

Latency Minimization Through Optimal Data Placement in Fog
Networks

Ning Wang and Jie Wu

Department of Computer Science, Rowan University, Glassboro, USA
Center for Networked Computing,Temple University, Philadelphia, USA

Email: wangn@rowan.edu and jiewu@temple.edu

 Nowadays, Fog Networks (FNs) distribute services to fog servers so that they are spatially
closer to end-users and thus provide high availability and low data access delay, i.e., better usage
experience. Given the different data demands of users and limited storage capacity of fog servers
in FNs, it is non-trivial to optimally store data. Specifically, in this paper, we discuss the
Multiple Data placement with Budget Problem (MDBP), whose objective is to minimize the
overall data access latency for all data requests within a given total budget. We start with a case
in which data replication is not considered. In this case, we propose a min-cost flow
transformation for the MDBP to calculate the optimal data placement strategy. We further
propose an efficient local information collection scheme to reduce the time complexity in the tree
topology. In a general case with data replication, we prove that the MDBP is non-deterministic
polynomial-time (NP)-complete. In the line topology, we can use dynamic programming to solve
the single data request scenario. We also apply a novel rounding algorithm which incurs an
approximation ratio of 10 in terms of the overall latency in the general case. We validate the
proposed algorithms by using the PlanetLab trace, proving that they significantly improve the
performance.

 Keywords: Fog computing, data placement, and planning.

1 Introduction
 With the wide availability of smart devices, people are able to access social websites,

videos, and software from Internet anywhere at any time. According to [1], in 2016, Netflix had
more than 65 million users, with a total of 100 million hours spent streaming movies and TV
shows daily. This accounted for 32.25% of the total downstream traffic during peak periods in
North America. Facebook, a famous social media website, had 2.19 billion monthly active users
up to the first quarter of 2018 [2]. The traditional mechanism is to store content into the central
server, which leads to a relatively long data retrieving latency. To alleviate this issue, Fog
Networks (FNs) are proposed and applied in commercial companies. According to Cisco’s White
Paper [3], global streaming traffic is expected to account for 32% of all consumer traffic on the
Internet by 2021, and more than 70% percent of this traffic will cross FNs up, an increase from
56% in 2016.

To solve the problem of the long content retrieving latency when storing data in the center,
FNs can geographically store partial or entire data at fog servers deployed close to clients. This
will then reduce network and center server loading times and provide a better quality of service,

i.e., low latency to end-clients [4, 5]. Due to the relatively large storage space and bandwidth

Figure 1: An illustration of a typical fog network.

needs of retrieving data, a FN typically employs a limited number of fog servers, each of which
has medium or low storage capacity. Such servers can collectively store a larger number of objects
and serve clients from all networks with larger aggregate bandwidth needs.

An illustration of the FN network model is shown in Fig. 1. There are 5 fog server nodes
where data can be stored to support 2 different data requests, represented by red and blue colors.
Note that there is a capacity limit for each server node. In a given time period, we can assume that
there are different sets of data requests that arrive based on the prediction. If the data request cannot
be satisfied in the local server node, it will search the nearby servers in FNs to find the requested
data and there is a corresponding access latency. For example, user 𝑢, needs to retrieve data from
the server 𝑝,, which incurs a transmission from 𝑝, to 𝑝.. The access latency between a pair of
nodes is assumed to be constant over a relatively long period. In addition, there may be multiple
identical data requests, for instance, trending news. In Fig. 1, users 𝑢. and 𝑢/ request the same
data and users 𝑢, and 𝑢0 request another data. The bandwidth and server processing speed are
assumed to be sufficient, and thus, multiple identical data requests can retrieve data from the same
server node.

In this paper, we address the latency minimization problem in FNs through data placement
optimization with limited total placement budget, called the Multiple Data placement with Budget
Problem (MDBP). It is motivated by the fact that the data deployment cost is the major cost in FNs
[6]. However, MDBP is non-trivial. For example, in Fig. 1, only servers 𝑝,, 𝑝0, and 𝑝/ have
available storage and the available slots are 2, 1, and 1. The total budget is 3 and all link
latencies are 1. The first challenge is due to the network topology. For example, it is easy to see
that 𝑝1 is a bad placement location since it is far from all users. However, 𝑝, is a good location
for user 𝑢., but bad for user 𝑢/. Therefore, for each data placement, we need to jointly consider
its influence to all corresponding requests. The competition between two data requests further
complicates this challenge. The second challenge is due to limited budget and request demands. In
this example, users 𝑢. and 𝑢/ have relatively larger demands; these high demand users should
have low access latency but it does not mean that we need to always assign them more data copies.
For example, it may be the case all the high demand requests are close to each other. The third
challenge is due to copy distribution. If we have multiple data for a request, its decision should be
further revised. For example, if we use two data copies for data request 1, we can place data at
locations 𝑝, and 𝑝/ to satisfy users 𝑢. and 𝑢/ so that they both have low access latency. In
addition, the limited storage size of each server location further complicates the proposed problem.
It is because we cannot simply apply the individual solutions of each singe data requests since they
may violate the server storage constraint.

We discuss the solution for the MDBP in two different cases depending on whether there
is data replication or not. In the first case, we do not consider data replication so that we can focus
on optimizing data placement. We find that we can transfer the MDBP into a min-cost flow
formulation and thus find the optimal solution. We also propose a local information collection
method to reduce the time complexity of the min-cost flow transformation in the tree topology, the
common topology of FNs. In a general case with data replication, the MDBP turns out to be NP-
complete even when there is only one type of data request. We propose a dynamic programming
solution to find the optimal solution in the single request scenario with line topology. In the general
case, we first propose a heuristic algorithm. However, its performance is related to the system
environments. In addition, we further propose a novel assignment approach based on the rounding
technique. It first finds the optimal fractional solution and then gradually transfers into the integer
solution without avoiding the server capacity constraint. The proposed approach is proved to have
an approximation ratio of 10.

The contributions of this paper are summarized as follows:
 • To our best knowledge, we are the first to consider the optimal data placement

with budget in FNs for multiple data requests under the server capacity constraint.
 • We find the optimal solution of MDBP in the scenario where there is no data

replication through min-cost flow formulation, and propose a local information collection
method to reduce the time complexity.

 • In the general case, we prove that the MDBP is NP-complete. A novel rounding
approach is proposed, and it has a constant approximation ratio of 10.

 • We verify the effectiveness of the proposed approaches using the PlanetLab trace,
which is a worldwide Internet trace.

The remainder of the paper is organized as follows: The related works are in Section II.

The problem statement is in Section III. The min-cost flow formulation is provided in Section IV
for the data placement without replication. In the general scenario, we first prove that the proposed
problem is NP-complete and then propose a novel rounding solution with approximation analysis
in Section V. The experimental results from the PlanetLab trace are shown in Section VII, and we
conclude the paper in Section VIII.

2 Related Work
 The data placement problem [7, 8] in FNs is a fundamental problem. The existing work

can be briefly categorized into two types based on whether the data placement changes with time.
2.1 Long-Term and Short-Term Placement
 Early work in [9] studied the 𝑘-cache placement problem in a given network with special

topologies, i.e., line and ring. The difference between [9] and our paper is that in [9], each data can
fractionally support clients, but this assumption is not true in this paper. The work in [10] studied
the trade-off between selecting a better traffic-delivery path and increasing the number of FN
servers. In recent work in [6], the authors considered the dynamic network demand and found that
deploying data close to the end-users might not always be the optimal solution. In [1], to find the
optimal on-demand content delivery in short-term (e.g., one-week), the authors formulated and
solved the content placement problem with the constraints of storage space and edge bandwidth.
In [11], the authors discussed the optimal data update frequency decision in data placement. In
[12], the authors provided a hierarchical data management architecture to maximize the traffic
volume served from data and minimize the bandwidth cost.

Table 1: Summary of symbols

 Symbol Interpretation
𝑚 total type of data request
𝑛 number of fog servers
𝑝5 server 𝑖
𝑠5 server 𝑝5’s storage size
𝑙59 access latency to between servers 𝑝5 to 𝑝9
𝑑59 demand of the data request 𝑗 at server 𝑖
𝑥59 server node 𝑖 has data 𝑗
𝜃 data placement budget
𝕏 overall data placement planning
𝑐(𝑑59, 𝕏) latency of 𝑑59 with a placement planning 𝕏

2.2 Data replication
 The work in [13] addressed the facility location problem with different client types, which

is equivalent to the case of data placement without replication since there is only one facility for a
type of client. Authors in [14] discuss the optimal single data request placement with replication
in the tree topology. The optimal solution is obtained through the dynamic programming technique.
In [15], data can be transferred between a set of proxy servers and thus the authors optimized the
data transformation cost. In [16], authors jointly considered optimization of data replication costs
and access latency. In [17], they jointly consider the data receiving for multiple different data.
Therefore, the co-locations of data are important.

This paper addresses long-term data placement with data replication. Our work differs from
existing works by considering multiple data requests with different demands and limited total
placement budgets.

3 Problem Statement
 In this section, we discuss the proposed network models, followed by the problem

formulation and challenges.
3.1 Network Model
 A Fog Network (FN) is an overlay network over the Internet; it is composed of a set of

fog servers. The server nodes are potential places for data deployment. Without loss of generality,
we model the topology of the overlay network with a connected undirected graph 𝐺(𝑉, 𝐸), where
𝑉 is the set of vertices denoting the servers, and 𝐸 is the set of edges denoting the data
transmission between servers in the network and the edge weight is the corresponding latency. We
assume that the topology of the target network is known in advance and there is a total of n server
nodes in the FN, i.e., |𝑉| = 𝑛. Note that there is a storage limit in each server, denoted by 𝑠5.

This paper considers an offline scenario. We assume that there are 𝑚 different data in
total. For each data, there can be one or multiple data requests (up to 𝑛). A data request is denoted
by 𝑑59, which means there is a request from location 𝑖 for the data 𝑗 and the value of 𝑑59 is the
total demand at that location. Let 𝕏 = {𝑥.., 𝑥.,,⋯ , 𝑥JK} be a feasible placement plan. For

Figure 2: An illustration of the problem’s challenges.

each data request, it will be satisfied by the nearest server that stores the data in the FN. The
nearest data can be found through the shortest-path algorithms. Therefore, for a data request 𝑑59,
its latency for a given placement planing 𝕏 is 𝑐(𝑑59, 𝕏), which is

 𝑐(𝑑59, 𝕏) = 𝑑59 × min
5Q∈[.,J]&VWQXY.

𝑙55Q . (1)

 Currently, we assume that all data requests are the same size. In the future, we might extend it to
a more general case where different data requests might have different sizes.

3.2 Multiple Data Placement with Budget Problem
 To meet all data requests and minimize data access latency, the system provider can place

data in the server nodes of FNs. However, the data placement can be costly. Therefore, we propose
the Multiple Data placement with Budget Problem (MDBP) to minimize the average data access
latency for the FN. Specifically, the MDBP is as follows - we would like to plan the data placement
locations to minimize the user’s data access latency while avoiding the server’s capacity. Based
on whether there is replication or not, we consider two versions: (1) There is only one data for
each data request in the network. (2) There may be multiple data for a data request, but there is an
overall data placement budget. The problem can be mathematically formulated as follows.

 min∑J5Y. ∑K9Y. 𝑐(𝑑59, 𝕏) (2)
 s. t. ∑K9Y. 𝑥59 ≤ 𝑠5				∀𝑖, (3)
 				∑J5Y. ∑K9Y. 𝑥59 ≤ 𝜃				∀𝑖, 𝑗, (4)
 				𝑥59 ∈ {0,1},				∀𝑖, 𝑗, (5)

where 𝑥59 ∈ 𝕏 is a placement decision. The first constraint, i.e., Eq. 3, means that each server
cannot exceed its capacity. The second constraint, i.e., Eq. 4, is the total budget constraint where
𝜃 is the given placement budget. The last constraint, i.e., Eq. 5, means that data cannot be
partitioned.

Note that in the aforementioned formulation, the MDBP does not consider the users’
mobility [17], that is, a data request represents a user. However, it can be easily extended to a case
that considers users’ mobility. The idea of the conversion is that we can transfer a mobile user into
multiple static users in the MDBP, where the demand of each static user is the percentage of staying
at that mobile node. An example is shown in Fig. 1, where there are 2 users. User 1 spends

60% of its time in 𝑝., and 40% of its time in 𝑝/. User 2 spends 50% of its time in 𝑝. and
𝑝0. After the conversion, we can apply the solution of MDBP to the extended model.

3.3 Challenges
 The proposed MDBP is non-trivial even when the user request pattern is given/predicted.

It is because we need to jointly consider the data placement distribution for multiple data requests.
We cannot simply consider each data request individually and then combine the solutions. The
reason is that it might be the case that there are optimal locations for multiple data requests, but
the server storage size is not large enough to hold all of them. Given the data replication, how to
jointly distribute the data in each type of request another challenge. An illustration of the
challenges of the MDBP is shown in Fig. 2, where there are two different types of data requests
and three available servers. We ignore the access servers in this example. The weights on the edges
represent the corresponding communication latency. In this toy example, the storage size of each
of these three servers is 2, 2, and 1, respectively, and the total data budget in the network is 4.
In this example, all data requests have the unit demand to simplify the illustration. We propose
four different strategies to minimize the overall latency and show the placement challenge. First,
if we place one data copy for data request 1 and three data copies for data request 2, we find that
improper placement leads to large latency. In strategy 1, the latency for data request 1 is 7 + 2,
and the latency for data request 2 is 3 + 2 + 1. Therefore, the overall latency is 15. In this toy
example, strategies 1 and 2 and strategies 3 and 4 have the same data distribution but
different latencies. In addition, this example shows that different data distributions influence on
the latency, i.e., strategies 3 and 4 have lower latency compared to strategies 1 and 2.

4 Delay Minimization Without Replication
 In this section, we focus on the storage placement optimization without replication. The

problem formulation is introduced first, followed by the min-cost flow solution.

4.1 Problem Formulation
 The MDBP can be simplified since different data have no influence on each other in terms

of the latency and thus, Eq. 1 can be re-formulated as follows.
 		min∑J5Y. ∑K9Y. ∑JbY. 𝑙5b𝑑b9𝑥59 (6)
 s. t. ∑J5Y. 𝑥59 = 1,				∀𝑗, (7)
 ∑K9Y. 𝑥59 ≤ 𝑠5				∀𝑖, (8)
 				𝑥59 ∈ {0,1},				∀𝑖, 𝑗, (9)

where 𝑥59 is a decision variable to show that the server 𝑝5 has a data 𝑗. The first constraint is
that each data can be placed at one location and only one location in the network and therefore,
there is no replication. The second constraint is that the total amount of data placed at a server
node cannot exceed its capacity constraint.

4.2 Min-Cost Flow Formulation
 In this subsection, we would like to explain that the MDBP can be solved by the min-cost

flow formulation.

Figure 3: An illustration of the min-cost transformation.

Theorem 1 The MDBP problem is equivalent to the min-cost flow problem.
Proof. We prove it by showing the step-by-step transformation. The solution of the MDBP

can be considered as a matching process. For each type of data, we generate a demand node, and
thus, there are 𝑚 demand nodes in total, i.e., {𝑟., 𝑟,,⋯ , 𝑟K}. Similarly, we generate a node for
each server node and thus, there are 𝑛 server nodes {𝑝., 𝑝,,⋯ , 𝑝J}. For each demand node 𝑟5,
there are 𝑛 edges for all server nodes. The corresponding weight of a node represents a possible
placement decision to place data into that server in the MDBP. The unit edge cost, 𝐶59 is the
corresponding latency summation to store the data in that location for all corresponding types of
data request(s), 𝐶59 = ∑J5Y. ∑JbY. 𝑙5b𝑑b9. The edge capacity is 1. In addition, there is a virtual
source and a virtual destination. Each demand node has an edge with the virtual source, where the
corresponding unit edge cost is 0 and the edge capability is 1. Each server node has an edge with
the virtual destination, where the corresponding unit edge cost is 0 and the edge capability is 𝑠5.
The demand of the min-cost flow is set as the total number of data request, i.e., 𝑚, in the network
and the demand is generated at the virtual source. All demands are consumed at the virtual
destination. According to the max-flow theory, if all edges’ capacities are integral, the final
solution is always an integer solution based on the augmenting path method [19]. Then, if there is
a flow in an edge which connects the data request and server location, we can use the same data
placement between the data node and the server node in the MDBP. Since this assignment leads
to the same latency cost as that in the corresponding min-cost flow problem. The total demand of
the virtual sink ensures that each data type has to be matched in the MDBP. The capacity of links
between the server node and the destination node ensures that each server cannot exceed its
corresponding storage capacity in the MDBP.

Fig. 3 shows the min-cost flow formulation for the example in Fig. 2. Each data request

can be assigned to any server. The capacity constraint of each server location is controlled by the
edge flow constraint between the server node and virtual destination in the min-cost flow
formulation. For example, the cumulated latency for data request 1 in three servers is 9, 7, and
7, respectively. The min-cost flow can be solved by the successive shortest path [20].

4.3 Complexity Reduction
 In this subsection, we design an efficient local information collecting method which can

reduce the overall time complexity of cumulated latency calculation in min-cost flow calculation.
The time complexity of calculating the cumulated latency of each type of data request in all server
locations is 𝑂(𝑛,) in the simple approach since we need to traverse the network for each data

(a) demand collection (b) updating rule (c) cemand updating

Figure 4: An illustration of latency updating procedure.

request. Here, we show that the overall time complexity can be reduced to 𝑂(𝑛) in the tree
topology, which is the common topology in FNs [21].

Theorem 2 The cumulated latency calculation of a data request can be finished in 𝑂(𝑛)

in the tree topology.
Proof. We prove this theorem by introducing the 𝑂(𝑛) calculating method.
The procedure is as follows: We transfer 𝐺 into a tree by considering an arbitrary node as

the root node. Then, we aggregate the latency cost gradually from the leaves to the root of the
networks. For each node 𝑖 , it keeps a vector of 𝐶5, 𝐶5 = {𝑐., 𝑐,,⋯ , 𝑐b}, where 𝑘 is the total
number of data requests. It records its distance to all the data request access locations. In Fig. 4,
𝑘 = 2. Initially, all elements in the vector are 0. Then, we calculate the total latency of the data
placement in any node by using the following two steps:

 • Upward information collection: we gradually update the latency value of each
element 𝑐9 in 𝐶5 from leaf nodes to the root node as follows. If we have seen the corresponding
data request from a successor node 𝑖f, then 𝑐9 = 𝑐9 + 𝑙55Q. Otherwise, 𝑐9 keeps its original
value.

 • Downward information updating: we gradually update the latency value in the
revised visiting order to summarize the information from different branches. If the branch is used
in the information collection and the corresponding data is seen again, then 𝑐9 = 𝑐9 − 𝑙55Q.
Otherwise, 𝑐9 = 𝑐9 + 𝑙55Q.

 After the information updating is done, the placement cost of a location is ∑b5Y. 𝑐5. Since
the each node will be only visited twice, the overall time complexity is 𝑂(𝑛).

An illustration is shown in Fig. 4, where all edge weights are unit. Since the calculation is

independent for different data requests, we use a data request to illustrate the procedure. In Fig. 4,
the data requests generate at server nodes 𝑝0 and 𝑝/. There are two data requests in this example.
Eeach server node keeps a bracket, where each element records the distance from the current
location to the corresponding data request location. Note that in the upward information collection
procedure, each node only collects the distance information of the data requests in its sub-tree.
Therefore, at the end, only the root node has the information of all data requests. In downward
information updating, the information collected by the root is distributed in all branches. The data
updating of the node 𝑝, illustrates one case, where the corresponding distance decreases by 1.
The data updating of the node 𝑝/ illustrates two cases: (1) 3 increases by 1 for data request

Figure 5: The dynamic programming in the line topology.

1, and (2) 0 increases by 1 for data request 2, since the distance to data requests 1 and 2
increases. Note that here, we use a binary tree as an example, but this method works in any tree
topology.

5 Delay Minimization With Replication
 In this section, the problem hardness in the general case is discussed first, followed by the

optimal solution in a line topology, and the solution in the general scenario.
5.1 Hardness Proof
Theorem 3 The proposed MDBP is NP-complete.
Proof. We prove the proposed MDBP is NP-complete by first proving that it belongs to the

NP-class. For a given placement, we can verify whether all constraints are satisfied simultaneously
in polynomial time. Now, we show its NP-completeness by a reduction of the 𝑘-median problem
[22].

The 𝑘-median problem is as follows: in a metric space, 𝐺(𝐸, 𝑉), there is a set of clients
𝐶 ∈ 𝑉, and a set of facilities 𝐹 ∈ 𝑋. We would like to open 𝑘 facilities in 𝐹, and then assign
each client node 𝑗 to the selected center that is closest to it. If location 𝑗 is assigned to a center
𝑖, we incur a cost 𝑐59. The goal is to select 𝑘 centers so as to minimize the sum of the assignment
cost.

The reduction from a special case of the MDBP to the 𝑘-median problem is as follows: in
a special case of the MDBP, we assume that there is only one type of data request. In this setting,
there is no capacity constraint since each available server node should have at least one storage
space. Assume that the total budget is 𝑘. We need to determine the data placement location, which
is equivalent to finding the centers (facilities) in the 𝑘-median problem. Its weight is the total
latency cost for the data request at the corresponding server location. Clearly, if we set the latency
as the corresponding 𝑐59 in the 𝑘-median problem, we can apply the solution of the MDBP to the
k-median problem.

5.2 Single Request in Line Topology
 We have proven that the MDBP problem is NP-complete in the general graph even in the

simple request case. However, when the FN has some particular topology, i.e., the line topology,
we can determine the optimal placement for that user by using dynamic programming in the single
data request scenario. Specifically, we first sort all data requests directionally. Then, we can define
a state called 𝑜𝑝𝑡[𝑖, 𝑗] which represents the minimum cost for that data request up to the first 𝑖
requests with 𝑗 copies. Then, we can update 𝑜𝑝𝑡[𝑖, 𝑗] as follows.

𝑜𝑝𝑡[𝑖, 𝑗] = min l
𝑜𝑝𝑡[𝑖, 𝑗 − 1]

𝑜𝑝𝑡[𝑖f, 𝑗 − 1] + min
mn∈omWQpq,mWr

𝑐b[𝑖f + 1, 𝑖], ∀𝑖f < 𝑖, , (10)

where 𝑖f is a request prior to request 𝑖. The 𝑐b[𝑖f + 1, 𝑖] is the latency for assigning a new data
copy at server 𝑝b, which is between 𝑝5Q and 𝑝5 to cover data requests in this range. The idea
behind Eq. 10 is that the optimal solution always falls into one of two cases: (1) we have moved
to the location 𝑖 without adding one more data copy to get the optimal result; (2) we have moved
to the location 𝑖 and we can use one more data copy to reduce the overall latency.

A toy example can be used to illustrate the proposed dynamic programming in Fig. 5. In
this example, let us assume that 𝜃 = 2, which means that we can use 2 data copies at most.
Initially, we can use only one data to cover three users. After calculating the four available server
locations, 𝑜𝑝𝑡[1,1] = 0, 𝑜𝑝𝑡[1,2] = 3, and 𝑜𝑝𝑡[1,3] = 4, which achieve the optimal value when
the data is put at 𝑝., 𝑝,, and 𝑝0. Then, we add one more data copy into the network. It is easy to
calculate 𝑜𝑝𝑡[2,1] = 0, 𝑜𝑝𝑡[2,2] = 0, 𝑜𝑝𝑡[2,3] = 1 . Here is an example of a calculation of
𝑜𝑝𝑡[2,3].

𝑜𝑝𝑡[𝑖, 𝑗] = min{𝑜𝑝𝑡[0,0] + 𝑐0[1,3], 𝑜𝑝𝑡[1,1] + 𝑐0[2,3],

𝑜𝑝𝑡[2,1] + 𝑐/[3,3]},
 (11)

In Eq. 11, we use the minm∈[5Qt.,5]𝑐m[𝑖f + 1, 𝑖], and ignore the calculation procedure. It is clear
that 𝑜𝑝𝑡[1,1] + 𝑐0[2,3] = 1 is the minimum in this example.

5.3 Greedy Solution in Multiple Requests
 If there are multiple different requests, we cannot simply apply the optimal solution for

each request because it might not make a feasible solution if we add them together.
To address this problem, we first propose the following heuristic algorithm as shown in

Algorithm 7. Initially, when the data request is not covered, we go through all types of data requests
and calculate their optimal data placements so far. The data whose placement leads to the minimum
latency in each round will be selected to put into the network. It is shown in lines 1 to 4. After
that, there is one data for any data request in the network to ensure the coverage constraint. Then,
for each round, we pick the data, which can reduce the latency maximum if that data can change
its location once, shown in lines 5 to 8. However, the proposed heuristic may be far from optimal.
An example is shown in Fig. 6, where there is one slot fog server location 1 and 3 to store data.
The greedy solution is shown in Fig. 5. It will select the blue data request in the first round due to
the smallest latency increase. However, this option leads to the large latency at the second round.
The optimal solution is shown in Fig. 5, where the placement decision jointly considers two data
requests.

(a) greedy

(b) optimal

Figure 6: An illustration of the greedy algorithm.

Theorem 4 The proposed heuristic algorithm does not have an approximation ratio

smaller than 3𝜌, where 𝜌 is the maximum data request ratio in the network over the time.

Proof. We can prove Theorem 4 through an extreme example. We propose a contradiction

example in the line topology, where each server location has the unit storage capacity. Assume
that there is a set of data requests at locations {𝑝., 𝑝,, 𝑝0,⋯ , 𝑝b}, and for each data request, there
is only one location. Therefore, we use {𝑝., 𝑝,, 𝑝0,⋯ , 𝑝b} to denote the data request locations in
this proof. In addition, we assume that there exist server locations in {𝑝w, (𝑝. + 𝑝,)/2, (𝑝, +
𝑝0)/2,⋯ , (𝑝b + 𝑝bt.)/2} where 𝑝w/2, and 𝑝mt./2 are locations to the left of 𝑝., and right of
location 𝑝b, respectively. In addition, 𝑝. − 𝑝w < (𝑝, − 𝑝.)/2, and 𝑝bt. − 𝑝b > (𝑝b − 𝑝bz.)/2.
Therefore, according to the heuristic algorithm, we will put all the data into the first server at the
right except the last one. The overall latency is

 ∑b5Y. (𝑝5t. − 𝑝5)/2 + 𝑝b − 𝑝w = (𝑝bt. − 𝑝. − 𝑝w)/2 + 𝑝b (12)
Instead, if we assign each data request to the first server location at the left, the overall latency is

 ∑bt.5Y. (𝑝5 − 𝑝5z.)/2 = (𝑝bt. − 𝑝w)/2 (13)
Then, mnpqzm{

,
< mnpqzmqzm{

,
+ 𝑝b ≈ 3 mnpqzm{

,
 when 𝑘 is a large number. The number of data

requests at a time also has an influence on the ratio and the 𝜌, which is the maximum number of
requests in the network over time. Therefore, the overall approximation ratio is 3𝜌.

According to Theorem 4, we know that the proposed heuristic algorithm cannot achieve
good performance even in the line topology. Therefore, it is necessary to propose an approach
which can guarantee adequate performance in different network environments.

5.4 Rounding Approach in Multiple Requests
 To improve the performance of the greedy solution, we propose a two-step rounding

solution. In the first step, we relax the proposed problem into the Linear Programming (LP) and
obtain the lower bound of the MDBP. Then we propose a novel rounding technique, which first
rounds a half-integral solution through the min-cost flow. Then, we can further convert the half-
integral solution to an integer solution.

5.4.1 Generating Linear Programming Solution
The linear programming formulation of the MDBP problem is,
 min∑J5Y. ∑K9Y. ∑}bY. 𝑙59𝑑b𝑦59b (14)
 s. t. ∑J5Y. 𝑦59b ≥ 1, ∀𝑗, (15)
 				𝑦59b ≤ 𝑧59,				∀𝑖, 𝑗 (16)
 ∑K9Y. 𝑧59 ≤ 𝑠5,				∀𝑖, (17)
 ∑J5Y. ∑K9Y. 𝑧59 ≤ 𝜃,				∀𝑖, (18)
 				𝑦59b, 𝑧59 ∈ [0,1],				∀𝑖, 𝑗 (19)

which is formulated from the angle of each data request. Therefore 𝑑b is the demand for a data
request 𝑘. Let us assume that the total number of data requests is ℎ. Note that ℎ ≥ 𝑚 due to the
repeated data requests. In this formulation, 𝑦59b means the server node 𝑖 has data 𝑗 and covers
data request 𝑘 fractionally, 𝑧59 means that server 𝑖 has 𝑧59 amount of data 𝑗. Eqs. 15 and 16
ensure that each data request has to be satisfied and the assignment is feasible. Eq. 17 is the
capacity constraint for each server, and Eq. 18 is the total placement budget constraint.

5.4.2 Creating centers
 Since it is hard to directly convert the fractional solution to integral solution, we would

like to aggregate the assignment into several “center” servers, so that each center has at least a half
data. To simplify the following explanation, we create the notation 𝐿b, 𝐿b = ∑J5Y. 𝑙59𝑦59b, which
is the unit demand cost of the LP solution for data request 𝑘. Let us consider all the data requests
that need data 𝑗. We sort them in increasing order of the 𝐶b. Then, for each data request 𝑘, if

Figure 7: Server distribution.

there is an another data request 𝑘f and 𝑙bbQ < 4max(𝐿bQ, 𝐿b) = 4𝐿b , we would like to
consolidate the demand on data request 𝑑b to 𝑑bf , that is, 𝑑bf = 𝑑bf + 𝑑b . We apply this
procedure to all data requests; the remaining servers with non-zero demands are called center
servers. Since each data moves at most 4𝐿b, it is clear that any solution can incur an additive
factor of at most 4𝑂𝑃𝑇.

5.4.3 Converting to integral solution
 After we get the data center servers, an important issue is that how we can assign data

requests so that the result is an integral solution that doesn't violate the server’s capacity constraint.
We refer to [22] to propose a two-phase solution where the first step is to build a half-integral
solution. This ensures that the distance between a data request and the server serving it is
fractionally bounded by the access cost. Therefore, the fractional solution is equivalent to a feasible
flow to a min-cost flow problem with integral capacities. Note that to apply the solution in [23] to
the MDBP, we need to add a virtual node before going to the destination with the link capacity as
the total budget. With the property of the min-cost flow, we can always find an integer solution of
no greater cost. By applying the min-cost flow transformation in [23], it has an approximation ratio
of 6.
The proposed algorithm has a constant approximation ratio of 10. The center creation incurs at
most 4𝑂𝑃𝑇. The half-integral solution transformation introduces at most 3𝑂𝑃𝑇. The integer
solution conversion further leads to 2𝑂𝑃𝑇. Therefore, the overall cost is 4 + 2 × 3 = 10𝑂𝑃𝑇.

6 Performance Evaluation
 We evaluate the performance of the proposed solution in this section. The compared

algorithms, the trace, the simulation settings, and the evaluation results are presented as follows.
6.1 Trace Information

 In this paper, we use the PlanetLab trace [24] generated from the PlanetLab testbed. PlanetLab
is a global research network that supports the development of new network services. It contains a
set of geo-distributed hosts runing PlanetLab software worldwide. In this trace, the medians of
all latencies, i.e., RTT, between nodes are measured through the King method. 325 PlantLab
nodes and 400 other popular websites are measured.

(a) greedy

(b) optimal

Figure 8: Latency-distance mapping.

In the PlanetLab trace, the domain of each node is provided. Each node’s geometric location is
retrieved through the domain-to-IP database and the IP-to-Geo database, provided by [25] and [26],
respectively. Some domains are no longer in service. In the end, there are 689 nodes. It is
reported that the mapping error is within 5	mi and can be ignored in our experiments. Fig. 9 shows
the trace visualization results.

6.2 Experimental Setting
 We conduct experiments on two scales, i.e., the world and the United States. At the United

States scale, we use the nodes on the west coast to simulate the line-topology. The number of data
requests, 𝑚, changes from 2 to 5. The number of users changes from 10 to 20, which are
randomly selected from the first 325 nodes in the PlanetLab trace. The data request location is
randomly generated in each round. The pair latency is known and therefore, the topology is not
important in the experiments. The number of data placement budgets also changes in the
experiments from 𝑚 to 2𝑚. We change the following four settings in the experiments: (1) the
number of data budgets, (2) the number of data, (3) the number of the data requests, and (4)
different server capacities.

Figure 9: Performance comparison without data replication.

6.3 Algorithm Comparison
 We compare four algorithms in the experiments:
 • Random (RD) Algorithm. It is a benchmark algorithm. During the first 𝑚 rounds,

a type 𝑖 data is randomly selected and placed. After that, a data is randomly selected and put
into the network.

 • Min-Volume (MV) Algorithm. The data whose placement leads to the minimal
cost increase is selected. Specifically, in the first 𝑚 rounds, if a data has been selected, it cannot
be selected again.

 • Iteration Updating (IU) Algorithm. The IU Algorithm places different data
requests in an order so that the location that leads to the minimal cost increase is selected in each
round.

 • Min-Cost (MC) Algorithm. The MC Algorithm is proposed in this paper and it is
explained in Section 4 when there is no data replication.

 • Rounding (RO) Algorithm. The RO Algorithm is proposed in this paper and it is
explained in Section 5.4.

 In a special scenario without data replication, the IU algorithm doesn’t work since each
data always has one data copy, and is thus removed in this case. Besides, the RD algorithm is not
necessary since the MC algorithm is optimal.

Figure 10: Performance comparison with data replication.

6.4 Experimental Results
6.4.1 Trace analysis
 We verify the access latency between servers and their corresponding distances. The

mapping result is shown in Fig. 10. We use three different distance measurement methods, that is,
the shortest path which is the geo-distance of the corresponding GPS coordinates, the sum of
latitude and longitude distances, and the area between two nodes in terms of latency estimation.
Fig. 9 shows the cumulative distribution functions of three distance measurements, i.e., Fig. 9
shows that using the shortest-path has a relatively low estimation error, i.e., 10% for 80% of
nodes when using the shortest path to estimate the latency between a pair of servers.

6.4.2 Results without data replication
 Fig. 11 shows the results of the performance of proposed algorithms in the case, where

there is no data replication. The results clearly show that the proposed MC algorithm achieves the
lowest latency, followed by the MV algorithm. The RD algorithm’s performance is the worst,

which demonstrates the necessity of data placement optimization. In Fig. 10, we change the
number of servers in the experiments, i.e., the size of the FNs. The result shows that when the FNs
have a larger size, improper data placement leads to bad performance. The RD algorithm has more
than 100% of the MC algorithm's latency in Fig. 10. In Fig. 10, we gradually increase the average
number of edges in the network with a certain amount of servers. The results show that when the
network is sparse, there is a large performance difference between algorithms. In the experiments,
the average latency decreases around 20% with a lower network spareness level. The IU
algorithm has similar performance to MV since they are both greedy algorithms which cannot
generate the optimal data placement order.

In Fig. 10, we change the average storage size of each server. The results show that the
average latency is relatively stable. A possible reason is that the data is generated uniformly in the
experiments and thus, the placement of data into different locations has minimum influence on the
final result. Fig. 10 shows the results of different data request rates. When the data request rate
increases, all algorithms have a larger latencies.

6.4.3 Results with data replication
 Fig. 12 shows the performance of proposed algorithms in a case where there is data

replication. The budget number is two times the number of data request in the experiments. The
results clearly show that the proposed RO algorithm achieves the lowest latency, followed by the
IU, MV, and RD algorithms. The RD algorithm’s performance is the worst, which demonstrates
the necessity of data placement optimization.

In Fig. 11, we change the number of servers in the experiments, i.e., the size of the FNs.
The results show that when the FNs have a larger size, improper data placement leads to bad
performance. The RD algorithm has more than 150% the latency of the IU algorithm in Fig. 11.
Compared with the results in Fig. 10, all algorithms have better performance due to a greater
amount of data placed in the network. In Fig. 11, we gradually increase the average number of
edges in the network with a certain amount of servers. The results show that when the network is
sparse, the performance difference between different algorithms is large. An interesting result is
that the average latency first increases, then later decreases with an increase in the network
sparseness level.

In Fig. 11, we change the average storage size of each server. The results show that along
with an increase in average storage size, the latency decreases very quickly due to increased
placement flexibility. In Fig. 10, the average latency is reduced by more than 20% with one
additional storage capacity in the server node. Fig. 11 shows the results of different data request
rates. When the data request rate increases, all algorithms have a larger latency. However, the RD
algorithm has the fastest speed in terms of latency increasing, which demonstrates the effectiveness
of the data placement optimization.

6.4.4 Summary
 Based on the experiments, we find that data placement optimization is very necessary.

The average performance can be improved by more than 50% in most cases by comparing the
proposed algorithms with the random placement. In a general case with data replication, the
proposed RO algorithm has significant improvement compared to other algorithms, which
indicates that both the data budget distributions in each data request and their corresponding
placements are very important.

7 Conclusion

 In this paper, we consider the data placement issue in the Fog Networks (FNs) so that
users have low access delay. Specifically, we discuss the Multiple Data placement with Budget
Problem (MDBP), whose objective is to minimize the overall access latency. We begin with a
simple case, where there is no data replication. In this case, we propose a min-cost flow
transformation and thus find the optimal solution. We further propose efficient updating strategy
to reduce the time complexity in the tree topology. In a general case with data replication, we prove
that the proposed problem is NP-complete. Then, we propose a novel rounding algorithm, which
incurs a constant-factor increase in the solution cost. We validate the proposed algorithm by using
the PlanetLab trace and the results show that the proposed algorithms improve the performance
significantly.

References

[1] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,
business value, and innovation,” ACM Transactions on Management Information Systems,
vol. 6, no. 4, p. 13, 2016.

[2] “Facebook statistics, 2018.” [Online]. Available:
https://www.statista.com/statistics/264810/number-of- monthly-active-facebook-users-
worldwide/

[3] “Cisco visual networking index: Forecast and methodology, 20162021.” [Online].
Avail- able: https://www.cisco.com/c/en/us/solutions/collateral/service- provider/visual-
networking-index-vni

[4] D. Ghose and H. J. Kim, “Scheduling video streams in video- on-demand systems: A
survey,” Multimedia Tools and Applica- tions, vol. 11, no. 2, pp. 167–195, 2000.

[5] M. Claeys, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck, S. Latre ́, and F. De
Turck, “An announcement-based caching approach for video-on-demand streaming,” in
Proceedings of the IEEE CNSM, 2015.

[6] G. Tang, K. Wu, and R. Brunner, “Rethinking cdn design with distributee time-varying
traffic demands,” in Proceedings of the IEEE INFOCOM, 2017.

[7] J. Sahoo, M. A. Salahuddin, R. Glitho, H. Elbiaze, and W. Ajib, “A survey on replica
server placement algorithms for content delivery networks,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 2, pp. 1002–1026, 2016.

[8] N. Wang and J. Wu, “Minimizing the subscription aggregation cost in the content-based
pub/sub system,” in Proceedings of the IEEE ICCCN, 2016

[9] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,” IEEE/ACM
Transactions on Networking, vol. 8, no. 5, pp. 568–582, 2000.

[10] M. Yu, W. Jiang, H. Li, and I. Stoica, “Tradeoffs in cdn designs for throughput oriented
traffic,” in Proceedings of the ACM CoNEXT, 2012.

[11] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakrishnan, “Optimal
content placement for a large- scale vod system,” in IEEE/ACM Transactions on
Networking, vol. 24, no. 4. ACM, 2010, pp. 2114–2127.

[12] S. Borst, V. Gupta, and A. Walid, “Distributed caching algo- rithms for content
distribution networks,” in Proceedings of the INFOCOM, 2010.

[13] L. Wang, R. Li, and J. Huang, “Facility location problem with different type of clients,”
Intelligent Information Management, vol. 3, no. 03, p. 71, 2011.

[14] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby, “On the optimal placement
of web proxies in the internet,” in Proceedings of the IEEE INFOCOM, 1999.

[15] J. Xu, B. Li, and D. L. Lee, “Placement problems for transparent data replication proxy
services,” IEEE Journal on Selected areas in Communications, vol. 20, no. 7, pp. 1383–1398,
2002.

[16] M. Hu, J. Luo, Y. Wang, and B. Veeravalli, “Practical resource provisioning and
caching with dynamic resilience for cloud- based content distribution networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 8, pp. 2169–2179, 2014.

[17] K. A. Kumar, A. Deshpande, and S. Khuller, “Data placement and replica selection for
improving co-location in distributed environments,” arXiv preprint arXiv:1302.4168, 2013.

[18] W. Ta ̈rneberg, A. Mehta, E. Wadbro, J. Tordsson, J. Eker, M. Kihl, and E. Elmroth,
“Dynamic application placement in the mobile cloud network,” Future Generation Computer
Systems, vol. 70, pp. 163–177, 2017.

[19] L. R. Ford Jr and D. R. Fulkerson, “A simple algorithm for finding maximal network
flows and an application to the hitchcock problem,” Tech. Rep., 1955.

[20] A. Goldberg and R. Tarjan, “Solving minimum-cost flow prob- lems by successive
approximation,” in Proceedings of the ACM STOC, 1987.

[21] L. Gao, H. Ling, X. Fan, J. Chen, Q. Yin, and L. Wang, “A popularity-driven video
discovery scheme for the centralized p2p-vod system,” in Proceedings of the IEEE WCSP,
2016.

[22] M. Charikar, S. Guha, E ́. Tardos, and D. B. Shmoys, “A constant-factor approximation
algorithm for the k-median prob- lem,” in Proceedings of the ACM SOTC, 1999.

[23] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for data placement
problems,” SIAM Journal on Com- puting, vol. 38, no. 4, pp. 1411–1429, 2008.

[24] C. Lumezanu and N. Spring, “Measurement manipulation and space selection in
network coordinates,” in Proceedings of the IEEE ICDCS, 2008.

[25] [Online]. Available: https://www.infobyip.com/ipbulklookup.php.

[26] [Online]. Available: https://www.maxmind.com.

