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Abstract— Multipoint relays (MPR) [1] provides a localized
and optimized way of broadcasting messages in a mobile ad
hoc network (MANET). Using 2-hop neighborhood information,
each node determines a small set of forward neighbors to relay
messages. Selected forward nodes form a connected dominating
set (CDS) to ensure full coverage. Adjih, Jacquet, and Viennot [2]
proposed a novel localized algorithm to construct a small CDS
based on the original MPR. In this paper, we provide several
extensions to generate a smaller CDS using 3-hop neighborhood
information to cover each node’s 2-hop neighbor set. In addition,
we extend the notion of coverage in the original MPR. We show
that the extended MPR has a constant local approximation ratio
compared with a logarithmic local ratio in the original MPR. The
effectiveness of our approach is confirmed through a simulation
study.

Keywords: Broadcasting, connected dominating set (CDS), mo-
bile ad hoc networks (MANETs), multipoint relays.

I. I NTRODUCTION

Wireless interfaces pose a unique challenge in designing
efficient broadcasting in mobile ad hoc networks (MANETs).
When a node sends a message, the message can reach all
adjacent nodes and, therefore, only a subset of nodes is needed
to relay a broadcast message in MANETs.

Efficient broadcasting in MANETs can be formulated by
identifying a smallconnected dominating set(CDS) in the
network where nodes in the set and only nodes in the set
relay the message. Adominating set(DS) is a subset of nodes
in the network where every node is either in the subset or a
neighbor of a node in the subset. A DS is called a CDS if
the subgraph induced by the DS is connected. Many existing
works on finding a small CDS are not suitable for MANETs,
since they rely on either global information (such as a global
network topology) or global infrastructure (such as a spanning
tree). In a MANET, network topology changes frequently and,
hence, a global information/infrastructure approach may not
be combinatorially stable. In a combinatorially stable system,
the propagation of all topology updates is sufficiently fast to
reflect the topology changes.

The k-hop localized approach is a solution to ensure in
MANETs the combinatorially stable property work for small
k. In this approach, each node determines its status and/or

the status of neighbors (forward or non-forward) based on
its k-hop neighborhood information (such as local network
topology within k hops). In general,k-hop neighbor set of
nodev, represented asNk(v), is a set of nodes that are at most
k-hops away from nodev. If the neighborhood information
is collected via periodically exchanging “Hello” messages, it
takesk rounds for each node to collect itsk-hop neighbor set.
It is clearly impossible to collect up-to-date network topology
information for largek; therefore,k is usually a small integer
such as 2 or 3 in MANETs. A generic broadcast scheme based
on different ways of using neighborhood information is given
in [3]. Multipoint relays (MPR) [1] is a special 2-hop localized
approach, where each forward node determines the status of
its neighbors based on its 2-hop neighbor set through node
coverage. It should be stressed that in the MPR each node does
not determine its forward status. Instead each forward node
(selected by its neighbors following certain rules discussed
later) determines forward status for each of its neighbors.
Specifically, each forward node selects a subset of 1-hop
neighbors to cover its 2-hop neighbor set. That is, each 2-
hop neighbor is a neighbor of the selected subset of 1-hop
neighbors.

The original MPR is source-dependent (also called
broadcast-dependent); that is, the forward node set is deter-
mined during a broadcast process and is dependent on the
source of the broadcast and communication latency. Adjih,
Jacquet, and Viennot [2] proposed a novel source-independent
(also called broadcast-independent) MPR. Specifically, the
forward node set is determined before any broadcast process
and is constructed based on the MPR following two simple
rules. In [4], Wu enhanced the source-independent MPR
through several modifications. In this paper, we provide several
extensions to generate a smaller forward node set using 3-hop
neighborhood information to cover each node’s 2-hop neighbor
set. In addition, we extend the notion of coverage in the
original MPR. We show that the extended MPR has a constant
local approximation ratio compared with a logarithmic local
ratio in the original MPR. The effectiveness of our approach
is confirmed through a simulation study.

The rest of the paper is organized as follows. Section 2 pro-



vides preliminaries on general broadcasting in MANETs. Also,
the MPR algorithm and its extensions are briefly reviewed.
Section 3 proposes the enhanced MPR. In Section 4, we prove
the upper bound of the proposed algorithm. Section 5 provides
some simulation results. The related work is discussed in
Section 6 and the conclusion is drawn in Section 7.

II. PRELIMINARIES

The simplest way to perform a broadcasting is based on the
following rule:

• Blind flooding rule : a node re-transmits the message
once and only once.

The blind flooding may cause excessive redundancy and
results in channel contention and message collision (also called
broadcast storm problem[5]). In Figure 1 (a), when nodeu
broadcasts, every other node relays once. In reality, eitherw
or x is sufficient.

Broadcasting can also be fulfilled by requiring only the
source node and nodes in the CDS (i.e. forward node set)
transmit the message. Therefore, limited broadcast relay is
based on the following rule:

• CDS rule: a node retransmits the message once and only
once if it belongs to the CDS.

In Figure 1 (a), nodew forms a CDS and, hence, onlyw
forwards the message (except for the source). The problem is
now reduced to finding a small CDS in a localized way.

A. Multipoint Relays (MPR)

A MANET is represented by a unit disk graphG = (V,E),
where the node setV represents a set of wireless mobile
nodes and the edge setE represents a set of bi-directional
links between the neighboring nodes. Each node has a distinct
ID. Two nodes are considered neighbors if and only if their
geographic distance is no more than a given transmission range
r. Let N1(V ) (or simplyN(V )) denote the set of all nodes that
are inV or have a neighbor inV . V coversU if U ⊂ N1(V ).

In general, thek-hop subgraphGk(v), induced fromk-hop
information of v, is (Nk(v), Ek(v)). Nk(v) denotes thek-
hop neighbor set of nodev, that is,N0(v) = {v} andNk(v)
= (

⋃
u∈Nk−1(v) N1(u)) ∪Nk−1(v), for k ≥ 1. Ek(v) denotes

the set of links betweenNk(v), excluding those links between
k-hop neighbors. That is,Ek(v) = Nk−1(v) × Nk(v). For
example, if v has 1-hop information, then it knows all its
neighbors, but not the links between these neighbors.

In multipoint relays (MPR) [1], each nodev maintains 2-
hop subgraphG2(v) = (N2(v), E2(v)). Nodev selects a small
forward node set,C(v), from its 1-hop neighbor setN1(v) to
cover its 2-hop neighbor setN2(v); that is,C(v)∪v is a CDS
for N2(v). C(v) is also called thecoverage setfor v. Whenu
is selected byv as a forward node,v is called theselectorof u.
Note that several selectors may exist for a particular node. A
forward node may or may not actually retransmit the message;
its actual status is determined by the following MPR rule [1]:

• MPR rule : a node retransmits the message once and only
once if the first message received is from a selector.

The collection of nodes that have retransmitted the message
plus the source node form a CDS.

Let H1(V ) = N(V )−V denote the nodes at (exact) 1-hop
distance fromV and H2(V ) = N2(V ) − N(V ) denote the
nodes at 2-hop distance fromV . In general,Hk(V ) denotes the
nodes atk-hop distance fromV . A simple greedy algorithm for
computingC(v) (initially empty) atv is shown as Algorithm
1 [1]. Note that in MPR, whenv transmitsN(v) is cover,
therefore,H2(v) (= N2(v)−N(v)) is used instead ofN2(v).

Algorithm 1 Greedy algorithm at nodev

1. Add u ∈ H1(v) to C(v), if there is a node inH2(v)
covered only byu. Any node inH2(v) that is not covered
by C(v) is called an uncovered node.

2. Add u ∈ H1(v) to C(v), if u covers the largest number
of uncovered nodes inH2(v). Use node ID to break a
tie when two nodes cover the same number of uncovered
nodes.

In Figure 1 (b), suppose the following coverage sets are
selected based on the above greedy algorithm:C(u) = {v, y},
C(v) = {x}, C(w) = {y}, C(x) = {v}, and C(y) = {w}.
Collectively nodesv, w, x, and y form a CDS. As specified
in the MPR, the actual set of forward nodes for a particular
broadcast uses only a subset, and it depends on the location
of the source and communication latency. For example, ifv
is the source and nodex receives the first message fromv,
thenx is a forward node. Also, if nodesw andy receive their
first message fromx and v, respectively, none of them will
forward the message. Therefore,{v, x} forms a CDS for this
case. However, if nodey receives the first message fromu,
then{v, x, y} forms a CDS.

B. Source-independent MPR

The original MPR is source-dependent. Adjih, Jacquet, and
Viennot [2] recently proposed a novel localized algorithm
to construct a CDS based on the MPR, and it is source-
independent. The source-dependent approach depends on a
particular broadcast. Therefore, the resultant forward node set
depends on many factors, such as the location information of
neighbors, node priority, message propagation delay, back-off
delay, etc. The source-independent approach does not depend
on a particular broadcast, and therefore, the resultant forward
node set depends only on local topology and node priority. In
addition, the forward node stet is generic that can be used for
any broadcast.

A node belongs to a CDS if

• Rule 1: the node has a smaller ID than all its neighbors.
• Rule 2: the node is a forward node selected by its

neighbor with the smallest ID.

Applying Rule 1 and Rule 2 to Figure 1 (b),{x, y, v, u}
forms a CDS. Compared with the set derived from the original
MPR, nodew is not in the final CDS since it is selected byy
(which does not have the smallest ID amongw’s neighbors).
In addition, nodeu is included since it has a smaller ID than



(a) (c)

w

u v

x

y

u

x

w

v

(b)

w y

x v

u

Fig. 1. Three sample networks.

all its neighbors. The correctness of source-independent MPR
is given in [2].

C. Existing extensions

Wu [4] observed two potential drawbacks in the source-
independent MPR:

1. Rule 1 is “useless” in many occasions; that is, the node
selected based on Rule 1 is not essential for a CDS.

2. The original MPR forward node selection (Algorithm 1)
does not take advantage of Rule 2.

In Figure 1 (a),u and v are selected based on Rule 1;
however, they are useless. In fact, nodew alone is sufficient
for a CDS. Similarly,u selected by Rule 1 (in Figure 1 (b))
is useless. On the other hand, we might have to include some
smallest ID nodes even if they are not selected by any of their
neighbors as forward nodes. In Figure 1 (c), suppose nodeu is
not selected by any of its neighbors,u has to be included (as
it is selected by Rule 1), because any forward node selected
by a node other thanu will be ignored based on Rule 2.

In Figure 1 (b), we assume thatv selectsx as its forward
node. Based on Rule 2, sincev is the smallest ID neighbor of
x, x cannot ignorev’s choice. On the other hand, ifv chooses
y, sincev is not the smallest id neighbor ofy, v’s choice will
be ignored byy. Therefore, forward nodey comes for “free”
for v. That is, the inclusion ofy does not increase the size of
the forward node set.

Wu [4] then proposed two extensions to the source-
independent MPR: one is on Rule 1 and the other is on the
greedy algorithm (Algorithm 1).

• Enhanced Rule 1: the node has a smaller ID than all its
neighbors and it has two unconnected neighbors.

The Enhanced Rule 1 together with the original Rule 2 will
generate a CDS under all cases except complete graphs. Note
that when the network is complete, there is no need of a CDS,
because each source forms a CDS. Wu [4] showed that the
Enhanced Rule 1 is effective when the network is dense.

Wu [4] also introduced the notion offree neighbor. Nodeu
is a free neighbor ofv if v is not the smallest ID neighbor of
u. In the enhanced forward node selection, we first include all
free neighbors, then nodes with higher degrees (i.e., covering
more uncovered 2-hop neighbors) are selected and use node ID
to break a tie if needed untilH2(v) is covered. The modified
greedy algorithm is shown in Algorithm 2. Simulation results

in [4] show that this extension is effective when the network
is sparse. Combining the Enhanced Rule 1 and the modified
greedy algorithm (Algorithm 2) at each nodev, the result is
effective for both sparse and dense networks.

Algorithm 2 Modified greedy algorithm at nodev

1. Add all free neighbors toC(v).
2. Follow steps 1. and 2. of Algorithm 1.

III. PROPOSEDAPPROACH

The proposed approach is motivated by the case of Figure 1
(b). Suppose the current node isu. In the original MPR or its
extensions, bothy andv need to be selected to coveru’s 2-hop
neighborsw andx. However,w falls into the 2-hop neighbor
set ofv. That is,w can be covered byv via x whenv calculates
its forward node set. Motivated by this example, our proposed
approach selects a pair of nodes(v, x) at each step. We first
give an extended notion ofcoverage:

Definition 1: A nodeu is covered byv if it is a 1-hop neighbor
in H1(v) (directly covered) or it is a 2-hop neighbor inH2(v)
(indirectly covered).

In the example of Figure 1 (b), among 2-hop neighbors of
u, x is directly covered byv and w is indirectly covered by
v via x. In this case,u is a direct selectorfor v (to coverx)
andu is an indirect selectorfor x (to coverw).

In the proposed approach, each nodeu still covers its 2-hop
neighbor set, but using 3-hop information. In fact, the only
additional information used is about connections between any
two 2-hop neighbors. We have then the following Enhanced
Rule 2:

• Enhanced Rule 2: nodeu is a forward node ifu is
1. directly selected by a node inH1(u) that has the

smallest ID inH1(u).
2. indirectly selected by a node inH2(u) that has a

smaller ID than all nodes inH1(u).
With the Enhanced Rule 2, we extend the notion of free

neighbor to1-hop free neighborand 2-hop free neighboras
follows:

Definition 2: Nodeu is a 1-hop free neighbor ofv if u is in
H1(v) and v’s ID is not the smallest ID inH1(u). Nodeu



is a 2-hop free neighbor ofv if u is in H2(v) and u’s ID is
larger than at least one node ID inH1(u).

The greedy algorithm can then use these free neighbors for
neighbor coverage without any cost. In the extended greedy
algorithm (Algorithm 3), two nodes,u and w, as a pair are
selected at each selection operation performed by current node
v, whereu is a 1-hop neighbor ofv andw is a 2-hop neighbor
of v which is also a 1-hop neighbor ofu. We introduce the
concepts of “cost” and “yield” to measure the quality of each
selection.

Definition 3: A “cost” of a selection operation is the number
of the selected nodes that are not free neighbors in the selec-
tion. A “yield” of a selection operation is the total number of
the uncovered nodes that was covered by the selection divided
by the cost of the selection.

Note that each nodev knows its 1-hop and 2-hop free
neighbors becausev has 3-hop neighbor set information,
which also includes the neighbor set of each of its 2-hop
neighbors.

Algorithm 3 Extended greedy algorithm at nodev

1. Add all pairs of 1-hop free neighboru and 2-hop free
neighborw to C(v) and remove all their covered nodes
from H2(v).

2. Add a pair of nodesu ∈ H1(v) andw ∈ H1(u) ∩H2(v)
to C(v) that gives the highest yield inH2(v). Use node
ID to break a tie if two selections give the same yield.

The major modification here is that a 2-hop neighborw of v
can be indirectly selected to cover other 2-hop neighbors. That
is, a 1-hop neighboru directly coversH1(u) ∩H2(v) andu
indirectly coversH1(w)∩H2(v) via w. Also, w always exists
as long asH2(v) is not empty and is included even if it does
not “contribute” additional coverage beyond whatv does. The
extended greedy algorithm takes the following considerations
when selecting node pair(u,w) at v:

1) Both 1-hop free neighboru and 2-hop free neighbor
w can contribute additional coverage without any cost.
Therefore, a pair of free neighbors should be included
first.

2) Either 1-hop free neighboru or 2-hop free neighbor
w can decrease the total cost by half which leads to
a higher yield.

3) Nodesu andw have equal cost and their contributions
(in terms of coverage) are treated equally. Therefore,
whichever covers a larger of number of uncovered nodes
will give a higher yield.

The following theorem guarantees that the extended greedy
algorithm generates a CDS for a given connected graph.

Theorem 1: If the given connected graph is not a complete
graph, the set of forward nodes selected by the Enhanced Rule
1 and Enhanced Rule 2 forms a CDS.

Proof: Assume that the graph is not a complete graph; we first
show that there exists at least one node in the forward node
set. Letc be the node with the smallest ID in the network.
If all other nodes are neighbors, at least two neighbors are
not directly connected. Based on the Enhanced Rule 1,c is
selected. If there exists another node that is not a neighbor of
c, c will designate a neighborc

′
for relaying. Sincec is the

smallest ID node,c
′

is selected based on the Enhanced Rule
2. Let C be the connected component in the forward node
set that contains the smallest ID nodec and/or its designated
neighborc

′
. We prove thatC itself is a dominating set (DS).

We prove by contradiction. IfC is not a DS, there must exist
some nodes that are not inN(C), i.e., N(C) is not empty.
Let V be the set of nodes that have at least one neighbor in
C and at least one neighbor inN(C). V cannot be empty,
since the network is connected. Also,V ∩ C = φ. Consider
the smallest ID nodes in N(V ).
• Assumes is in N(C) (which implies s /∈ V ). Since

s ∈ N(V ) and s /∈ V , there exists a neighborv of s in
V . Note that in general whens ∈ N(V ), s may not have
a neighbor inV . Let u be a neighbor ofv in C. Consider
now the relay set fors. As u is a 2-hop neighbor ofs,
based on Algorithm 3,s has the following three choices
to coveru:

1) s → v(∈ V ) → u
2) s → v(∈ V ) → u

′
(∈ N(V )) → u

3) s → s
′
(∈ N(V )) → v(∈ V ) → u

In the first case,s coversv ∈ V directly; in the second
case,s coversv ∈ V directly; and in the third case,s
coversv ∈ V indirectly (via s′). In all these cases,s
has the smallest ID amongN(V ) which includesN(v).
Next we show that the second and third cases include all
possible 3-hop paths connectings ∈ N(C) and u ∈ C.
Suppose the path is(s, x, y, u), clearly y connects to a
node in C and s connects to a nodeN(C). If x also
connects to a node inC, thenx belongs toV ; otherwise,
x belongs toN(C) which makesy ∈ V . It is also
possible that bothx and y belong toV . This case is
included in both second and third cases sinceV ⊂ N(V ).
In all cases,v is selected which contradictsV ∩ C = φ.

• Assumes is in N(C) which can be partitioned intoV and
N(C)−V . (a) Supposes is in V , based on the Enhanced
Rule 1, s is selected since its ID is smaller than that
of all its neighbors. In addition,s has two unconnected
neighbors, one inN(C) and one inC. (b) Supposes is
in N(C)− V . Let v be a neighbor ofs in V , and letu
be a neighbor ofv in N(C). Consider now the relay set
for s. As u is a 2-hop neighbor ofs, s has the following
three choices to coveru:

1) s → v(∈ V ) → u
2) s → v(∈ V ) → u

′
(∈ N(V )) → u

3) s → s
′
(∈ N(V )) → v(∈ V ) → u

The rest of the proof is similar to the previous case.

In all cases, we reach a contradiction. Therefore,C has to be
a DS. 2



h

dgb

c f

a

e

(b) EMPR

h

dgb

c f

a

e

(c) EEMPR

h

dgb

c f

a

e

(a) MPR

Fig. 2. A sample network with 8 nodes. The double-circled nodes are selected forward nodes by (a) the MPR, (b) the EMPR, and (c) the EEMPR.

Figure 2 shows a sample network with 8 nodes. The
double-circled nodes are selected forward nodes by the source-
independent MPR [2] (MPR), the enhanced MPR [4] (EMPR),
and the proposed extended MPR (EEMPR). In Figure 2 (a),
nodesa, b and d are the nodes with the smallest ID within
their corresponding 1-hop neighbors, they are included in the
CDS by Rule 1. Nodesc andf are selected as forward nodes
by nodea, which is the node with the smallest ID withinc
andf ’s 1-hop neighbors (Rule 2). Also, it is assured that node
b, the smallest ID neighbor of nodeg, selects{c, f} to cover
H2(b). Therefore,{a, b, c, d, f} are in the CDS for the MPR.
In Figure 2 (b), nodesa and d are removed from the CDS
by the Enhanced Rule 1 because nodesa’s 1-hop neighbors
(c and f ) are connected andd’s 1-hop neighbors (f, g, and
h) are pairwise connected. Therefore,{b, c, f} are in the CDS
for the EMPR. In Figure 2 (c), nodec is removed from the
CDS by the Enhanced Rule 2 becausec’s 1-hop neighbor with
the smallest ID,a, selectsf andb to indirectly covere. Thus,
only {b, f} are in the CDS for the EEMPR.

Figure 3 (a) shows a sample network with 80 nodes.
Figures 3 (b - e) show the results with the MPR (Figure 3 (b)),
the EMPR (Figure 3 (c)), the EEMPR (Figure 3 (d)), and the
MCDS (Figure 3 (e)). In these figures, only nodes in the CDS
and their induced subgraphs are shown. The MCDS is a global
method based on [6] which can be used as the lower bound.
The size of the CDS’s for the MPR, EMPR, EEMPR and
MCDS are 32, 29, 27 and 19, respectively.

IV. T HE UPPERBOUND OF THEPROPOSEDEXTENDED

GREEDY ALGORITHM

In [1], Qayyum, Viennot, and Laouiti proved that the local
upper bound of the ratio of the size of their proposed heuristic
to that of the optimal multipoint relays isO(log n

′
), wheren

′

is the maximum size of 2-hop neighbor set. Note that this
ratio is with respect to multiple relays methods only (i.e.,
methods where 2-hop nodes are covered by selected 1-hop
nodes). In fact, the approximation ratio isO(n

′
) among all

algorithms that cover 2-hop neighbor sets locally. Consider
the example in Figure 4 (a) where all 1-hop neighbors ofv
are on the circle ofC (with radiusr from centerv) and all
2-hop neighbors ofv are on the circle ofC ′ (with radius2r
from centerv). r is the uniform transmission range of each
node. Clearly, whenu computes its forward nodes, each 2-
hop neighbor ofv, say w, on the circle ofC ′ can only be

covered by exactly one 1-hop neighbor ofv, say u, on the
circle of C whose position is exactly on the line connecting
v andw (that is, there is a one-to-one relation betweenv and
w). When the number of nodes onC ′ increases, the number
of selected forward nodes onC also increases the same rate.
In fact, as indicated Figure 4(a), a constant number of nodes
(9 double-circled nodes) are sufficient to cover all 1-hop and
2-hop neighbors ofv. Therefore, the approximation ratio is
O(n

′
).

Next, we prove that for each single nodev, the extended
greedy algorithm (Algorithm 3) can provide a constant size of
the forward node setC(v).

Theorem 2: The extended greedy algorithm has a constant
local approximation ratio.

Proof: Supposev is the node that selects a forward node
set C(v) to coverH2(v). Based on the algorithm,v selects
a pair of nodesu and w, where u is in H1(v) and w is
an uncovered node inH1(u) ∩ H2(v), that jointly cover the
maximum number of uncovered nodes inH2(v). The selected
nodes are put intoC(v) and the nodes covered byC(v) in
H2(v) are removed. Nodev continues to select pairsu′ and
w′, u′′ andw′′, ..., and so on, untilH2(v) becomes empty (see
Figure 4 (b)). For each time, the newly selected 2-hop forward
node, sayw′, is not adjacent to any already selected 2-hop
forward node, sayw, in C(v). In other words,{w, w′, w′′, ...}
forms an independent set (IS). (An IS is a set in which no
two nodes are neighbors.) This suggests that, within a disk
whose diameter isr (or radius0.5r), there exists at most one
selected 2-hop forward node (of typew). In other word, such
disks are non-overlapped. Notice that the possible location
of v’s 2-hop neighbor is only within the ring betweenr to
2r. Thus, the disks with diameterr are confined within the
ring between0.5r to 2.5r (shaded area in Figure 4 (b)). The
maximum number of such disks isπ(2.5r)2−π(0.5r)2

π(0.5r)2 = 24.

Therefore, the total number of{w,w′, w′′, ...} is no larger than
24 and the total number of nodes inC(v), which is twice of
the size of{w,w′, w′′, ...}, is no larger than 48. Note that
the optimal number of forward nodes selected by each node
to cover its 2-hop neighbor set is a constant. Therefore, the
proposed approach has a constant local approximation ratio.
2

In [7], a disk with radiuskr is proved to have an upper-
bounded constant number of nodeslk in an IS, wherelk ≤
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Fig. 3. A sample network with 80 nodes: (a) entire network, (b) MPR, (c) EMPR, (d) EEMPR, and (e) MCDS.

(2k + 1)2. The extended greedy algorithm provides a special
case whenk = 2. Although the extended greedy algorithm
provides each node a constant number of forward nodes, the
upper bound of the CDS of the entire network is stillO(n)
because the collection of the independent sets that are selected
locally does not correspond to a global IS. One worst case is
shown in Figure 4 (c): all nodes sit along lineAD with length
of 3r and the nodes’ IDs monotonously increase along the
line from the left end to the right end. Each node determines
its dominator, which has the smallest ID among its 1-hop
neighbor set. Based on the algorithm, a node will finally
become a forward node if it is selected by its dominator.
When the density of the network becomes infinite, all the
nodes on the segmentBC become forward nodes, which is
O(n). On the other hand, a CDS with only three nodes at
positionsA, B andC is sufficient to cover the entire network.
However, this situation corresponds to the worst case which
rarely occurs. The next section will show the competitive

average performance through simulations.

V. SIMULATION

We compare the number of nodes in the CDS for the
proposed extended MPR (EEMPR), the source-independent
MPR [2] (MPR), and enhanced MPR [4] (EMPR) under three
scenarios.

In the first scenario, a given number of nodes (ranging from
20 to 100 with a step of 10 and from 100 to 1,000 with a step
of 100, respectively) were randomly distributed in a100 × 100
2-D space. Each node has a fixed uniform transmission range
r (r is 25 and 50, respectively). There is no consideration
of node’s movement and channel collision. Thus, a pair of
nodes are neighbors when their distance is smaller thanr. If
the generated network is not connected, it is discarded. For
each fixed number of nodes, the results of sufficient number
of experiments are averaged to make 90% confidence interval
within ± 5%.
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Fig. 5. The number of nodes in the CDS whenr is 25: a)n ranges from 20 to 100, and (b)n ranges from 100 to 1000.

Figures 5(a) and 5(b) show the simulation results when the
node’s transmission range is 25. Figure 5(a) shows the trend
when the number of nodes in the network ranges from 20 to
100 (the corresponding graph is sparse), whereas Figure 5(b)
shows the trend when the number of nodes in the network
is from 100 to 1000 (the corresponding graph is dense). We
find that all three curves have a rising trend as the number of
nodes in the network increases. The number of nodes in the
CDS increases because, when more nodes join in the network,
the network density increases and a node may select more 1-
hop neighbors as forward nodes, which increases the size of
the CDS. From the figure, we also notice that the rising trend
is more sensitive to the number of nodes in the range from
20 to 100 (relatively sparse) than to that in the range from
100 to 1000 (relatively dense). The effect is more remarkable
when the network is sparse because the greedy algorithm is
a node coverage algorithm, that is, it selects 1-hop forward
nodes to cover 2-hop neighbors. When the network is sparse,
the collective coverage of the forward nodes may still leave
some blank areas (i.e. areas with no nodes) within the 2-
hop neighborhood. As more nodes join in, new nodes may
appear in these blank areas thus resulting in the selection

of more forward nodes. As the network density increases,
the number of the blank areas reduces as does the number
of newly selected forward nodes. Therefore, the rising trend
slows down as the number of nodes increases. Among these
three algorithms, the performance of the MPR is the worst
in all ranges. When the network is sparse (n is from 20 to
80), the curves of the EMPR and the EEMPR are almost the
same. But as the number of nodes increases, the gap between
the EMPR and the EEMPR becomes significant. When the
number of nodes in the network is 1000, the number of nodes
in the CDS determined by the EEMPR is only around 70%
of that determined by the EMPR or MPR. The reason that the
EEMPR shows great improvement in dense networks is that
the selection of the forward nodes for one node has an upper
bound that is irrelevant to the network density. Thus, the size
of the CDS is less influenced by the network density.

Figures 6(a) and 6(b) show the results when the node’s
transmission range is 50 and number of nodes in the network
is from 20 to 100 and from 100 to 1000, respectively. When
the transmission range increases, the graph becomes denser
if the number of nodes is fixed. In this case, the size of
the CDS only increases slightly as the size of the network
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Fig. 6. The number of nodes in the CDS whenr is 50: a)n ranges from 20 to 100, and (b)n ranges from 100 to 1000.

increases. This is because, when the transmission range is
50, the corresponding graph is sufficiently dense so that the
number of nodes has little effect on network density. Among
these three algorithms, the EEMPR outperforms the other two,
followed by the EMPR; the MPR is the worst in all the ranges.

Comparing Figures 5(a) and 5(b) with Figures 6(a) and 6(b),
we find that increasing the node’s transmission range can
increase the coverage area of each node and, therefore, reduce
the diameter of the network, which leads to a smaller size of
the CDS.

In the second scenario, a fixed number of nodes (n = 200
and 1000, respectively) are randomly distributed in the same
2-D space. The network density is determined by the node’s
transmission ranger. For each fixed number of nodes, we
run different experiments where the value ofr changes from
20 to 75. The results of sufficient number of experiments for
each fixed network density are averaged to guarantee the same
confidence interval.

Figures 7(a) and 7(b) show the factorf versus the node’s
transmission range when the number of nodes is 200 and
1000, respectively. When the transmission ranger increases,
the factor decreases because the increase ofr results in the
decrease of the diameter of the network. Thus, less nodes are
needed to cover the confined area.

From the above simulations, we conclude that the proposed
EEMPR always outperforms the MPR and the EMPR regard-
less of the size of the network and the density of the network.
Also, the factor of the number of nodes in the CDS to that in
the network is more sensitive to the small size of the network
than the large one. The results show localized approaches are
scalable as the density of the network increases, especially for
the EEMPR which has a constant size of local CDS.

VI. RELATED WORK

Essentially, our work is to find a CDS that covers a unit
disk graph with local information. The problem of finding
a minimum CDS (MCDS) for a general network is proved
to be NP-Complete [8]. Even for a unit disk graph, such a
problem is also NP-Complete [9]. Therefore, only heuristic
algorithms can be applied. Many algorithms that aim to

construct CDS’s are classified into four groups: global [6],
[10], quasi-global [11], quasi-local [12], [13], and local [1],
[2], [3], [4], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23].

Some earlier researchers proposed centralized greedy algo-
rithms that use global information to provideapproximation
ratio O(ln∆) to the MCDS [10] for general networks, where
∆ is the maximum node degree of the network. Quasi-global
CDS algorithms [11] build shortest-path-tree-based CDS
structures which provide constant approximation ratio for unit
disk graphs. In contrast, quasi-local CDS algorithms construct
a CDS by first electing clusterheads [12] or cores [13] and
then using selected forward nodes to connect them.

Distributed broadcast algorithms that are based on local
neighbor set information can also provide CDS’s for a given
network. In [3], a generic localized broadcast scheme was
proposed where source-independent and source-dependent ap-
proaches are uniformed. Source-independent (or broadcast-
independent) approach forms a “static” CDS of the network
that only depends on the network topology and node priority.
Many algorithms belong to this group, such as MPR [2],
EMPR [4], marking process with rules 1&2 [15] and its
extensions [16], SPAN [17], andd-hop CDS [18]. In
contrast, the source-dependent (or broadcast-dependent) ap-
proach depends on the source of a specific broadcast operation.
When a specific broadcast starts, after receiving a broadcast
packet, the node determines both its own and/or some of its
neighbors’ forward/non-forward statuses under a local view
of its neighbor set. The local view of its neighbor set can
be updated by the neighborhood information contained in
the “Hello” message or by the broadcast history information
piggybacked in the broadcast packet. As the broadcast packet
traverses the network, the forward nodes eventually form a
“dynamic” CDS of the given network. Algorithms that belong
to this group are multipoint relays [1], dominant pruning [14]
and its extensions [19], [20], LENWB [21], SBA [22], and
neighbor-elimination-based broadcasting [23].

In [3], the distributed broadcast algorithms are also classi-
fied intoself-pruning, neighbor-designating, andhybridbroad-
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Fig. 7. The factor of the number of nodes in the CDS to that in the network whenr is from 20 to 75: (a)n is 200 , and (b)n is 1000.

casting approaches. In self-pruning approaches [15], [16], [17],
[18], [21], [22], [23], each node determines its own status
and is in the forward status by default. A node resigns its
role of forward status by “itself” if a path from the source
can be found for each of its neighbors. Nodes in such a path
can be either already forwarded nodes or nodes that deem to
forward. In the neighbor-designating broadcasting approaches
[1], [2], [4], [14], [19], [20], a node determines its neighbor’s
forward/non-forward status, that is, a node selected by its
neighbor updates its local view of neighbor set when it receives
a broadcast packet and determines its neighbors’ forward/non-
forward statuses consequently. The hybrid approaches [3]
combine both self-pruning and neighbor-designating methods.

The three algorithms (MPR [2], EMPR [4], and EEMPR)
discussed in this paper belong to the source-independent
approach, also they are all in the category of neighbor-
designating approach.

VII. C ONCLUSIONS

In this paper, we have proposed an enhanced source-
independent MPR based on the recently proposed source-
independent MPR. The enhancement is done by using 3-
hop neighborhood information to cover each node’s 2-hop
neighbor set and by extending the notion of coverage in
the original MPR. The effectiveness of the enhancement is
confirmed through a simulation study on both sparse and dense
networks. In this paper, we did not consider energy-aware
multiple relays selection. One straightforward extension is to
use residue energy level as the selection criteria instead of
using node ID. That is, the smallest ID node is replaced by
the node with the highest residue energy level. In this case, a
node with the highest residue energy in its 1-hop neighborhood
has a better chance to become a forward node based on the
Enhanced Rule 1. In this way, we can conduct an energy-aware
broadcasting [23].
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