Cost-Efficient Worker Trajectory Planning Optimization in Spatial Crowdsourcing Platforms

Ning Wang and Jie Wu
(1) RowanUniversity TTEMPLE TVETY

Research Background

Crowdsourcing and Spatial Crowdsourcing
\square Crowdsourcing: organizing the crowd (workers) to do tasks which are hard for machines but easy for human.
Wh IKIPEDIA

amazon mechanicalturk"
 Artificial Artificial Intelligence
 IM』GENET

\square Spatial crowdsourcing: Organizing the crowd (mobile workers) to do spatial tasks by physically moving to other locations

(3) RowanUniversity 圆 TEMPLEE

Research Background

* Tasks

\square General Spatial Task
$>$ Inventory identification
$>$ Placement checking
> Data collection

>...
\square Specific spatial task
$>$ Taxi calling service
$>$ Food delivery service

Research Background

* Management Mode
\square Worker Selected Tasks (WST)
$>$ workers actively select tasks
\square Server Assigned Tasks (SAT)
$>$ workers passively wait for the platform to assign tasks

Task Assignment: Challenges

Quality-control
\square Different sensors (sampling frequency, reading-accuracy)
\square Different behaviors (e.g., following the instruction strictly or careless)

Crowdsourcing Cost
\square Workers have to go the crowdsourcing locations from their current locations.
\square Different workers have different movement
 distances.

Network Model

* Multiple workers and crowdsourcing locations
\square Each worker has a certain quality for finishing crowdsourcing tasks.
\square The cost of a worker is proportional to the movement distance, e.g., ridesharing.
\square Each recruited worker generates a round crowdsourcing tour.

Cost-efficient Worker Recruitment Problem

* How to recruit a set of proper workers?
\square Maximize the worker recruitment efficiency
$>$ different crowdsourcing qualities for different workers
$>$ different crowdsourcing costs for different workers

$$
\text { System efficiency }=\frac{\sum \text { quality }}{\sum \text { cost }}
$$

\square Coverage Constraint
$>$ All the crowdsourcing locations should be covered/reached, e.g., traffic/environment monitoring, route navigation, etc.
*NP-complete in general scenario
\square Reduce to the TSP problem

Cost-efficient Worker Recruitment Problem

A motivation example

\square Three algorithms:
$>$ Nearest: each location is assigned to the closest worker
$>$ Min-Distance: overall crowdsourcing distance is minimized

$>$ Max-Quality: each location is assigned to the worker with the highest quality

Schedule	w_{1}	w_{2}	Efficiency Ratio
Nearest	$\left\{l_{1}\right\}$	$\left\{l_{2}, l_{3}\right\}$	$(3+2) /(5+4)=0.56$
Min dist.	$\}$	$\left\{l_{1}, l_{2}, l_{3}\right\}$	$4.5 / 8=0.56$
Max quality	$\left\{l_{1}, l_{2}, l_{3}\right\}$	$\}$	$6 / 10=0.60$
Optimal	$\left\{l_{1}, l_{2}\right\}$	$\left\{l_{3}\right\}$	$(1.5+4) /(2+7)=0.61$

Proposed Problem in 1-D Scenario

* All workers and tasks can be reached via a line, e.g., people/vehicles in highway or main street.

* An example
\square two workers and three crowdsourcing locations

Proposed Solution: Dynamic Programming

Algorithm

\square Sort the worker locations and crowdsourcing location separately from one side to another side, e.g., from left to right
\square Define opt[i,j] as the maximum ratio between first i workers with first j crowdsourcing locations
$>$ The opt[i.j].c and opt[i,j].q are the corresponding total tour(s) length and the total quality.

Proposed Solution: Dynamic Programming

* A toy example

$>$ Dynamic programming (An illustration example: $q_{1}=0.5$ and $q_{2}=1$)

Calculate opt[2,3]
$\operatorname{opt}[2,3]=\max \left\{\frac{\operatorname{opt}[1,0] \cdot q+3 * 1}{\operatorname{opt}[1,0] \cdot c+7 * 2}, \frac{\operatorname{opt}[1,1] \cdot \mathrm{q}+2 * 1}{\operatorname{opt}[1,1] \cdot c+4 * 2}, \frac{\operatorname{opt}[1,2] \cdot \mathrm{q}+1 * 1}{\operatorname{opt}[1,2] \cdot \mathrm{c}+1 * 2}, \operatorname{opt}[1,3]\right\}$

$$
w_{2}:\left\{I_{1}, I_{2}, l_{3}\right\}
$$

$$
\begin{aligned}
& \mathrm{w}_{1}:\left\{I_{1}\right\} \\
& \mathrm{w}_{2}:\left\{I_{2}, I_{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{w}_{1}:\left\{I_{1}, I_{2}\right\} \\
& \mathrm{w}_{2}:\left\{I_{3}\right\}
\end{aligned}
$$

$$
w_{1}:\left\{I_{1}, I_{2}, I_{3}\right\}
$$

Proposed Problem in 2-D Scenario

* Homogenous 2-D scenario (all workers have the same quality) \square Objective: minimize the overall tour(s) length
* A simple nearest assignment solution
\square Voronoi graph partition

Nearest assignment

Optimal assignment

Proposed Problem in 2-D Scenario

* Homogenous 2-D scenario

\square Performance Analysis: to minimize the total tour length, the nearest assignment can be as bad as n times of the optimal solution, where n is the total number of workers in the network.
\square an extreme example

Nearest assignment

Optimal assignment

Proposed Solution in Homogenous 2-D scenario

* A Minimum-Spanning Tree (MST) based approach
\square Transfer the network into a graph where links are shortest distance between them.
\square Add a dummy node and it has links (zero-weight) with all workers

Step 1

Step 2

Proposed Solution in Homogenous 2-D scenario

* A Minimum-Spanning Tree (MST) based approach
\square Find the MST in the new graph
\square Got a spanning forest by removing the dummy nodes and the corresponding link
\square Find the best visiting tour for each selected workers based on the generated spanning tree(s)

Step 3

Step 4

Proposed Solution: Analysis

* Homogenous 2-D scenario
\square MST can be calculated optimally based on the matroid theory.
\square The MST to the shortest tour transfer has an approximation ratio of 1.5 through greedy algorithm in the metric space.
\square The best shortest tour algorithm achieves an approximation of of $1+\epsilon$ trough Fully Polynomial-time approximation scheme (FPTAS) in the Euclidean space.
* Heterogeneous 2-D scenario
\square Apply the same solution, further bounded by the maximum quality ratio between workers in the network
$>$ further optimization is our future work

Performance Evaluation

* Uber pick-up trace from the NYC
\square April 2014, which has 564,516 records.
Worker and crowdsourcing locations are randomly generated.
$\square 7$ different worker qualities

Performance Evaluation

* Time complexity (logarithmic axis)
\square The proposed approaches have similar running-time in different scales

Performance Evaluation

Effectiveness (1-D scenario)

\square DP: Dynamic Programming, NA: Nearest Assignment, ST: Shortest Tour(s), and MQ: Max-Quality

Performance Evaluation

2-D scenario

MST: proposed approach, NA: Nearest Assignment, and MQ:
Max-Quality

Summary

Work recruitment problem in spatial crowdsourcing is still not wellsolved by considering heterogeneous worker qualities.

We proposed the concept of the System efficiency and proposed solutions in 1-D and 2-D scenario.
\square Optimal solution in 1-D scenario
\square Approximation solution in 2-D scenario

* We demonstrated proposed approaches in Uber NYC traces.

Thanks!

* Contact

\square wangn@rowan.edu

