Deadline-Sensitive User Recruitment for Mobile Crowdsensing with Probabilistic Collaboration

Mingjun Xiaoa, Jie Wub, He Huangc, Liusheng Huanga, and Chang Hua

aUniversity of Science and Technology of China,
bTemple University, cSoochow University
Outline

• Motivation
• Model & Problem
• Solution
• Extension
• Simulation
• Conclusion
Motivation

• Mobile Crowdsensing
 – A group of mobile users are coordinated to perform a large-scale sensing job over urban environments through their smartphones.

Platform

Urban area

Sensing job

Results

Platform

Urban area
Motivation

- Mobile Crowdsensing
 - Applications: urban WiFi characterization, traffic information mapping, wireless indoor localization, and so on.
 - User recruitment or task allocation is one of the most important topics
 - Existing works mainly focus on deterministic mobile crowdsensing
Motivation

- Probabilistically collaborative crowdsensing
 - Example:
Model

- Location-related sensing tasks: \(S = \{s_1, \ldots, s_m\} \)
- Mobile users: \(U = \{u_1, \ldots, u_n\} \)
- Time is divided into many equal-length sensing cycles: \(\tau \)
- Each user can perform one or more tasks in each sensing cycle with some probabilities: \(p_{ij} \)
- Each user will also charge a cost from the requester as the reward for participating in crowdsensing: \(c_i \)
• Model
Problem

• **Deadline-sensitive User Recruitment (DUR)**

 – The objective is to determine which users should be recruited, so that the requester can minimize the total cost, while ensuring that the expected completion time of the crowdsensing is no larger than a given deadline T.
Problem

- Problem Formalization
 - Joint processing probability ρ_j^Φ
 \[
 \rho_j^\Phi = 1 - \prod_{u_j \in \Phi} \left(1 - p_{ij}\right)
 \]
 - The DUR problem
 \[
 \text{Min} : \quad C(\Phi) = \sum_{u_i \in \Phi} c_i
 \]
 \[
 \text{s.t.} : \quad \Phi \subseteq U
 \]
 \[
 \frac{\tau}{\rho_j^\Phi} \leq T, \quad 1 \leq j \leq m
 \]
• Problem Hardness Analysis
 – Theorem 1: The DUR problem is NP-hard

• Utility function $f(\Phi)$

$$f(\Phi) = \theta \sum_{j=1}^{m} \min\{\rho_j^\Phi, \frac{\tau}{T}\}, \theta = \max\{\theta_1, \theta_2\}, \theta_1 = \frac{T \sum_{i=1}^{n} c_i}{m \tau}$$

\[\theta_2 = \max\left\{ \frac{c_i |1 \leq i \leq n}{\frac{\tau}{T} - \rho_j^\Phi |1 \leq j \leq m, \rho_j^\Phi < \frac{\tau}{T}, \Phi \subset U} \right\} \]
• Problem Re-formalization

- **Theorem 2:** 1) \(f(\emptyset) = 0 \); 2) \(f(\Phi) \) is an increasing function.

- **Theorem 4:** \(f(\Phi) \) is a submodular function.

- **Theorem 5:** \(f(\Phi) \) is a polymatroid function on \(2^U \).
Problem Re-formalization

- Theorem 6: \(C(\Phi) \) is a modular function as well as a polymatroid function on \(2^U \).

- Corollary 1: The DUR problem can be equivalently re-formalized as a Minimum Submodular Cover with Submodular Cost (MSC/SC) problem:

\[
\text{Minimize}\{ C(\Phi) \mid f(\Phi) = f(U), \ \Phi \subseteq U \}
\]
Solution

- The gDur Algorithm

 The greedy strategy: the user who can improve the utility mostly with the least cost is recruited first.

Algorithm 1 The gDUR Algorithm

Require: $\mathcal{U}, S, \mathcal{P}, C, \tau, T$

Ensure: Φ

1. $\Phi = \emptyset$;
2. while $f(\Phi) < \frac{m\tau \theta}{T}$ do
3. Select a user $u_i \in \mathcal{U} \setminus \Phi$ to maximize $\frac{f(\Phi \cup \{u_i\}) - f(\Phi)}{c_i}$;
4. $\Phi = \Phi \cup \{u_i\}$;
5. **return** Φ;
Solution

- An Example

![Diagram](image-url)
Solution

• Correctness and Performance Analysis

 – **Theorem 3:** The gDur algorithm 1 is correct. That is, it will produce a feasible solution of the DUR problem, as long as the problem is solvable.

 – **Theorem 8:** The proposed gDUR algorithm can achieve a $a \left(1 + \ln \frac{m \pi \theta}{opt \cdot T}\right)$-approximation solution, where opt is the cost of the optimal solution for the DUR problem.
The Extended Problem

- When a user performs a sensing task, there is a sensing duration d. The total expected duration of each task σ is no less than a given threshold D.

\[
\begin{align*}
\text{Min} : & \quad C(\Phi) = \sum_{u_i \in \Phi} c_i \\
\text{s.t. :} & \quad \Phi \subseteq U \\
& \quad \sigma_{j}^{\phi} \geq D, \quad 1 \leq j \leq m \\
& \quad \frac{\tau}{\rho_{j}^{\phi}} \leq T, \quad 1 \leq j \leq m
\end{align*}
\]
Extension

- **Solution**

 - **Utility function** $g(\Phi)$

 $$g(\Phi) = \frac{\vartheta}{mD} \sum_{j=1}^{m} \min\{\sigma_{j}^{\Phi}, D\},$$

 $\vartheta = \theta$ if $D > 0$; $\vartheta = 0$ and $g(\Phi) = 0$, if $D = 0$

 - **Combinational utility function** $h(\Phi)$

 $$h(\Phi) = f(\Phi) + g(\Phi)$$
The dDur algorithm: the user who can improve the combinational utility mostly with the least cost is recruited first.

Algorithm 2 The dDUR Algorithm

Require: $\mathcal{U}, \mathcal{S}, \mathcal{P} = \{p_{ij} | u_i \in \mathcal{U}, s_j \in \mathcal{S}\}, \mathcal{C}, \tau, \mathcal{T}, \mathcal{D}$

Ensure: Φ

1. $\Phi = \emptyset$;
2. **while** $h(\Phi) < \frac{m \tau \theta}{T} + \vartheta$ **do**
3. Select a user $u_i \in \mathcal{U} \setminus \Phi$ to maximize $\Phi \cup \{u_i\}$
4. $\Phi = \Phi \cup \{u_i\}$
5. **return** Φ;
• Correctness and Performance Analysis

- **Theorem 9**: 1) \(h(\Phi) \) is an increasing function with \(h(\emptyset) = 0; \) 2) \(h(\Phi) = m\tau\theta/T + \vartheta \) if and only if \(\Phi \) is a feasible solution of the extended DUR problem.

- **Theorem 11**: The proposed dDUR algorithm can achieve a \(\left(1 + \ln \frac{m\tau\theta + \vartheta T}{opt \cdot T} \right) \)-approximation solution, where \(opt \) is the cost of the optimal solution for the extended DUR problem.
Simulation

Trace
- Cambridge Haggle Trace Set
- Synthetic traces

Settings

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Default Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of users n</td>
<td>100</td>
<td>100-400</td>
</tr>
<tr>
<td>Number of tasks m</td>
<td>20</td>
<td>20-80</td>
</tr>
<tr>
<td>Threshold of sensing duration D</td>
<td>0min</td>
<td>0min,4min</td>
</tr>
<tr>
<td>Deadline T</td>
<td>10hours</td>
<td>{10, 15, 20, 25}</td>
</tr>
<tr>
<td>Probabilities of users P</td>
<td>[0,0.1]</td>
<td>0-0.4</td>
</tr>
</tbody>
</table>
Simulation

- Algorithms in comparison
 - gDUR
 - dDUR
 - Minimum Cost User Recruitment (MCUR)
 - MCUR with Probabilistic mobility (MCURP)

- Metrics
 - The total cost
 - The successful processing ratio
Simulation

• Results
 – Successful processing ratio vs. deadline
Simulation

• Results
 – Successful processing ratio vs. deadline
Simulation

• Results
 – Total cost vs. deadline

(b) $D = 0$ minute
Simulation

- Results
 - Total cost vs. deadline
Simulation

• Results
 – Changing costs C

(a) Ratio vs. Costs of Users
(b) Total Cost vs. Costs of Users
Simulation

• Results
 – Changing costs P
Conclusion

• When the sensing duration is ignored, gDUR and dDUR achieve the same results.
• When the sensing duration is considered, dDUR will recruit more users than gDUR and resulting in larger total costs as well as higher successful processing ratios.
• MCUR algorithm recruits fewer users than our algorithms, however results in very low successful processing ratios.
• MCURP algorithm achieves higher successful processing ratios than our algorithms while resulting in larger total costs.
• Both gDUR and dDUR demonstrate much better integrative performances than the two compared algorithms.
Thanks!

Q&A