Cost-Efficient Worker Trajectory Planning Optimization in Spatial Crowdsourcing Platforms

Ning Wang and Jie Wu

Research Background

Crowdsourcing and Spatial Crowdsourcing

Crowdsourcing: organizing the crowd (workers) to do tasks which are hard for machines but easy for human.

□Spatial crowdsourcing: Organizing the crowd (mobile workers) to do spatial tasks by physically moving to other locations

Research Background

Tasks

General Spatial Task
 Inventory identification
 Placement checking
 Data collection
 ...

□ Specific spatial task

≻ ...

- Taxi calling service
- Food delivery service

"Spatial Crowdsourcing: Challenges, Techniques, and Applications", in Proceedings of the 43rd International Conference on Very Large Databases (VLDB 2017), Munich, Germany

3

Research Background

Management Mode

- □ Worker Selected Tasks (WST)
 - workers actively select tasks

□ Server Assigned Tasks (SAT)

> workers passively wait for the platform to assign tasks

Task Assignment: Challenges

Quality-control

Different sensors (sampling frequency, reading-accuracy)

Different behaviors (e.g., following the instruction strictly or careless)

- Crowdsourcing Cost
 - □ Workers have to go the crowdsourcing locations from their current locations.
 - Different workers have different movement distances.

Network Model

Multiple workers and crowdsourcing locations

Each worker has a certain quality for finishing crowdsourcing tasks.

□ The cost of a worker is proportional to the movement distance, e.g., ridesharing.

Each recruited worker generates a round crowdsourcing tour.

Cost-efficient Worker Recruitment Problem

How to recruit a set of proper workers?

- □ Maximize the worker recruitment efficiency
 - different crowdsourcing qualities for different workers
 - different crowdsourcing costs for different workers

System efficiency =
$$\frac{\sum quality}{\sum cost}$$

Coverage Constraint

All the crowdsourcing locations should be covered/reached, e.g., traffic/environment monitoring, route navigation, etc.

NP-complete in general scenario
 Reduce to the TSP problem

Cost-efficient Worker Recruitment Problem

A motivation example

- □ Three algorithms:
 - ➢ Nearest: each location is assigned to the closest worker
 - Min-Distance: overall crowdsourcing distance is minimized

> Max-Quality: each location is assigned to the worker with the highest quality

Schedule	<i>w</i> ₁	<i>w</i> ₂	Efficiency Ratio
Nearest	$\{l_1\}$	$\{l_2, l_3\}$	(3+2)/(5+4) = 0.56
Min dist.	{}	$\{l_1, l_2, l_3\}$	4.5/8 = 0.56
Max quality	$\{l_1, l_2, l_3\}$	{}	6/10 = 0.60
Optimal	$\{l_1, l_2\}$	$\{l_3\}$	(1.5+4)/(2+7)=0.61

Proposed Problem in 1-D Scenario

All workers and tasks can be reached via a line, e.g., people/vehicles in highway or main street.

✤ An example

two workers and three crowdsourcing locations

Proposed Solution: Dynamic Programming

Algorithm

Sort the worker locations and crowdsourcing location separately from one side to another side, e.g., from left to right

Define opt[i,j] as the maximum ratio between first i workers with first j crowdsourcing locations

The opt[i.j].c and opt[i,j].q are the corresponding total tour(s) length and the total quality.

 $opt[i, j] = \max \begin{cases} opt[i - 1, j], \\ \frac{opt[i', j'] \cdot q + q_i(j - j')}{opt[i', j'] \cdot c + 2(\max\{l_i, l_j\} - \min\{l_i, l_{j'}\})} \\ \forall i', j', i' < i, j' < j. \end{cases}$ (3)

Worker i is recruited for crowdsourcing tasks between j' to j

Proposed Solution: Dynamic Programming

✤ A toy example

> Dynamic programming (An illustration example: $q_1 = 0.5$ and $q_2 = 1$)

Proposed Problem in 2-D Scenario

- Homogenous 2-D scenario (all workers have the same quality)
 Objective: minimize the overall tour(s) length
- ✤ A simple nearest assignment solution

□ Voronoi graph partition

Proposed Problem in 2-D Scenario

Homogenous 2-D scenario

Performance Analysis: to minimize the total tour length, the nearest assignment can be as bad as *n* times of the optimal solution, where n is the total number of workers in the network.

□ an extreme example

Proposed Solution in Homogenous 2-D scenario

- A Minimum-Spanning Tree (MST) based approach
 - Transfer the network into a graph where links are shortest distance between them.
 - □ Add a dummy node and it has links (zero-weight) with all workers

Proposed Solution in Homogenous 2-D scenario

A Minimum-Spanning Tree (MST) based approach

- □ Find the MST in the new graph
- Got a spanning forest by removing the dummy nodes and the corresponding link
- □ Find the best visiting tour for each selected workers based on the generated spanning tree(s)

Proposed Solution: Analysis

Homogenous 2-D scenario

- □ MST can be calculated optimally based on the matroid theory.
- The MST to the shortest tour transfer has an approximation ratio of 1.5 through greedy algorithm in the metric space.
- □ The best shortest tour algorithm achieves an approximation of of $1 + \epsilon$ trough Fully Polynomial-time approximation scheme (FPTAS) in the Euclidean space.

Heterogeneous 2-D scenario

Apply the same solution, further bounded by the maximum quality ratio between workers in the network

further optimization is our future work

Uber pick-up trace from the NYC

□ April 2014, which has 564,516 records.

□ Worker and crowdsourcing locations are randomly generated.

□ 7 different worker qualities

Time complexity (logarithmic axis)

□ The proposed approaches have similar running-time in different scales

- Effectiveness (1-D scenario)
 - DP: Dynamic Programming, NA: Nearest Assignment, ST: Shortest Tour(s), and MQ: Max-Quality

2-D scenario

MST: proposed approach, NA: Nearest Assignment, and MQ: Max-Quality

Summary

Work recruitment problem in spatial crowdsourcing is still not wellsolved by considering heterogeneous worker qualities.

We proposed the concept of the System efficiency and proposed solutions in 1-D and 2-D scenario.

- Optimal solution in 1-D scenario
- □ Approximation solution in 2-D scenario
- We demonstrated proposed approaches in Uber NYC traces.

Thanks!

Contact

wangn@rowan.edu

