

Event Detection through Differential Pattern Mining in Internet of Things

Authors: Md Zakirul <u>Alam</u> Bhuiyan and Jie Wu

IEEE MASS 2016

The 13th IEEE International Conference on Mobile Ad hoc and Sensor Systems Brasília, Brazil, October 10-13, 2016

Event Detection through Differential Pattern Mining in Internet of Things

- Motivation
- Existing Work
- o Proposed Scheme
- **o** Data Preparation
- Mining through DP-Tree Development
- Performance Evaluations
- Conclusions and Future Works

Motivations

- Internet of Things (IoT) have strong practical applications in many domains, e.g.,
 - Structural health monitoring (SHM) for industrial machine, aerospace, and vehicles
 - Chemical explosion, military surveillance, intrusion tracking.
 - In these applications, high quality event detection using wireless sensing in IoT is essential.

Motivations

- Wireless sensors in IoT produce a huge volume of dynamic data when deployed in these applications.
 - It is vital to develop methodologies to mine the big data
 - To detect event of interest in the applications
 - With low cost and high-quality

o Motivation

- Existing Work
- o Proposed Scheme
- o Data Preparation
- o Mining through DP-Tree Development
- **o** Performance Evaluations
- o Conclusions and Future Works

Existing Work

- Traditional data mining schemes used to mine data in IoT
 - Frequent pattern
 - Association rules
 - Sequential pattern
 - Clustering
 - Classification

Centralized and computationally expensive

Focusing on transactional data

Data patterns are straightforward

 Sensors in IoT may face difficulties in providing event information

Existing Work

- Traditional data mining schemes used to mine data in IoT
 - Frequent pattern
 - Association rules
 - Sequential pattern
 - Clustering
 - Classification

 Sensors in IoT may face difficulties in providing event information Damage, crack, explosive, fire, mobile event (via sensing signals or Wi-Fi signals)

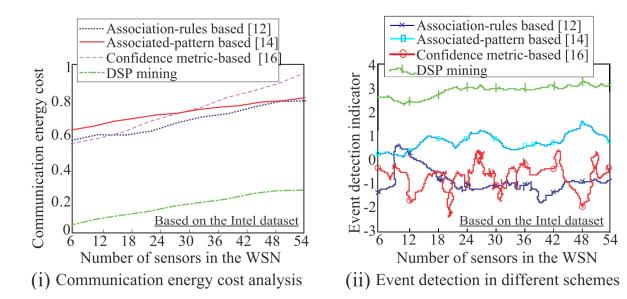
o/1 pattern, sum, avg., max, metric

Decision-making

Meaningful decision for an event?

Existing Work

• Performance comparison: when using event indicator



- o Motivation
- o Existing Work
- o Proposed Scheme
- o Data Preparation
- o Mining through DP-Tree Development
- **o** Performance Evaluations
- o Conclusions and Future Works

Problem Definition

• Network model

- A wireless sensor network
 - A set of energy-constrained sensors
 - Organized into CHs connecting a BS
 - A minimum communication range, sensors are allowed to share their mined information with their neighbors
- A computation and communication cost models are given

• Target application: SHM, smart city applications

Problem Definition

• Find:

- A pattern of sensors (that may report an event information)
 - By mining all the acquired data of sensors in a cluster in a distributed and parallel manner such that a CH can finally decide whether an event has occurred in the area and report to the BS.

• Objectives:

• To reduce the communication cost of the wireless sensor and to provide high-quality event detection.

Our Scheme

• DPminer

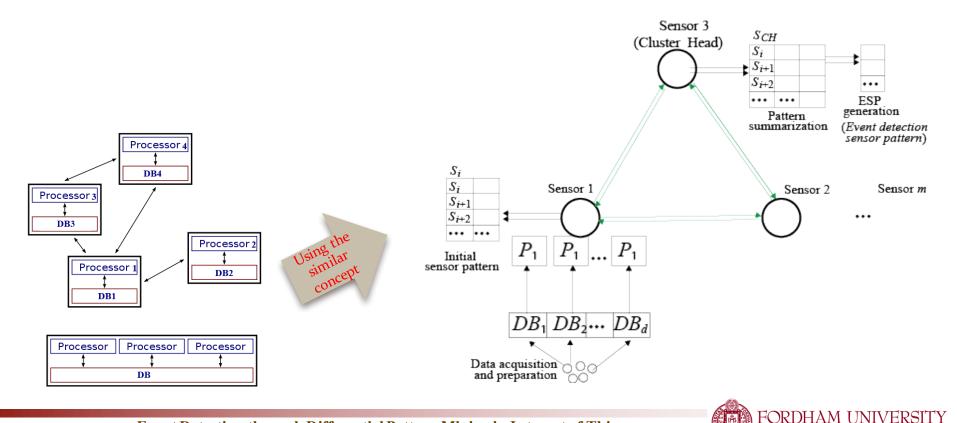
- A sensor data mining scheme for event detection
 - Supports IoT applications
- Function in a distributed and parallel manner
 - Data in a partitioned database processed in a distributed and parallel manner by one or more sensor processors
 - Finding differential information between sensor databases and extracting a pattern of sensors having event information
 - DSP: Differential event-sensitive sensor pattern

THE IESUIT UNIVERSITY OF NEW

Our Scheme

• DPminer

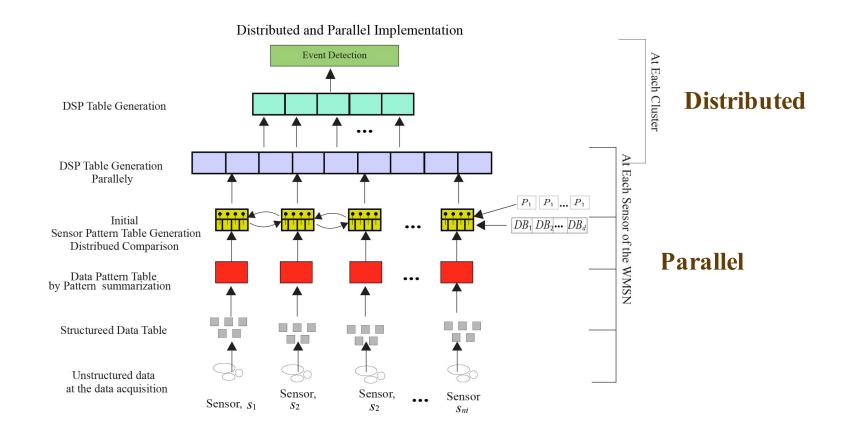
- A sensor data mining scheme for event detection
 - Supports IoT applications
- Function in a distributed and parallel manner



Event Detection through Differential Pattern Mining in Internet of Things

Our Scheme

o DSP: Differential Pattern Mining



- o Motivation
- o Existing Work
- o Proposed Scheme
- **o** Data Preparation
- o Mining through DP-Tree Development
- **o** Performance Evaluations
- o Conclusions and Future Works

Data Preparation: The 1st Stage Mining

• Proportion test

- Acquired raw data
 - Unstructured, noisy, incomplete, out of range
- Maintain two databases
 - Control database
 - Containing a simplified dataset- a set of ranges and a set of tuples with different frequencies and values that can be defined by the healthy data (when there is no event in an application).
 - Case database
 - Stored data collected at a specific period
- Proportion test is used to check: whether the data in the case is within a given range or not through a comparison between the Control and the Case

Data Preparation: The 1st Stage Mining

• Proportion test

 $z = \frac{p_{case} - p_{control}}{\sqrt{p(1-p)(\frac{1}{\pi_{case}} + \frac{1}{\pi_{control}})}}$

- $\circ H_{\text{in}}: \pi_{\text{Case}} = \pi_{\text{Control}} \text{vs} H_{\text{out}}: \pi_{\text{Case}} \neq \pi_{\text{Control}}$
 - *H*_{in} and H_{out} denote the frequencies and values that are 'in' the range and 'out' of the range, respectively in between Cases and Controls dataset.
- Under the null hypothesis of no difference in values, the square of the statistic z² follows the Pearson's chi-squared test

Data Preparation: The 1st Stage Mining

o Data Summarization

• Values, frequencies

Sensor s_1

(i) Structured segmened values at t_1

d1	0.05685	0.18652	0.12451	0.21546	0.06592	0.18652	
d2	0.12596	0.01256	0.12981	0.26451	0.29865	0.08289	
d3	0.01652	0.16029	0.17045	0.01421	0.02429	0.19077	

(ii) Data ranging

									1		
A=0.05 B=0.15 C=0.	5 D=0.35	E=0.45	=0.55	G=0.65		H=0.75		I=0.85		J=0.95	
H 0.05 B 0.15 C 0	D 0.00	L 0.15	0.00	0.05		11 0.75		1 0.05		5 0.75	
$0.00 \ 0.09 \ 0.10 \ 0.19 \ 0.21$	29 0.31 0.39 0.	0.41 0.49 0.	51 0.59	0.61	0.69	0.71	0.79	0.81	0.89	0.91	1.00
low to high event intensity											
low event intensity	med	med event intensity			high event intensity						

(iii) Labeling Values

					1	I.	1	Ĩ.		1	1		[1		
H_1	Α	В	В	С	А	В	С	D	В	А	В	D	D	С	В	В
H_2	В	А	В	С	С	А	В	D	А	E	С	А	В	А	В	А
H_{3}	Α	В	В	А	С	В	В	А	F	D	А	А	В	В	В	E

(iv) Calculating Frequencies

A=3	B=7	C=3	D=3		
A=6	B=5	C=3	D=1	E=1	

- A=5 B=7 C=1 D=1 E=1 F=1
- (v) Total average values, T_{mv} = 8.5 Rate of Frequencies, F_{t_1} ={3,3,3,3,2,1}

(vi) Summarization

Total values	TA=14	TB=19	TC=7	TD=5	TE=2	TF=1
Rate of Frequencies	FA=3	FB=3	FC=3	FD=3	FE=2	FF=1

Event Detection through Differential Pattern Mining in Internet of Things

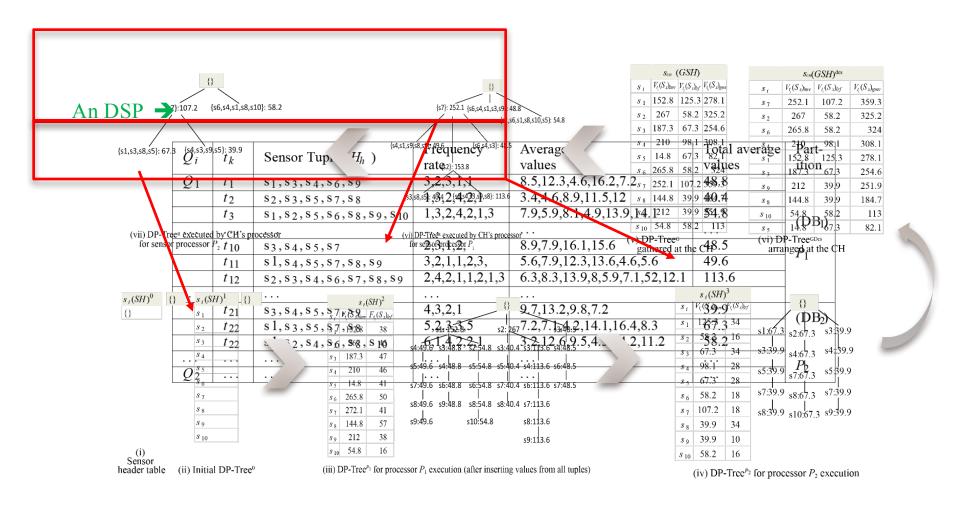
- o Motivation
- **o** Existing Work
- o Proposed Scheme
- o Data Preparation
- Mining through DP-Tree Development
- **o** Performance Evaluations
- o Conclusions and Future Works

Mining through DP-Tree Development: The 2nd Stage Mining Data Pattern Table

0	t.	Songer Tuple (H_{i})	Frequency	Average	Total average	Part-
Q_i	t_k Sensor Tuple (H_h)		rate	values	values	ition
Q_1	<i>t</i> ₁	s ₁ , s ₃ , s ₄ , s ₆ , s ₉	3,2,3,1,1	8.5,12.3,4.6,16.2,7.2	48.8	
	<i>t</i> ₂	\$2,\$3,\$5,\$7,\$8	1,3,2,4,2,1	3.4,4.6,8.9,11.5,12	40.4	
	t ₃	$s_1, s_2, s_5, s_6, s_8, s_9, s_{10}$	1,3,2,4,2,1,3	7.9,5.9,8.1,4.9,13.9,14.1	54.8	(DB ₁)
						(DDI)
	t ₁₀	\$3,\$4,\$5,\$7	2,3,1,2,	8.9,7.9,16.1,15.6	48.5	P_1
	t ₁₁	s1, s4, s5, s7, s8, s9	3,2,1,1,2,3,	5.6,7.9,12.3,13.6,4.6,5.6	49.6	1
	t ₁₂	\$2,\$3,\$4,\$6,\$7,\$8,\$9	2,4,2,1,1,2,1,3	6.3,8.3,13.9,8,5.9,7.1,52,12.1	113.6	
	t ₂₁	\$3,\$4,\$5,\$7,\$9	4,3,2,1	9.7,13.2,9.8,7.2	39.9	(DB ₂)
	t 22	s1, s3, s5, s7, s8	5,2,3,3,5	7.2,7.1,4.2,14.1,16.4,8.3	67.3	(DD_2)
	t 22	s1, s ₂ , s ₄ , s ₆ , s ₈ , s ₁₀	6,1,4,2,2,1	3.2,12.6,9.5,4.5,14.2,11.2	58.2	
						P_2
Q_2						12

Mining through DP-Tree Development: The 1st Stage Mining

o DSP Computation



- o Motivation
- o Existing Work
- o Proposed Scheme
- o Data Preparation
- o Mining through DP-Tree Development
- Performance Evaluations
- o Conclusions and Future Works

Performance Evaluations

• For the DSP generation,

- Two sets of big dataset
 - SHM data set: real data of 800 sensors collected from GNTVT
 - 54 sensors' dataset offered by Intel Berkeley Research Lab
- Each DB of a sensor is distributed among the processor of sensor nodes and the processors in the node has complete access to its portion of the database
- Observation
 - Computation cost, communication cost, and meaningful damage event detection information extraction
- A portion of data at some sensors are modified in order to provide a presence of event

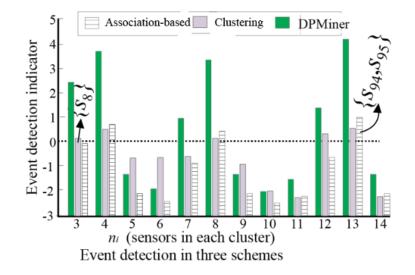
Results

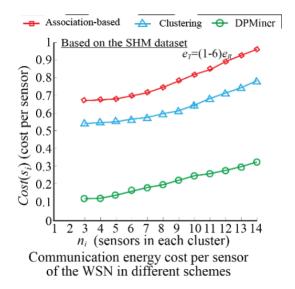
Computation energy cost



Results

• Event detection and communication energy cost





- o Motivation
- o Existing Work
- o Proposed Scheme
- o Data Preparation
- o Mining through DP-Tree Development
- **o** Performance Evaluations
- Conclusions and Future Works

Conclusions

• **DPminer**

- A comprehensive data mining schemes for sensors in IoT
- It works in a distributed and parallel manner and is able to extract a pattern of sensors having event information.
- Feature: provide important values as outputs (rather than "o/1" binary decision).
- Future Work
 - Applying the differential sensor mining technique with a machine-learning approach
 - Multimedia application, biomedical application

Author Contacts:

• Md Zakirul Alam Bhuiyan

- Email: <u>mbhuiyan3@fordham.edu</u>
- <u>https://sites.google.com/site/zakirulalam/</u>

o Jie Wu

- <u>Email: jiewu@temple.edu</u>
- http://cis-linux1.temple.edu/~jiewu/

