription range (false subscription range after one subscriber leaves)
 - Re-configuration delay
 - the largest hop counts to the aggregation broker.
Subscription Aggregation Problem

Model:
- An illustration of cost (s_1 leaves the network)
 - Range $[0, 3]$ (size of 3) becomes false subscription range

Cost: 3

Cost: 3×2
Related works

- Congestion Avoidance with Incremental Filter Aggregation in Content-Based Routing Networks, ICDCS, 2015.

- High-level idea (a threshold-based method):
 - For each broker
 - Calculate the subscription similarity of all the subscriptions through this broker
 - Once the subscription similarity of a broker exceeds a threshold, aggregate all its subscriptions.

- Subscription similarity
 - $1 - \text{unique subscription range/the whole subscription range}$

![Subscription similarity diagram](image)
Related works

- An illustration (s1 leaves the network)

S1, S2 and S3 are aggregated at b2
Benefit: 2 Cost: 3

S1, and S2 are aggregated at b1, then aggregated with s3 at b2
Benefit: 3 Cost: 3*2

S2 and S3 are aggregated at b2
Benefit: 1 Cost: 0
Problem formulation

- **Cost minimization problem**
 - Save a target amount of network resources, while the amount of false-positive publications is minimized.

\[
\begin{align*}
\text{min} & \quad \sum_{i \in X} C_{ij} \times \lambda_{ij} \\
\text{s.t.} & \quad \sum_{i \in X} G_{ij} \times \lambda_{ij} \geq \theta
\end{align*}
\]

- Where \(\lambda_{ij} \) means the aggregation indicator between subscribers \(i \) and \(j \), the corresponding cost and benefit are denoted as \(C_{ij}, G_{ij} \) correspondingly.

- NP-hard
Subscription aggregation algorithm

Most-Efficient-First Algorithm (MEFA)

- Initialize $X = \emptyset$;
- Find maximum G_{ij}/C_{ij};
- // δ is a control value
- While (benefit in $X < \theta$ & $G_{ij}/C_{ij} \geq \delta$) do
 - Add λ_{ij} into set S;
 - Propagate the pairwise aggregation result to the publisher;
 - Find maximum G_{ij}/C_{ij};
- Return X.

Subscription aggregation algorithm

An example of MEFA algorithm

Round1

<table>
<thead>
<tr>
<th>Aggregation</th>
<th>Benefit</th>
<th>ΔCost</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1, s2</td>
<td>2</td>
<td>9*1</td>
</tr>
<tr>
<td>s1, s3</td>
<td>1</td>
<td>9*2</td>
</tr>
<tr>
<td>s2, s3</td>
<td>1</td>
<td>2*2</td>
</tr>
</tbody>
</table>

Subscription update at b2

Round2

<table>
<thead>
<tr>
<th>Aggregation</th>
<th>Benefit</th>
<th>ΔCost</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1, s2</td>
<td>2</td>
<td>2*2</td>
</tr>
<tr>
<td>s1, s3</td>
<td>1</td>
<td>2*2</td>
</tr>
</tbody>
</table>
Subscription aggregation algorithm

Calculation of the incremental cost

Round2

<table>
<thead>
<tr>
<th>Aggregation</th>
<th>Benefit</th>
<th>ΔCost</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1, s2</td>
<td>2</td>
<td>2*2</td>
</tr>
<tr>
<td>s1, s3</td>
<td>1</td>
<td>2*2</td>
</tr>
</tbody>
</table>

s2 and s3 aggregate

Incremental cost 2*2

Then s1 and s2 aggregate, after s2 and s3 has aggregated.

Incremental cost (3-1)*2
Subscription aggregation algorithm

Observations in the MEFA algorithm:

- Incremental benefit is based on individual pairwise units (which can be overlapped) -- linear.
- Incremental cost is calculated from clusters (which are non overlapped) -- sub-modular.

Theorem: The MEFA achieves the $1 + c \ln \theta$ asymptotic approximation ratio, where c is a constant value.
Subscription tree construction

- The construction idea
 - The communication delay \(\quad\) physical distance.
 - The unique subscription range \(\quad\) social distance.

- The traditional method
 - Only consider the communication delay to construct the subscription tree. May achieve relative poor performance in the subscription aggregation.

- Question
 - How to jointly consider the subscription tree construction in these two dimensions?
Subscription tree construction

- An example

For s3, it has two options:
 In subscription tree 1, s3 has smaller delay, larger unique subscription range of b1
 In subscription tree 2, s3 has larger delay, smaller unique subscription range of b1
Subscription tree construction

- **Greedy algorithm**
 - Balance the social distance and the physical distances between subscribers.
 - Call BFS algorithm to generate a subscription tree;
 - Initialize $X = \emptyset$;
 - For $i = 1:n$ do
 - If the subscriber i which can be reassigned to another broker j;
 - // Denote the a_{ij} as the new assignment for subscriber i to broker j.
 - Add a_{ij} into X;
 - // Denote the Δm_{ij} as the unique subscription range decreasing for b_j, due to a_{ij}.
 - // Denote the Δd_{ij} as the hop count increasing for s_i due to a_{ij}.
 - Find maximum $\frac{\Delta m_{ij}}{\Delta d_{ij}}$ in X;
 - While ($X \neq \emptyset$ & $\frac{\Delta m_{ij}}{\Delta d_{ij}} > \gamma$) do
 - Change the subscription tree using a_{ij} and delete a_{ij} from X;
 - Find maximum $\frac{\Delta m_{ij}}{\Delta d_{ij}}$ in X;
 - Subscription tree construction
Experiments

- Trace setting:
 - Real trace
 - Facebook topology trace from Stanford Large Network Dataset Collection (pick first 120 nodes).
 - The node with the largest degree as the publisher.
 - Use BFS algorithm to generate a subscription tree (one pub).
 - 63 leaf nodes are selected as subscribers.
 - Facebook subscription trace from Middleware System Research Group (120 nodes)
 - The min value and max value of a node is regarded as its subscription range's starting point and end point.
 - Average range size 1,687.
 - The subscription range from 267 to 32,947.
Experiments

- Trace setting:
 - Synthetic trace
 - A subscription tree referred from the *.
 - number of nodes from 46 to 96.
 - number of subscribers from 20 to 40.
 - Some topology examples:
 - 46 nodes with 20 subscribers;
 - 96 nodes with 40 subscribers.

Experiments

- **Trace setting:**
 - **Synthetic trace**
 - Node's subscription distribution range
 - Each node has one subscription range.
 - Average subscription size: 20 to 50
 - in a subscription range size of [0,400].
 - Uniform distribution
 - Exponential distribution
 - with parameter 1
 - Subscription tree construction.
 - Physical layer topology
 - Based on the referred topology.
 - Each subscriber randomly has one more connection with the end broker.

Experiments

- Algorithm comparison:
 - **Subscription aggregation**
 - All aggregation (AA) algorithm
 - Aggregate all the subscription range or not.
 - Similarity-pair aggregation (SPA) algorithm
 - Aggregate the subscription ranges based on subscription similarity.
 - Most-efficient-first aggregation (MEFA) algorithm
 - Proposed algorithm.
 - **Subscription tree construction**
 - Distance-only tree construction algorithm (DO)
 - Proposed similarity considered algorithm (DS)
Experiments

- The performance results of subscription aggregation algorithms ($\theta = 100$)

- The proposed MEFA algorithm greatly reduces the subscription aggregation cost, especially when the subscription range distribution is the exponential distribution.

The proposed MEFA algorithm achieve good performance in real trace.

- Synthetic traces
- Facebook traces
Experiments

- The influence of the subscription tree construction ($\theta = 100$)

A good subscription tree can further reduce the subscription aggregation cost.
Conclusions

Subscription aggregation problem
Trade-off between the benefit and the cost

- Partial subscription aggregation
 Greedy solution with approximation bound

- Subscription tree construction
 Further adapt the subscription aggregation
Future Works

- **Churn situation (Subscribers come and leave)**
 - The new coming subscriber can recover the false-positive range

- **multiple subscribers leave in a period**
 - Report the subscription change together, if the time interval is short to save re-configuration times

- Subscription aggregation strategy re-calculation and subscription tree re-build after a period of time
Thanks!

- ning.wang@temple.edu
- jiewu@temple.edu