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Abstract—With the progress of mobile devices and the suc-
cessful usage of the wisdom of crowds, spatial crowdsourcing
has attracted much attention from the research community.
This paper addresses the efficient worker recruitment problem
under the task coverage constraint. The efficiency of worker
recruitment is measured by the total quality collected by a set
of workers and the corresponding cost, e.g., proportional to the
overall trajectory length of workers. Specifically, we consider two
different scenarios, 1-D line topology and general 2-D topology, in
which workers may have either homogeneous or heterogeneous
crowdsourcing quality (e.g., the quality of videos or photos
for an object at a particular location). In the 1-D scenario,
we propose two dynamic programming approaches to find the
optimal solution in both homogeneous and heterogeneous cases.
In the general 2-D scenario, the proposed problem turns out
to be NP-hard even in the homogeneous case. We first prove
that the simple nearest assignment has an approximation ratio
of 1/(2n), where n is the number of the workers. Therefore,
the nearest assignment cannot be scalable. We further propose
a novel assignment approach based on the minimum spanning
tree. The proposed approach is proved to be close to the optimal
solution in the homogeneous case and 1/p in the heterogeneous
case, where p is the maximum quality ratio between two workers.
The effectiveness of the proposed algorithm is verified using a
real mobility trace: Uber pick-up trace in the New York City.

Index Terms—Spatial crowdsourcing, worker recruitment, and
trajectory planning.

I. INTRODUCTION

With the ubiquity of mobile devices and vehicles equipped
with high-fidelity sensors and the development of wireless net-
works (e.g., WiFi and LTE) over the past few years, all kinds
of data have become widely available and large in amount.
Traditional infrastructure-based computing approaches or sys-
tems have begun to show their limitations, i.e, high system im-
plementation costs, difficult-to-handle dynamic environments,
and hard-to-utilize kinds of big data [1]. To address the
aforementioned three challenges, spatial crowdsourcing has
emerged in the past few years [2].

The idea of spatial crowdsourcing is to recruit a set of
people/vehicles, called workers, to actively collect and report
data using their mobile devices for a given task. Therefore,
there is no need to build a specific system using the ubiquitous
sensors in smart devices/vehicles, and we can enjoy the pay-as-
you-go character. The new feature of the spatial crowdsourcing
is that spatial crowdsourcing platforms consist of location-
specific tasks. Therefore, workers who agree to participate
in the spatial crowdsourcing have to physically be at spe-

Schedule wy wy Quality-Cost Ratio
Nearest {0} {b, I3} (3+2)/(5+4) = 0.56
Min dist. {} {h, b, 3} 4.5/8=0.56
Max quality|| {1, b, 5} | 6/10 = 0.60
Optimal {L, L} {l:} (1.5 +4)/(2+7)=0.61

tasks
Fig. 1. An illustration of cost-efficient worker recruitment problem.

workers

cific locations to complete the tasks. There are many spatial
crowdsourcing applications, e.g., pollution level monitoring
[3], parking lot monitoring [4], and traffic congestion [5], etc.
Spatial crowdsourcing has application in numerous domains
such as transportation (e.g., Uber [6]), journalism [7], and food
delivery (e.g., Grubhub [8]).

In this paper, we would like to address a fundamental
problem in spatial crowdsourcing, that is, how to maximize
the effectiveness of a crowdsourcing recruitment policy. In a
typical crowdsourcing system, different workers might have
different qualities for one task due to different sensors (e.g.,
cameras) and worker behaviors (e.g., following the instruction
strictly or careless) [9, 10]. The cost of a recruited worker
is usually related to the worker’s trajectory length [11, 12].
To maximize the long-term benefit, a spatial crowdsourcing
recruitment policy needs to have not only a high quality but
also a low cost. That is, there is a quality-cost trade-off in
the spatial crowdsourcing. Therefore, we propose using the
overall quality-cost ratio, (i.e., the total collected qualities of
divided by the total crowdsourcing cost), as the criteria.

In this paper, we propose the Cost-efficient Worker Recruit-
ment Problem (CWRP), whose objective is to maximize the
overall quality-cost ratio of a crowdsourcing policy under the
constraint that all crowdsourcing locations should be covered.
An illustration of the CWRP is shown in Fig. 1, where
there are two workers, w; and we, and three crowdsourcing
locations, l1, lo, and [3. The links between these five locations
are the corresponding crowdsourcing cost, e.g., distance. The
crowdsourcing qualities of w; and ws to conduct tasks are
2 and 1.5, respectively. In Fig. 1, we show four different
recruitment schedules and the detailed results are shown in
the table in Fig. 1. The idea of the first schedule is to assign
crowdsourcing locations to their nearest workers. Therefore,
Iy is assigned to w;, since the cost between w; and [y is 2,
and the cost between wq and [; is 3. By the same comparison,
lo and [3 are assigned to ws. The shortest-round trip cost for
wi to visit Iy, i.e., w; — i — w;, is 4. The shortest-round



trip for wo to visit I and I3, i.e., wo — Iy — I3 — wa. is 5.
Therefore, the overall efficiency ratio is (3+2)/(5+4) = 0.56.
Another schedule is to find one or multiple shortest round
tour(s) so that the overall trajectory length is the minimum.
In this example, since w;’s initial location is relatively far
from these three crowdsourcing locations, through exhaustive
searching, the shortest way to visit /1, /s, and I3 is to recruit
wo to visit all crowdsourcing locations. The shortest round-
path length is 8 and the efficiency ratio is 0.56. However,
these two schedules do not consider the worker’s quality at
all. The third schedule tries to maximize the achievable quality
sum. Therefore, all crowdsourcing locations are assigned to the
worker who has the largest corresponding quality, i.e., w; in
this example, and the efficiency ratio is 0.60. Its performance
is a little bit better than the first and second schedules. From
this toy example, we observe that we need to leverage the
crowdsourcing quality and crowdsourcing cost carefully to
achieve an efficient schedule. The optimal schedule is to
schedule /; and I to wy and I3 to we. The efficiency ratio
turns out to be 0.61.

In this paper, we discuss the solution of the CWRP in
homogeneous and heterogeneous worker quality settings under
two different topologies, i.e., 1-D topology and general 2-
D topology. In the 1-D topology, e.g., highway scenario,
we propose two dynamic programming approaches to find
the optimal solution in both homogeneous and heterogeneous
cases with different complexities. Then, we extend the model
into a general 2-D scenario, which turns out to be NP-
hard even in the homogeneous case. We first prove that
the simple nearest assignment has an approximation ratio of
1/(2n), where n is the total number of the workers in the
network. It means the nearest assignment can be really bad
when there are many workers and thus it cannot be applied
to a scalable system. Then, we propose a novel assignment
approach, which is proved to be close to the optimal solution in
the Euclidean space in the homogeneous case and achieves an
approximation ratio of 1/p in the heterogeneous case, where
p is the maximum quality ratio between any two workers.

The contributions of this paper are summarized as follows:

o To our best knowledge, we are the first to consider the
cost-effectiveness of spatial crowdsourcing under the task
coverage constraint during the worker recruitment.

o In the 1-D topology scenario, we propose two dynamic
programming approaches to find the optimal solution in
the homogeneous and heterogeneous cases.

o In the 2-D topology scenario, we prove that the CWPR
is NP-hard. A novel approach is proposed, and its per-
formance is n times better than the nearest assignment
approaches in terms of the approximation ratio.

o We verify the effectiveness of proposed approaches using
real Uber pick-up trace in the New York City.

II. RELATED WORKS

a) Worker Trajectory Planning: In this category, the
worker’s trajectory is controlled by the server. Some appli-
cations are TaskRabbit and WeGoLook [13]. Previous re-

searchers have produced many works with only one worker
in their spatial crowdsourcing model. In [14], each task has
a deadline and a feasible route of a worker should make
sure that all tasks in the route can be finished before their
deadlines. Later works considered the existence of multiple
workers. In [15], the authors noticed that there are time
conflicts for task assignments, which further complicates the
planning problem. In addition, workers may have competing
relationships. Therefore, the optimal trajectory for a particular
worker might not be the optimal trajectory in terms of bene-
fiting the whole network. To address this situation, a simple
greedy collaborative trajectory planning scheme is proposed
but the method in [15] did not have a performance analysis.
In [16], they considered the online trajectory planning. In [11],
the authors tried using the semi-bandit learning method to
maximize task reliability and minimize travel costs.

b) Trajectory Coverage: In this category, each worker’s
trajectory is predetermined. Therefore, the major problem
is recruiting the most cost-efficient worker to maximize the
crowdsourcing task. An application example is Waze Carpool
[17]. There were many theoretical studies on task assignments
and participant selection problems, playing trade-offs among
the crowdsourcing budgets and the coverage range [18-20].
The difference between their models and proposed model in
this paper is that they considered maximizing the coverage
range; however, in many scenarios, ensuring the coverage in a
certain area, such as traffic congestion monitoring or surveil-
lance, with the minimum cost is very important. In [21], the
authors considered the coverage requirement in crowdsourcing
and minimized the overall recruiting cost; therefore, a greedy
algorithm with a performance analysis was proposed. In [22],
the authors considered the trade-off between the load balance
of each worker and the utility maximization by modeling the
recruitment as a Nash bargaining game. In [23], the authors
considered both the number of assigned tasks and coverage
area of workers.

III. PROBLEM STATEMENT
A. Network Model

In this paper, we address a centralized spatial crowdsourcing
system in an offline manner. In a particular time slot, we as-
sume there are n available workers who agree to participate in
the crowdsourcing system, {wy, ws, - -+ , wy, }, and their initial
positions are W = {p1,pa, - ,pn}. Suppose there are m
crowdsourcing locations, {l1,l2,- - ,,,}, whose locations are
C = {pn+1,Pn+2, " »Pnt+m}» and each location has one and
only one crowdsourcing task that needs to be done. Without
loss of generality, we assume that we have an (n+m) X (n+m)
matrix, D, where d;; is the shortest distance from p; to p;.
The shortest distance between a pair of locations is symmetric,
i.e., d;j = dj;. In addition, the 2-D crowdsourcing area is a
metric space, namely, d;; + d;r > d;, for any 4, j, k.

A unique feature of the crowdsourcing platform is that
workers may have heterogeneous crowdsourcing qualities for
a crowdsourcing task. For example, different smartphones
have different camera resolutions or behaviors [9, 10], and
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Fig. 2. Network model in the city environment.

different Uber drivers have different rating [24]. We use g
to denote the earned quality for a crowdsourcing location
by recruiting the worker wy. In terms of the crowdsourcing
system cost, each recruited worker has to physically move
from its initial location to the crowdsourcing locations and
finally goes back to the initial location. Given the assigned
crowdsourcing locations for a worker, a tour with the shortest-
distance can be calculated through shortest-path algorithms.
Let us use a 2-D movement decision matrix X* to denote
the actual tour of the worker wy, where a:f] is a decision
variable. x = 1 represents that worker wj moves from p; to
p; through the corresponding shortest path, otherwise ;13Z 5 =0.
Given the movement decision matrlx X k_ the overall quality
earned by recru1t1ng wy 18 Zl 1,j=1 o:” qx, and the total cost
of the wy, is ZL 1i=1 c(d;j)zk;, where c(-) is a cost function
regarding the tour length [11, 12]. Therefore, in the remaining
part of this paper, we use the tour length to represent the
corresponding crowdsourcing cost without further explanation.
In addition, we use uf and n; to denote the ith location and
the total number of crowdsourcing locations visited by wy,
respectively. An illustration of the network model is shown in
Fig. 2, where 3 workers are recruited to cover 4 crowdsourcing
locations. Fig. 2(a) is a common setting in an urban area and
Fig. 2(b) show a possible recruitment result, where w; covers
l1, wa covers lo, and w3 covers I3 and 4.

B. Problem Formulation

In this paper, we propose the Cost-efficient Worker Recruit-
ment Problem (CWRP) in spatial crowdsourcing platforms.
Given the workers’ initial locations and the crowdsourcing
locations at that time, we would like to generate a recruitment
policy, X, to recruit a set of workers to finish crowdsourcing
tasks and determine the corresponding tour for each worker.
The overall objective of CWRP is to maximize the ratio
between the overall earned quality of recruited workers and the
overall movement cost of them. The CWRP is mathematically
formulated as follows:

max Iy ?+17r; 1xi‘€jqk )
Zk 127+1W; 10( )xf;
st > h 12’”*” k=1, Vij x--E{O 1} 2)

uk—u +nkx <nk—1 V2<27éj<nk 4)
where the ob]ectlve is to maximize the overall ratio between
the crowdsourcing quality and the worker movement cost. We

call it the recruitment effectiveness in the following of this
paper. The first constraint is the coverage constraint, i.e., every
crowdsourcing location should be assigned to a worker. The
second constraint is that for each worker wy, its trajectory is a
tour, which covers a subset of crowdsourcing locations and it
arrives and departs each assigned crowdsourcing location only
once. The third constraint is the subtour elimination constraint,
which ensures that each worker has only one tour rather than
multiple isolated tours [25].

C. Hardness Analysis
Theorem 1. The decision version of CWRP is NP-complete.

Proof. To show the decision version of the CWRP € NP, we
show that for a given recruiting policy, X, we can verify
the correctness of X in polynomial time (i.e., constraints 2-
4 are satisfied). Specifically, we check each crowdsourcing
location [; and check the number of worker assigned to I;
and the number of arrival and departure at this location. The
complexity of the verification can be done in O(nm?) where
m is the total number of crowdsourcing locations and n is the
total number of workers.

To show that CWRP € NP-hard, we argue that the Travel
Salesman Problem (TSP), which is NP-complete [26] can be
reduced to the CWRP problem in polynomial time. The TSP
is to find the shortest tour in the network to pass through each
node exactly once. Mathematically, Consider there are n nodes
(e.g., cities) belonging to the set N = {1,2,....,n}, with arc
set £ = N2, and travel costs t;j € E, then the TSP is that
what is if there is a 2D decision vector X, where x;; means
that the salesman travel from the city ¢ to city j, so that the
generated route is the shortest possible route and the that visit
each city and return to the original cost.

We present a polynomial time reduction and construct an
special instance of the CWRP, where there is only one worker,
w; in the network. In this special example, there are m + 1
location in the CWREP, i.e., the initial location p; and all crowd
sourcing locations {ps,ps,- - ,pm + 1}. In this case, we can
build m + 1 cities using the corresponding locations in the
TSP problems. We claim that if there is a polynomial solution
which can maximize the effectiveness, i.e., Eq.1, then it is an
optimal route for the TSP problem. In this special case, we
have to recruit that worker w; and the overall quality by using
that worker is a constant value, i.e., mg;. To maximize the
objective in Eq. 1, the CWRP has to find the shortest path for
that w; to all crowdsourcing locations, which is the same as
the objective of the TSP.

We can observe that if the trajectory planning in the TSP
exists, then we can use the same schedule in the CWRP.
The solution is feasible since all crowdsourcing locations are
visited. In addition, the overall length (ratio) is the minimum
(maximum). This completes the proof. O

IV. 1-D LINE TOPOLOGY

In this section, we first discuss the CWRP in a 1-D line
topology. An application scenario is the traffic monitoring in
the main street and highway. An example is shown in Fig. 3.



wi w2

m
1 2 3 4 5 6 7 8
Fig. 3. An illustration of 1-D model.

A. Homogeneous Crowdsourcing quality

If all crowdsourcing workers have identical crowdsourcing
abilities for all crowdsourcing locations, the CWRP becomes
simple since the objective of the CWRP is equivalent to
recruiting a set of workers which can minimize the overall
movement distance. In such a case, we can solve the CWRP
by using the dynamic programming technique. The dynamic
programming works as follows: all the workers’ and tasks’
locations are sorted directionally, e.g., from the left to right.
In Fig. 3, the sorted result is [y, ws, l2, ws, and 3. Without
loss of generality, we use pi1,p2, p3, P4, and ps to represent
them, respectively. Then, we use a vector opt[-] to store the
optimal sub-solution, where the opt[i] is the minimum total
tour(s) length for the first ¢ locations. Initially, all opt[i] is
00, except opt[0], opt[0] = 0. Then, we can get the following
optimal substructure as shown in Eq. 5.
min{opt[j — 1] + 2(p: — p;)}

if ppeCpjeW
min{opt[i], opt[j] + 2(pi — p;)} Vp; <pi

if p;eW,pjeC

Vp; < pi

optli] = (&)

There are two cases. (1) If the current location p; is a
crowdsourcing location, i.e., p; € C, we have to select a
worker w; which is before the crowdsourcing 4 to visit it and
we would like to select the best worker w; in the left of p; to
cover the crowdsourcing locations from p; to p; and the overall
cost is the minimum. (2) If the current location p; has a worker,
ie., p; € W, we would like to check if we can use this newly
available worker to cover crowdsourcing locations from p; to
p; and further reduce the overall cost. The optimal solution to
the crowdsourcing location p;, i.e., opt[i], is calculated in the
following method: we use the optimal solution to p; plus the
cost of recruiting a new worker to cover the crowdsourcing
locations between p; and p;. The optimal value of opt[i] is
found after we try all p; which is smaller than p;.

Let us use Fig. 3 to illustrate the dynamic programming
procedure. Note that we assume that each worker has the
identical crowdsourcing ability. The first location is [y, since
there are no workers in [;’s left. Therefore, opt[1] is co. The
second location is wy, and we would like to check if we can
use wi to minimize the total tour length. Clearly, if we use
the wy to cover [y, the total tour length will reduce from co
to 2 for opt[2]. The third location is I, then we would like to
find the best worker in its left to cover /5. Since there is only
one worker w; available, we update opt[3] to 2 4+ 2 x 2. The
fourth location is w- in this example, and we check if we need
to change the coverage of Iy, I or {l1,lo} from worker w;
to wy. Through calculation, we found that it is better to keep
the original assignment and thus ws is not recruited. The last
position in this example is /3, and it can be covered by w; or
we, who are in its left. Through calculation, we found that wo
is the best option to cover [3. In the end, the minimum tour
length is 8, where w; covers [; and [y, and ws covers I3.

The time complexity of the dynamic programming is as
follows. We have O(m + n) rounds at most. For each state,

J J J
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Fig. 4. An illustration of heterogeneous dynamic programming.
Algorithm 1 Dynamic Programing (DP) in 1-D topology
Input: The network matrix, D, and worker quality matrix, Q).
OQutput: The worker recruit decision, X.

1: Initialize opt[i, j] = 0, ¢maz = 0.

2: for w; from 1 to n do

3: for [; from 1 to m do

4 for w; from 1 to ¢ do

5: for I/ from 1 to j do

6 Update opt|i, j] based on Eq. 6.
7: Retrieve the recruitment in opt[n, m].

8: Return the optimal worker recruitment X.

Algorithm 2 Nearest Assignment (NA)
Input: The network matrix, D, and worker quality matrix, Q.
Output: The worker recruit decision, X.

1: for [; from 1 to m do

2 Find out w; = arg min,cv d;;.

3 Update X* by adding /; to its tour.

4: Return the optimal worker recruitment X.

there is at most O(m +n) calculation to get the optimal value
so far. The update operation is O(1). Therefore, the overall
time complexity is O((m + n)?).

B. Heterogeneous Worker Crowdsourcing Quality

The heterogeneous crowdsourcing quality means different
workers may have different crowdsourcing qualities for the
same task. Note that a worker has the same crowdsourcing
quality for all assigned tasks. In this scenario, we propose
another dynamic programming method. As in the homoge-
neous case, we sort the workers and tasks directionally. The
difference is that in this case, the workers and tasks are
separately sorted. Without loss of generality, we can denote the
ith crowdsourcing location and worker as [; and w;, respec-
tively. The dynamic programming works as follows: We keep
O(nm) states, where opt[i, j] is the highest effective ratio for
first ¢ workers ends with first j crowdsourcing tasks. opt[i, j]
is calculated by using two values, opt[i, j].q and opt[i, j].c,
which denote the corresponding total quality and the total cost
to achieve opt[i, j], i.e., opt[i, j| = opt[i, j].q/opt[i, 7].c. Then,
we can get the following optimal substructure,

Opt[l - 17j]a

opt[i’, 5.9 + qi(j — 5')
opt[i’, j'].c + 2(max {l;, l;} — min {l;, ;s 41})
vi', g i <5 <.

opt[i, j] = max

(6)
The idea is that we gradually take workers into consideration
based to their locations, e.g., from left to right. If the current
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Fig. 5. An illustration of the nearest assignment approach.

worker w; is not recruited, the availability of worker w;
will not change the current optimal result for the first j
crowdsourcing locations, i.e., opt[i, j| = opt[i — 1, j]. If the
worker w; is recruited, we iterate all the possible assignments
of w; for first j crowdsourcing locations to check if we can
get a better assignment.

Fig. 4 shows an example of the dynamic programming
procedure for Fig. 3. Let us assume that the crowdsourcing
qualities of workers w; and ws are 0.5 and 1, respectively. All
states is 0 initially. In this example, the opt[1, 1] is the maximal
ratio end by using w; to cover [y, since there is only one
worker in such a scenario, opt[1, 1] = opt[1, 1].q/opt[1, 1].c =
0.5/2 = 1/4, similarly, we can get opt[1,2] = 0.5x2/6 = 1/6
and opt[1,3] = 0.5 x 3/14 = 3/28, respectively. We also
update the other two tables, opt[1,1].q = 0.5,0pt[1,2].q =
1,0pt[1,3].q = 1.5, opt[l,1].c = 2,0pt[1,2].c = 6, and
opt[1,3].c = 14. opt[2,1] = max{opt[1,1],1/(2 x 6)} =
1/4, which is the comparison to use w; or wg to cover
l1. opt[2,2] = max{(opt[1,0]. + 2)/(2 x 6), (opt[1,1].q +
1)/(opt[1,1].c+3x2) = 3/16, opt[1, 2]} = 3/16. It represents
three cases: (1) wo covering I and ls (i.e., wo — lo — 11 —
ws) (2) wy covering I; and ws covering Iy, (i.e., wi — I; —
wy; and wy — ly — ws), and (3) wy covering l; and [y
(ie., w3 — l1 = los — wq). The corresponding opt|[2,2].q is
updated to 1.5 and opt[2.2].c is 8. Similarly, we can calculate
the opt[2, 3] which is max{opt[1,0]+3/(7 x2), (opt[1,1].q+
1x2)(opt[l,1].c+4x2) = 1/4, (opt[1,2].g+1)(opt[1,1].c+
1x2)=3/16,d[1,2]} = 1/4. The best assignment is that w;
conducts the task at [; and wy conducts the task at locations
at Iy and 3. We also update the corresponding opt[2, 3].q to
2.5 and opt[2.3].c to 10.

The time complexity of the dynamic programming is as
follows. We have O(mmn) states. For each state, there will be
at most O(mn) rounds to get the optimal value up-to-now.
The update operation is O(1). Therefore, the overall time
complexity is O(m?n?). The space complexity is O(mn).
Note that we can also use this method in the homogeneous
case, but it leads to a higher complexity.

V. 2-D TOPOLOGY
A. Homogeneous Crowdsourcing quality

If every worker has identical crowdsourcing quality, the
CWRP can be reduced to a problem where we would like
to plan at most n tours and the total movement distance of
these tours is maximized. Similar to the 1-D scenario, where
we first discuss the scenario where all workers have the same
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Fig. 6. A comparison between two approaches.

crowdsourcing ability. Even in such a case, the CWRP is NP-
hard according to the proof of the Theorem 1. Therefore, a
natural idea is to propose efficient heuristic approaches.

1) Nearest Assignment Algorithm: One natural idea is that
we can partition the 2D space into a Voronoi graph [27], based
on the workers’ locations. After that, crowdsourcing locations
that fall into the same region in the Voronoi graph are assigned
to the same worker. The idea behind this approach is that each
crowdsourcing location is assigned to its nearest worker. An
illustration of this approach is shown in Fig. 5(a). However,
sometimes it is not always optimal to assign a crowdsourcing
location to its nearest worker, as shown in Fig. 5(b). Note that
some workers might not be recruited by this approach.

Theorem 2. The nearest assignment achieves an approxima-
tion ratio of 2n in the homogeneous case.

Proof. Without loss of generality, let us assume that we find
a crowdsourcing location [;, which is assigned to w; in the
nearest assignment. However, in the optimal solution [j is
assigned to w; through connection with [, possibly with
multiple hops. An illustration is shown in Fig. 6, where the
solid line is one-hop and the dotted line may be multiple hops.
Note that I, can also connect to w; directly. The optimal
solution is better, that is, d; + dp; > dip + dpj, which is
equivalent to d;x > dgp. On the one hand, based on the
greedy property of nearest assignment, we also know that
dii, < dpj. Otherwise, [; will be assigned to w;. On the other
hand, based on the property of metric space di; < d;p + dp;.
We have dyp, + diny < dir, + dpnj < dij +dpj < dip, +2dp; <
2d;n, + 2dp; = 20pt.

For each worker w;, the number of possible w; which can
reduce the overall length at most n — 1, which is the largest
number of adjunct regions for a region in the Voronoi graph.
Therefore, the nearest assignment has an approximation ratio
of 2n in the worst case. O

Note that in the 1-D scenario, every region is adjunct by two
regions and thus nearest assignment achieves an approximation
ratio of 2 by using the same proof. The idea behind the
Theorem 2 is that the nearest assignment doesn’t consider
the crowdsourcing location distribution. A tight example of
Theorem 2 is shown in Fig. 7, where the nearest assignment
will assign each worker a crowdsourcing location. However,
in the optimal solution, even through crowdsourcing locations
l1, 12, and I3 have larger distance to wy, it is better to assign
them to worker wy, since after w, reaches l4, there is small
extra distance for w, to reach [, lo and [3.

2) MST-based Algorithm: To address the problem of the
nearest assignment, that the crowdsourcing location may not
be assigned to the nearest worker, we propose a Minimum
Spanning Tree (MST) based solution.
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(a) Nearest assignment (b) Optimal assignment
Fig. 7. An worst-case analysis of the nearest assignment.

Algorithm 3 MST-based (MST) Algorithm

Input: The network matrix, D, and worker quality matrix, ().
Output: The worker recruit decision, X.

1: Construct the graph G(E, V).

2: Solve the minimum spanning tree.

3: Generate spanning forest by removing the edges between
dummy nodes and worker nodes.

4: Generate the shortest-path tour(s) based on the minimum
spanning forest.

5: Return the optimal worker recruitment X.

(a) We construct a graph G(E,V)), where V includes m
crowdsourcing locations, n initial locations of workers
and a dummy node. There is an edge between any pair of
crowdsourcing locations and any pair of the initial worker
location and the crowdsourcing location. The edge weight
is the corresponding shortest path distance between them.
In addition, there is an edge between the dummy node
and any initial worker location, where the corresponding
edge weight is 0.

(b) Based on the graph G(E,V)), we find a MST, where
the sum of degrees of the cervices denoting the initial
worker locations is at most 2n. The detailed method will
be explained later.

(c) If we remove all edges between the dummy node and
nodes which represent the initial worker locations, we
generate a forest consisting of at most n non-trivial trees.

(d) We can construct a tour for each of the worker based on
the edges of the non-trivial trees.

An illustration of the MST-based solution is shown in Fig.
8. The MST can be formulated as follows:

min ZijEE dijyij (7)
S.L. dijer Yij =n+m, (¥
ZijeE,ieS,jeS yij < |S] -1 VSTV o9

Yij € {0, 1},Vi7j cFk (10)

where y;; is a recruitment decision variable. y;; = 1 means
the corresponding edge is used to build the MST. The first
constraint ensures two endpoints of any edge cannot be
selected at the same time, i.e., y;; < 1. The second constraint
ensures the number of edges is the total number of nodes
minus 1. The first two constraints capture the properties of a
spanning tree, namely that it contains no cycle.

An illustration of the proposed MST-based algorithm is
shown in Fig. 8. In Fig. 8(b), we construct a new graph and
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Fig. 8. An illustration of the MST-based solution.

add a dummy node, which has connection to workers w; and
wy. The corresponding edge weight between the dummy node
and any worker is 0. After that, we can run MST algorithm to
generate a MST, as shown in Fig. 8(c). Then, we remove all the
edges between the dummy nodes and workers and the graph
becomes a minimum spanning forest. Note that it is possible
that some of the workers are not selected in the minimum
spanning forest. In Fig. 8(d), the worker w; is not selected.
Also, the total number of spanning tree in the spanning forest
cannot exceed n. Then, we can generate a tour based on the
spanning tree of each selected worker.

Theorem 3. The proposed MST-based algorithm algorithm
has an approximation ratio of 1 — € in Euclidean space, where
€ is an arbitrarily small positive number.

Proof. In the steps (a) and (b), we generate a minimum
spanning tree in G(E, V). In step (c), we generate a minimum
spanning forest by removing all edges between dummy nodes
and initial worker locations, which have the edge weight of
0. Clearly, the overall edge sum in the minimum is less than
the optimal solution for CWPR. Otherwise, we can remove
an arbitrarily edge in each tour of the CWPR solution to get
a better minimum spanning forest. For each spanning tree,
we can generate a corresponding tour which can double the
total length. How to generate the shortest tour has been widely
researched. The most state-of-the-art result algorithm achieves
an approximation ratio of 1 4 c in the Euclidean space [28],
where c can be an arbitrarily small positive number, by using
the fully polynomial-time approximation scheme. Therefore,
the overall performance of the MST-based algorithm has an
approximation ratio of 1/(1+ ¢), which is equivalent to 1 —e,
where € is an arbitrarily small positive number. O

The time complexity of MST-based solution is as follows:
the graph construction is O((m+mn)?), and solving the matroid
intersection problem is O((m + n)?), according to [29]’s
algorithm. The native TSP tour construction is O(m + n).
Therefore, the overall time complexity is O((m +n)?). How-
ever, if we use the nearest assignment algorithm, the overall
time complexity is O(nlogn), which is the time complexity



(a) New York City
Fig. 9. Uber pick-up trace visualization.

(b) Broadway, Manhattan

of building the Voronoi graph.

B. Heterogeneous Crowdsourcing Quality

If we ignore the heterogeneous crowdsourcing quality of
workers, we can directly apply the MST-based solution as
discussed in Section V-A. However, in this case, it is hard
to balance the two aspects of crowdsourcing operation cost
and the total distance.

Theorem 4. The proposed MST-based algorithm has an
approximation ratio of 1/p — € in the heterogeneous case,
where p is the maximal quality ratio between any two workers.

Proof. Without loss of generality, let us assume that apply the
MST-based solution in the heterogeneous case and denote the
result as ALG. In addition, we can assume that each worker
has the minimum/maximum crowdsourcing quality, and thus
we can get two result, ALG’ and ALG". Clearly, we can get
the following result, ALG’ < ALG < ALG". If we denote
the optimal solution as OPT. Clearly, OPT < (1 + ¢)ALG”,
since some workers may have lower qualities. Then, we have
the following result, OPT < (1+¢)ALG" = (14-¢)pALG' <
(14 ¢)pALG. Therefore, ALG > 1/p(1 + ¢)OPT > 1/p —
€OPT. This completes the proof. [

VI. PERFORMANCE EVALUATION
A. Traces

It is hard to get the people’s location data due to the privacy
issue. Therefore, we used a Uber pick-up trace from the New
York City Taxi & Limousine Commission (TLC) [30]. This
directory contains data on over 4.5 million Uber pickups
in New York City from April to September 2014, and 14.3
million more Uber pickups from January to June 2015. In the
experiments, we picked the April data, which has 564,516
records. An illustration of the pick-up distribution is shown in
Fig. 9(a), where a point represents a Uber pick-up event. Fig.
9(a) is a heat graph, where the hot color means a high density.

B. Experiment Setting

In the experiment, we picked up two areas, one is

in Manhattan, ie., [40.72N,40.74N,73.98W, 74.01W]
and the other one 1is outside of Manhattan, i.e.,
[40.70N,40.72N,73.94W, 73.97W]. We split the time

into 24 hours and used all the events within one hour as the
crowdsourcing location setting. In 1-D setting, we pick all
pick-up events in the Broadway, Manhattan. An illustration
is shown in Fig. 9(b). We use the statistic result of Uber
driver rating distribution from [24] to generate a worker’s
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Fig. 10. An illustration of Uber driver rating distribution.
crowdsourcing quality and there are 6 different quality values
in the experiment. Fig. 10. The quality of each worker was
randomly picked from one of the six quality values. In
each round of experiment, we randomly picked-up a certain
number of pick-up events and randomly selected some of the
locations as the workers’ initial locations, and the remaining
locations are crowdsourcing locations. All experiments were
repeated for 1000 to 2000 times.

C. Algorithm Comparison

We compare four algorithms in the 1-D scenario:(1) Dy-
namic Programming (DP) Algorithm. We have explained it
in Section IV. (2) Nearest Assignment (NA) Algorithm. Each
crowdsourcing location is assigned to the worker who is the
nearest. (3) Minimum Distance (MD) Algorithm. We try to
find the shortest tour(s) from workers so that they can finish all
crowdsourcing tasks. (4) Maximum Quality (MQ) Algorithm.
We try to find the worker(s) with the highest quality, and
recruit them to finish all crowdsourcing tasks. If there are
multiple such workers, each crowdsourcing task is assigned to
the nearest worker. In the 2-D scenario, the dynamic program-
ming doesn’t work. The MST-based algorithm tries to find
the shortest-path by using all workers. In each scenario, we
can always find the optimal solution by using the Brute Force
(BF) Algorithm in a small scale. We use the effectiveness
defined in Eq. 1 during the problem formulation to evaluate
the performance of proposed algorithms.

D. Running time Analysis

In the experiments, codes were implemented in Matlab and
were executed on a laptop with a 2.2 GHz Intel Core i7
2450M processor and 16 GB Memory. First, we show the
running time results for algorithms in 1-D scenarios. From
Figs. 11(a) and 11(b) We did not try larger scale. It is because
that we observe that the exhaustive search algorithm has a
really high time complexity and thus cannot be applied on a
large scale. In the experiments, when the number of tasks is
larger than 8 and the number of workers is larger than 5, the
running time becomes unacceptable. Note that Fig. 11(a) has a
logarithmic scale. The DP algorithm has the same performance
as the exhaustive search but the time complexity is much lower
than the exhaustive search. To clearly show the time difference
between DP and the NA algorithms, we also provide Fig. 11(b)
in the linear scale. Similarly, we conduct experiments in the
2-D scenario, and the result is shown in Fig. 11(c).

E. Results in 1-D scenario

1) The influence of task amount: Fig. 12(a) shows the
results of four algorithms in terms of different task amount
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Fig. 11. Running time results.

in the 1-D scenario. The results show that when the task
amount is small, the tour distance dominates the result. That
is the reason why DP, NA, and ST achieve similar results, but
the MQ has a much worse performance, due to the long tour
length. When the task amount is much larger than the number
of workers, the advantage of the proposed DP algorithm
become very clear and it achieves a much better performance
than other three algorithms. When number of task is 100, the
DP achieves more than 20% higher effectiveness compared
with other there algorithms.

2) The influence of worker amount: Fig. 12(b) shows the
results of four algorithms with different worker amount in the
1-D scenario. We observe there is a turning point in terms
of the performance between the proposed algorithm and the
NA/ST algorithm. The turning point also demonstrates the
trade-off between tour length and the quality. When the total
number of workers is small, in order to get the high efficiency,
it is more important to find the workers which have good
qualities. When the total number of workers is large, we can
generate a real good assignment to reduce the overall tour
length. That is, the tour length dominates the result when
the number of workers is large. From Fig. 12(b), the MQ’s
efficiency is less than 30% of that of NA/ST’s, and less than
50% of that of DP’s when the number of workers is 20.

3) The influence of quality value: Fig. 12(c) shows the
results of four algorithms with different quality values in the
1-D scenario. When there is only one quality value, the overall
tour length determines the crowdsourcing efficiency and thus
the MQ achieves the worst performance. With the increase
of the possible quality values, selecting good workers with
high quality becomes very important and the DP algorithm
can catch this trend automatically.

F. Results in 2-D scenario

1) The influence of task amount: Fig. 13(a) shows the
results of three algorithms with different task amount. The pro-
posed MST algorithm achieves the best performance, followed
by the MA and NA algorithm, respectively. The results show
the influence of task amount clearly. Given a certain number
of workers, the performance gap between MST algorithm and
the other two algorithm decreases with the increase of total
task amount. When the task amount is small, the advantage of
the MST algorithm is clear. When the task amount is large,
the overall effectiveness is dominated by the total number
of tasks. As a result, different algorithms achieve the similar
performance since there is no short tour(s) available.

2) The influence of worker amount: Fig. 13(b) shows the
results of three algorithms with different worker amount in
the 2-D scenario. We observe there is a turning point in terms
of the performance between the MST algorithm and the NA
algorithm. This turning point also demonstrates the trade-off
between the tour length and the quality. That is, the tour length
dominates the result when the number of workers is large. The
efficiency ratio of the MST algorithm is 300% more than the
efficiency ratio of NA’s and MQ’s when m = 20.

3) The influence of quality value: Fig. 13(c) shows the
result of three algorithms with different quality values in
the 2-D scenario. When there is only one quality value, the
overall tour length determines the crowdsourcing efficiency
and thus the MQ achieves the worst performance. However,
with the increase of possible quality values, selecting good
workers with high quality becomes very important. The MST
algorithm has the highest performance increase speed, and the
NA algorithm is the worst since it might lead to a long tour
length and low total quality.

VII. DISCUSSION

The proposed solution can be extended to some other
cases easily. The first potential extension is that we only
considers the case that different workers may have different
crowdsourcing qualities for the same task in this paper. For
a single worker, the quality for different tasks are all the
same, however in reality, a worker may have different qualities
for different tasks. However, the proposed solution in Section
V-B can be used to solve the problem in that case with the
same performance bound. Another extension is that the worker
does not need to come back to his/her initial location after
visiting the last assigned crowdsourcing location. We can still
use the proposed algorithm in this paper with an additional
approximation of 2, since the proposed algorithm at most
double the overall tour length. In addition, this paper does
not consider the load balance of workers. However, we can
address this problem by setting a maximum load constraint
during the problem formulation.

VIII. CONCLUSION

We address the efficient worker recruitment problem under
the coverage constraint in the spatial crowdsoucing. Specifi-
cally, we consider two different scenarios, 1-D line topology
and general 2-D, in which workers may have either homo-
geneous or heterogeneous crowdsourcing quality. In the 1-D
scenario, we propose two dynamic programming approaches
to find the optimal solution, respectively. Then, we extend the
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Fig. 13. Results in 2-D topology.

model into a general heterogeneous case. In the heterogeneous
setting, the CWRP problem turns out to be NP-hard even
when all workers have the same crowdsourcing quality. The
effectiveness of the proposed algorithm is verified by the real
mobility trace. The results show that the proposed approaches

can

greatly improve the crowdsourcing effectiveness.
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